
Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink, Valeri George, Thomas
Schierl

Improving the parallelization efficiency of
HEVC decoding

Conference object, Postprint
This version is available at http://dx.doi.org/10.14279/depositonce-5788.

Suggested Citation
Chi, Chi Ching; Álvarez-Mesa, Mauricio; Juurlink, Ben; George, Valeri; Schierl, Thomas: Improving the
parallelization efficiency of HEVC Decoding. - In: 2012 IEEE International Conference on Image
Processing : ICIP. - New York, NY [u.a.] : IEEE, 2012. - ISBN: 978-1-4673-2534-9. - pp. 213-216. - DOI:
10.1109/ICIP.2012.6466833. (Postprint version is cited, page numbers differ.)

Terms of Use
© © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

IMPROVING THE PARALLELIZATION EFFICIENCY OF HEVC DECODING

Chi Ching Chi1 ∗ , Mauricio Alvarez-Mesa1,2, Ben Juurlink1, Valeri George2, Thomas Schierl2

1Embedded Systems Architectures, Technische Universität Berlin, Berlin, Germany.
2Multimedia Communications, Fraunhofer HHI, Berlin, Germany.

ABSTRACT

In this paper we present a new parallelization approach for

HEVC decoding called Overlapped Wavefront (OWF). It

is based on wavefront processing and improves its paral-

lelization efficiency by allowing overlapped execution of

consecutive pictures. Furthermore, in this strategy of the de-

coding steps are performed on a CTB basis rather than on a

picture basis, which improves data locality. Our implemen-

tation achieves between 29.6%, 42.4%, and 66.6% higher

frame rates compared to previous results and 11.3%, 21.0%,

and 38.0% higher frame rates compared to Tiles, for 2160p,

1600p, and 1080p, respectively.

Index Terms— HEVC, video codecs, parallel processing.

1. INTRODUCTION

Recent demands on video coding support for high resolutions

such as 4k or UHD in consumer devices have further driven

the video coding development. The Joint Collaborative Team

on Video Coding (JCT-VC) of ITU-T and ISO/IEC MPEG

has started a new project to develop a new video coding stan-

dard, called High Efficiency Video Coding (HEVC) [1], that

aims to reduce the bitrate of H.264/AVC [2] by another 50%.

In the development of the new video codec standard it is

being taken into account that contemporary and future com-

puter architectures are parallel (multi- and many-core). For

high-level parallelism, HEVC currently supports different

picture partition strategies such as entropy slices, wavefront

parallel processing (WPP) and Tiles. None of these ap-

proaches, however, completely fulfill the requirements of a

scalable and efficient parallel decoder.

In this paper we propose a parallelization strategy ap-

proach based on WPP, called Overlapped Wavefront (OWF),

which has several advantages compared to the existing ones.

The method consist of first, creating one picture partition per

row, second, to include all the decoding steps in a single pass

and third to allow the overlapped execution of consecutive

pictures. Parallel implementations for OWF and Tiles have

been performed on top of HEVC test Model (HM) reference

software.

∗C. C. Chi has received funding from the ENCORE European Project

(contract n◦ 248647).

2. PARALLELIZATION APPROACHES

For parallelization of video decoders picture-level partition-

ing has several advantages compared to other approaches.

In previous video codecs, like H.264/AVC, picture partitions

were only possible with slices with a high cost in terms of

coding efficiency. For scalable parallel H.264/AVC decod-

ing it is necessary to combine macroblock-level parallelism

for picture reconstruction and frame-level parallelism for en-

tropy decoding [3]. his approach, however, provides limited

reduction in picture latencies and results in high memory

usage.

In order to overcome these limitations, new paralleliza-

tion strategies have been included in the HEVC codec. The

HEVC draft standard contains 4 different approaches: slices,

entropy slices [4], wavefront parallel processing (WPP) [5]

and Tiles [6].

Slices have the largest coding penalty as they break en-

tropy decoding and prediction dependencies. Entropy slices,

like slices, break entropy decoding dependencies but allow

prediction (and filtering) to cross slice boundaries. In WPP

there is one picture partition per row and both entropy decod-

ing and prediction are allowed to cross partitions. In this way

coding losses are minimized while at the same time wavefront

parallelism can be exploited. Tiles define horizontal and ver-

tical boundaries that partition a picture into tile columns and

rows. Similar to slices, Tiles break entropy decoding and pre-

diction dependencies, but does not require a slice header for

each tile.

