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Abstract—In the era of multicore systems, it is expected that
the number of cores that can be integrated on a single chip will be
3-digit. The key to utilize such a huge computational power is to
extract the very fine parallelism in the user program. This is non-
trivial for the average programmer, and becomes very hard as
the number of potential parallel instances increases. Task-based
programming models such as OmpSs are promising, since they
handle the detection of dependencies and synchronization for the
programmer. However, state-of-the-art research shows that task
management is not cheap, and introduces a significant overhead
that limits the scalability of OmpSs. Nexus# is a hardware
accelerator for the OmpSs runtime system, which dynamically
monitors dependencies between tasks. It is fully synthesizable
in VHDL, and has a distributed task graph model to achieve
the best scalability. Supporting tasks with arbitrary number of
parameters and any dependency pattern, Nexus# achieves better
performance than Nanos, the official OmpSs runtime system, and
scales well for the H264dec benchmark with very fine grained
tasks, among other benchmarks from the Starbench suite.

Index Terms—hardware support; task manager; hardware task
scheduler; parallel programming; task graph; data flow.

I. INTRODUCTION

In recent years, multi-core/many-core processing is gaining
focus as increasing the frequency of a single core is nor more
possible due to the power wall. New programming models
are required for software development for multi-core systems
that can encapsulate the complexity of the underlying system
and allow the programmer to express parallelism in his/her
application without major modifications. Examples include
Google’s MapReduce [9], Intel’s TBB [16], StarSs [15] and
OpenMP [6].

Task based programming models allow exploring paral-
lelism in the application with minimal modifications through
the use of various pragmas.The programmer specifies the
code blocks that can be potentially executed in parallel by
annotating the application with simple pragmas, specifying the
memory footprints of these code blocks. These code blocks are
called rasks. Dependencies between tasks is determined using
the input/output parameters of each task. The RTS checks
all inputs and outputs for tasks submitted for execution and
then when all dependencies are resolved, tasks are marked as
ready and submitted to one of the free cores for execution.
The dependency resolution is shown to be a bottleneck in
the RTS of task based programming models such as StarSs
[14], and OmpSs [11]. This bottleneck affects the scalability
of applications on multi-core systems as no significant speed
up can be achieved by increasing the number of processing
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cores to run parallel tasks. This is mainly because the RTS
will spend more time processing dependencies between tasks
as more tasks become ready for execution, which is expected
when we increase the number of processing cores.

Accelerating the dependency resolution will increase the
scalability of applications employing task based program-
ming models to allow better utilization of multi-core systems.
Building custom hardware accelerators is one of the solutions
that was investigated in literature to reduce the overhead of
dependency resolution and increase the overall scalability of
parallel applications. The hardware accelerator introduced in
[7] named Nexus++ and analyzed in detail in [11], presented
a significant enhancement in terms of scalability for various
applications. Nexus++ is used to speed up the dependency
resolution in OmpSs’s RTS. Nexus++ use a single task
graph architecture to resolve dependencies. Tasks processed
by Nexus++ can have various dependency patterns and it is
possible that tasks can have arbitrary number of input/output
parameters. Using a single task graph limits the expected
scalability that can be obtained by Nexus++. Although sig-
nificant enhancements were introduced by Nexus++, using
multiple task graphs to process tasks in parallel can introduce
further enhancements in terms of scalability. On the other
hand, dependency between tasks is expressed in OmpSs by
several pragmas. Nexus++ had a limited support for these
pragmas which limited the performance of some applications
employing other pragmas, namely H264dec, which uses the
taskwait on barrier pragma.

This paper presents Nexus#, a hardware accelerator for
task based, data flow programming models in general, and
for OmpSs in its current prototype. The main contribution in
this paper to parallel programming is introducing a scalable
distributed task graph manager, where multiple tasks can be
analyzed in parallel. It is implemented as a synthesizable
VHDL prototype, aiming at the on-chip integrability with
future multicore SoCs as a co-processor. It support the faskwait
on barrier pragma, among other pragmas, which is expected
to enhance the performance of various applications. Several
experiments were performed to evaluate the performance of
Nexus# and compare it to Nexus++ and other dependency
resolution schemes found in the literature.

The remainder of the paper is organized as follows. Sec-
tion II gives a brief overview of the OmpSs programming
model, as well as the related work. Discussion on the design
of Nexus++, our baseline task manager, along its execution
pipeline is presented in Section III. Then we introduce the new
distributed architecture of Nexus# in Section IV. In Section V



the simulation environment and the employed benchmarks are
described. The evaluation results are presented in Section VI,
and conclusions are drawn in Section VIL

II. BACKGROUND
A. OmpSs

OmpSs is a task-based programming model that enables
uncomplicated exploitation of task-level parallelism. OmpSs
provides programmers with pragmas, annotations added to the
sequential code, to identify pieces of code that can potentially
run in parallel. The programmer does not need to reason about
synchronization between the tasks, as this is done implicitly by
the OmpSs runtime system (RTS). Listing 1 shows an example
of exploiting parallelism using pragmas.