For slices, entropy slices, and Tiles the number of parti-

tions can be freely chosen by the encoder. In general having

more partitions increases parallelism but also results in lower

compression efficiency. For WPP, the number of partitions is

fixed to one per row. This guarantees some amount of paral-

lelism that grows with the resolution independent of the en-

coding scheme

In Table 1 the coding losses of the different approaches

are presented. Slices, entropy slices and WPP are configured

using one picture partition per row and compared to Tiles con-

figurations that have (approximately) the same amount of par-

allelism. Having one picture partition per row for Tiles is less

advantageous as entropy and prediction dependencies cannot

cross tile boundaries. We compared vertical and rectangular

1

Resolution
1080p 1600p 2160p

Part. BD-br Part. BD-br Part. BD-br

1 slice / row 17 8.65 25 8.26 34 5.15
1 ent. slice / row 17 5.59 25 6.29 34 3.88
1 WPP sub. / row 17 1.35 25 1.33 34 0.55
Tiles 1x15 15 4.41
Tiles 4x4 16 3.45
Tiles 1x20 20 4.97
Tiles 5x5 25 4.32
Tiles 6x6 36 2.08

Table 1: Number of picture partitions (Part.) and % of Y

BD-rate losses for different picture partitioning approaches

compared to one slice per frame

Tiles, and we observed that for a given amount of parallelism

the best configuration is to have N×N tiles (N tile rows and

N tile columns) in a picture. The table shows that using 1

WPP sub-stream/row gives the lowest coding losses followed

by Tiles.

3. OVERLAPPED WAVEFRONT PROCESSING

Although WPP has low coding losses, wavefront processing

suffers from inefficiencies due to parallelism ramp-up and

ramp-down. Tiles do not suffer from this and potentially can

provide better parallel efficiency.

The inefficiencies of wavefront processing can be miti-

gated by overlapping the execution of consecutive pictures.

Figure 1 shows that when a thread has finished a row in the

current picture and no more rows are available it can start pro-

cessing the next picture instead of waiting for the current pic-

ture to finish. We call this technique Overlapped WaveFront

(OWF).

To overlap the execution of consecutive pictures minor

modifications in the codec and the decoder implementation

are required. First on the codec side, the size of the motion

vectors must be restricted to ensure that all the reference area

is available. This can be guaranteed by limiting only the max-

imum downwards length of the vertical component.

On the one hand, limiting the size of the motion vectors

reduces the ability of the codec to describe fast motion. On

the other hand, reducing the size further would allow more

decoders to be used. For our experiments we have limited

the downwards size to 1/4 of the picture height. With this

setting there was no compression losses observed with any of

the videos, while the usable number of decoders is 12, 18, and

25 for 1080p, 1600p, and 2160p, respectively.

Another requirement for overlapped execution is that all

the decoding steps leading to the final reference picture have

to be performed on a Code Tree Block (CTB) granularity in-

stead of separated picture passes. In HEVC this means that in

addition to the entropy decode, reconstruction, and deblock-

ing filter, the SAO filter and ALF must also be performed in

the CTB decoding loop. Due to pixel dependencies the fil-

ter steps cannot be performed for the current CTB, but must

Referencable
T1
T2
T3
T4

T5

T6

T1

T2

T3

T4 max.
vertical
motion

Fig. 1: Pictures can be overlapped with a restricted motion

vector size, because the reference area is fully decoded.

(a) Vertical edges (b) Horizontal edges

(c) SAO (d) ALF

Fig. 2: Delay of CTB filtering due to pixel dependencies.

be delayed and performed in the order depicted in Figure 2.

Horizontal edge deblocking is delayed by half CTB horizon-

tal, SAO is delayed by 1 CTB horizontal and 4 pixels vertical,

and ALF is delayed by 1 CTB and 12 pixels horizontal and 8

pixels vertical.

4. PARALLEL DECODER IMPLEMENTATION

For OWF as well as Tiles a pipelined decoder organization is

used as illustrated in Figure 3. It consists of 3 pipeline stages:

parse, issue, and output. Each of these stages is performed

by a different thread. The parse thread performs emulation

prevention, high-level syntax parsing, and allocates an entry

in the decoded picture buffer. When a slice NAL unit is de-

tected, its payload is propagated to the issue queue. The issue

thread partitions the payload into rows or tiles and sends this,

encapsulated in a work unit, to the shared decoder queue. Af-

ter processing a complete work unit, a decoder thread fetches

a new work unit.

For OWF, the wavefront synchronization between the de-

coder threads is performed using a lock protected counter for

each row. This counter indicates the progress in CTB count

of the row. When a decoder thread finishes decoding the last

picture partition in the picture, a signal is sent to the out-

put thread, which performs the picture reordering and picture

buffer management. Picture overlapping is enabled by being

2

Dec. Pic. Buffer

Parse Issue

Output

D1 D2 D3 DN

Slice rbsp Tiles

OWF

Picture

ReleaseAquire

Fig. 3: General decoder architecture.

able to parse and issue the work units of the next slice NAL

while the current slice is being decoded.

For Tiles, entropy decoding and reconstruction can be per-

formed in parallel without dependencies to other tiles. The fil-

tering stages, however, do cross tile boundaries and can there-

fore not be performed in the tile reconstruction loop. But in

HEVC each of the filter stages (deblocking, SAO and ALF)

is parallel, meaning that they can be applied to each CTB in

parallel for the complete picture, one filter after the other. Our

Tiles decoder is implemented by parallelizing the tiles decod-

ing and filtering stages with a barrier between each stage.

Barrier synchronization is implemented by having the is-

sue thread wait for the completion of each stage, after which

the next stage is started. In the filter steps, eight consecutive

CTBs are processed as a single task to increase spatial local-

ity and reduce synchronization overhead. Among the decoder

threads an atomic counter is used to distribute the CTBs that

need to be filtered. When the last decode step has completed

for the current picture, the issue thread will signal the out-

put thread, and continues with issuing the tiles for the next

picture.

5. EXPERIMENTAL SETUP

We selected the Random Access High Efficiency (RA-HE)

“profile” which targets the most demanding application sce-

narios of the current HEVC proposal. Table 2 shows the main

encoding parameters of the JCT-VC common conditions [7].

All the videos from the HEVC test sequences are encoded us-

ing these parameters with the HM-4.1 reference encoder [8].

Due to space reasons, and because we are mainly interested

in high definition applications, we only present results for

1600p (2560×1600 pixels) and 1080p (1920×1080 pixels)

sequences. Additionally, we also evaluated 2160p videos

(3840×2160) from the SVT High Definition Multi Format

Test Set.

For our parallel decoding experiments we used a cache-

coherent shared memory machine with two Intel Xeon X5680

processors that have 6 cores each. Main parameters of the

architecture and software environment are listed in Table 3.

Options Value

CU structure: CTB size, partition depth 64×64, 4
Period of I-frames 32
Number of B-frames (GOP size), reference frames 8, 4
Motion estimation: algorithm, search range EPZS, 64
Entropy coding CABAC
Adaptive Loop Filter (ALF), Sample Adaptive Offset (SAO) enabled
Quantization Parameter (QP) 22, 27, 32, and 37

Table 2: Coding Options

System Software

Processor Intel Xeon X5680 Boost C++ 1.46.1
μarchitecture Westmere Compiler gcc 4.6.1
Sockets 2 Opt. level -O3
Cores/socket 6 Kernel 3.0.0-14
Clock frequency 3.33 GHz Operating system Ubuntu 11.10
Last level cache 12MB / socket HEVC software HM-4.1-r1527
SMT & TurboBoost disabled Perf. counters linux perf

Table 3: Experimental setup

6. RESULTS AND ANALYSIS

The speedup of the decoder is presented for OWF and tiles

in Figure 4. The figure shows that for both OWF and tiles

the speedup is higher with larger resolution sequences. Also

it can be observed that OWF has higher performance com-

pared to Tiles, and that the difference is growing with the

number of threads. The speedup difference is most profound

with the 1080p sequences. In Table 4 the maximum speedup

and frames per second are reported. Compared to previous

work [9], the absolute performance of OWF is 29.6%, 42.4%,

and 66.6% higher for 2160p, 1600p, and 1080p, respectively.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

S
pe

ed
up

Number of threads

2160p: OWF
1600p: OWF
1080p: OWF
2160p: tiles
1600p: tiles
1080p: tiles

Fig. 4: Speedup for OWF and tiles

To investigate the performance difference between OWF

and Tiles the speedup can be decomposed in the total CPU

time increase and CPU usage factor. These metrics are de-

rived from the linux time command. The total CPU time

indicates the total time spend by all the threads of the pro-

gram. The CPU usage factor indicates the average number

of cores used during the execution. Factoring the total CPU

time increase into the CPU usage factor results back into the

3

speedup. The relative increase of the total CPU time and the

CPU usage factor are plotted for the three resolutions in Fig-

ure 5.

Video Class 2160p 1600p 1080p

owf tiles owf tiles owf tiles

Max speedup 10.0 9.04 8.88 7.35 8.04 5.84

Frames / second 19.9 17.9 42.1 34.8 88.5 64.2

LLC misses / kInst. 1.65 2.35 2.17 2.84 2.22 2.79

Table 4: Speedup, frames per second and LLC misses at high-

est core count

Ideally the CPU usage factor is equal to the number of

threads and the total CPU time does not increase. A lower

CPU usage factor indicates that the parallelization strategy

has scalability limitations. Increases in total CPU time orig-

inate from threading overhead, reduced cache locality, and

memory access contention.

The plots for the CPU usage factor show an increasing

trend with higher resolution for both Tiles and OWF, which

is expected as higher resolutions sequences contain more pic-

ture partitions for both Tiles and OWF. It can, however, be ob-

served that OWF has higher CPU usage compared to Tiles, es-

pecially at higher thread numbers and lower resolution. This

shows that the scalability of the OWF parallelization strategy

is higher compared to having many parallel phases separated

with barriers in Tiles.

The plots for the CPU time increase show higher increases

for higher thread counts. Crossing the socket boundary at 6

threads shows a jump in CPU time increase due to NUMA

effects. For Tiles, however, a larger increase in the total CPU

time is observed overall compared to OWF.

We have used hardware performance counters to analyze

the CPU time differences between OWF and tiles. The most

relevant factor is the number of Last Level Cache (LLC)

misses, which are shown in Table 4 (per thousand instruc-

tions). On average, the LLC misses are 24.6% lower for

OWF compared to Tiles. This confirms that doing the filter

stages in a single pass improves cache locality and reduce

main memory contention. Although it is possible to im-

plement most of the filtering in a single pass for Tiles, this

requires an extra boundary filtering stage afterwards. How-

ever, implementing boundary filtering is difficult when all the

filters are enabled and can cross tile boundaries.

7. CONCLUSIONS

In this paper we have improved the parallelization efficiency

of HEVC decoding using a new parallelization strategy called

Overlapped Wavefront (OWF). This strategy improves the

efficiency by allowing threads to start processing the next

picture before the current picture is fully decoded. Further-

more, all the decoding steps are performed on a CTB basis

 0

 5

 10

 15

 20

 25

 30

1 2 4 6 8 10 12

C
P

U
 ti

m
e

in
cr

ea
se

 [%
]

Number of decoder threads

2160p tiles
2160p OWF

 0

 2

 4

 6

 8

 10

 12

1 2 4 6 8 10 12

C
P

U
 u

sa
ge

 fa
ct

or

Number of decoder threads

2160p tiles
2160p OWF

 0

 5

 10

 15

 20

 25

 30

1 2 4 6 8 10 12

C
P

U
 ti

m
e

in
cr

ea
se

 [%
]

Number of decoder threads

1600p tiles
1600p OWF

 0

 2

 4

 6

 8

 10

 12

1 2 4 6 8 10 12

C
P

U
 u

sa
ge

 fa
ct

or

Number of decoder threads

1600p tiles
1600p OWF

 0

 5

 10

 15

 20

 25

 30

1 2 4 6 8 10 12

C
P

U
 ti

m
e

in
cr

ea
se

 [%
]

Number of decoder threads

1080p Tiles
1080p OWF

 0

 2

 4

 6

 8

 10

 12

1 2 4 6 8 10 12

C
P

U
 u

sa
ge

 fa
ct

or

Number of decoder threads

1080p tiles
1080p OWF

Fig. 5: CPU usage factor and CPU time increase

(rather than on a picture basis) improving the data locality.

The OWF and Tiles parallelization have been implemented

on top of HEVC reference software. Compared to previous

work the performance has been improved by 29.6%, 42.4%,

and 66.6%, and compared to Tiles the performance is 11.3%,

21.0%, 38.0% higher, for 2160p, 1600p, and 1080p, respec-

tively.

8. REFERENCES

[1] G. J. Sullivan and J.-R. Ohm, “Recent Developments in Standardization

of High Efficiency Video Coding (HEVC),” in Proc. of SPIE, 2010.

[2] “Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec-

ommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC),” 2003.

[3] C. C. Chi and B. Juurlink, “A QHD-capable Parallel H.264 Decoder,” in

Proc. of the Int. Conf. on Supercomputing, pp. 317–326, 2011.

[4] K. Misra, J. Zhao, and A. Segall, “Lightweight slicing for entropy cod-

ing,” Tech. Rep. JCTVC-D070, Jan. 2011.

[5] F. Henry and S. Pateux, “Wavefront Parallel Processing,” Tech. Rep.

JCTVC-E196, March 2011.

[6] A. Fuldseth, M. Horowitz, S. Xu, and M. Zhou, “Tiles,” Tech. Rep.

JCTVC-E408, March 2011.

[7] F. Bossen, “Common Test Conditions and Software Reference Configu-

rations,” Tech. Rep. JCTVC-F900, Dec. 2011.

[8] “HM-4.1 Reference Software.” https://hevc.hhi.
fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-4.1.

[9] M. Alvarez-Mesa, C. C. Chi, B. Juurlink, V. George, and T. Schierl,

“Parallel Video Decoding in the Emerging HEVC Standard,” in Proc. of
ICASSP 2012, March 2012.

4

	ABSTRACT
	1. INTRODUCTION
	2. PARALLELIZATION APPROACHES
	3. OVERLAPPEDWAVEFRONT PROCESSING
	4. PARALLEL DECODER IMPLEMENTATION
	5. EXPERIMENTAL SETUP
	6. RESULTS AND ANALYSIS
	7. CONCLUSIONS
	8. REFERENCES