MB_type* X[NB_WIDTH] [NB_HEIGHT];
//MB_type: a data str. that rep. MB dependencies.
#pragma omp task input (left, upright) inout (this)
void decode (MB_typex left, MB_typex upright,
MB_typex this) {...}
void main () {
int i, J;
init_matrix(X) ;
for (i=0; i<NB_WIDTH; i++)
for (§=0; Jj<NB_HEIGHT; j++)
decode (X[i] [j-1], X[i-1][j+1],
#pragma omp taskwait

}

X[i1031) 3

Listing 1. OmpSs example of macroblock wavefront decoding in H.264

In this example, the function decode() is called inside a
nested loop, processing the elements of matrix X. Calcu-
lating decode() for each element requires the results of the
decode() call on the left and upper-right cells.This example
represents macroblock wavefront decoding in H.264 [18], for
one 1920 x 1088 frame in blocks of 16 x 16, and it is one of
the benchmarks used to evaluate Nexus#.

When a function declaration is annotated with the omp
task pragma, any calls to the function are turned into task
submissions. The in- and output parameters of the task should
also be specified in the annotation as shown in Listing 1. This
permits the RTS to detect dependencies between tasks and
launch them only when all their input data is available. At the
end, a taskwait pragma makes the thread wait for completion
of the submitted tasks.

A source-to-source compiler transforms the annotated func-
tion calls to runtime library calls, which generate a task out of
each function call, and add it to the task graph. In the example
of Listing 1, every time the function decode() is called, a
task is generated. The call returns immediately, allowing the
submission of more tasks concurrently to their execution.

Having identified the tasks and the direction of their pa-
rameters, the OmpSs environment builds the task graph at run
time, and the task-level parallelism is detected and exploited.

B. Related Work

Parallel programming has always been an active field, even
before the breakthrough of multi/many core processors. Nowa-
days, it receives more importance as the target has shifted from
programming supercomputers, to normal consumer devices.

The literature has several programming models that aims at
the scalability of user applications. Most of them, however,
assume independent tasks and are optimized for a certain

application, a certain platform, or both. For example, Car-
bon [13] assumes independent tasks and uses hardware queues
to retrieve tasks with low latency. Al-Kadi et al. [1] proposed
a hardware task scheduler optimized for H.264 decoding. It
requires, however, that the programmer specifies the depen-
dencies between blocks.

Google’s MapReduce [9], Intel’s TBB [16], OpenMP [6],
StarPU [4], StarSs [15] and OmpSs [10], all are examples that
are aiming at decoupling the programmer from the underling
multicore architecture. They differ by the degree of abstraction
they provide to the programmer. StarSs [15] and OmpSs [10]
are good examples of a high-level parallel programming
model, which require the programmer to annotate sections of
code that can potentially run in parallel (tasks) with the con-
ditions under which execution is allowed (dependencies). The
runtime system then takes care of maintaining dependencies
between tasks, and scheduling of ready ones. This comes at
a high cost of runtime overhead that limits the scalability to
large number of cores [17].

Meenderinck et al. [14] proposed Nexus (the godfather of
our design), a hardware accelerator that was limited to the
Cell BE processor [5]. It also has some limitation on the
number of parameters a task can have, in addition on the
number of tasks that can depend on a certain memory segment.
Etsion et al. [12] also proposed a hardware task management
unit for the StarSs RTS, based on the similarity between
task dependency checking and the instruction scheduler of
an out-of-order processor. Although a VHDL prototype was
presented for it in [20], it was only evaluated using high-level
simulations. The hardware implementation, compared to ours,
is relatively expensive.

III. NEXUS++ HARDWARE TASK MANAGER

The Nexus++ [8] task manager is a hardware accelerator
for runtime systems of task-based programming models such
as OmpSs. Task graph management responsibilities that are
usually handled by the RTS, are off-loaded to Nexus++. It
tracks tasks’ input/output information and utilizes simple table
lookups to dynamically build the task graph and find out ready
tasks to run.

In [7], the VHDL prototype of Nexus++ is presented,
which thoroughly describes the design and implementation
as well as a trace-driven evaluation testbench. In [11], the
integration process is highlighted with the multicore RTS, and
the evaluation of Nexus++ with real applications.

A. Nexus++ Processing Pipeline

Nexus++ processes the incoming tasks in a pipelined fash-
ion. It has a simple 3-stage pipeline shown in Figure 1.

The pipeline shown in Figure 1 is an example for processing
tasks that have 4 parameters each. The first stage is the Input
Parser stage, and it handles receiving the new tasks from the
host multicore machine. It makes sure that all the parameters
of the new task have been received before forwarding it to the
next stage. Data communication between the different stages
are done using FIFOs lists. These lists have status flags, such
as fifo_empty, fifo_full, and data_valid flags, which serve as the
synchronization signals between the different pipeline stages.
The first stage needs two cycles to receive every memory
address in the task’s input/output list, plus 4 cycles for the
header word and synchronization, giving 12 cycles per task.
Once the data_valid flag of the first FIFO list gets activated,
the second stage, namely Insert, gets triggered. This is the



12 cyc 4 18 3 3

18

Input Parser (IP) H ‘ ’fHH ‘ H Insert (IN) H% wB

(et parser p) ] ]| [

Insert (IN)

WB

[ Input Parser (IP) H ‘ WH ‘ H

[ Insert (IN) Hﬂ WB

i [[]

L [rfel [ we )

Insert (IN)

Fig. 1.

longest stage in the pipeline, which, as the name indicates,
handles the insertion of the new tasks into the task graph, as
was thoroughly elaborated in [7]. This stage needs 18 cycles
for our 4-parameter task example.

The result of the Insert stage decides whether the third stage
will be activated or not. The third stage is the Write Back
stage, and is responsible for sending ready task IDs back to
the Nexus IO unit, in order to be read by the host multicore
machine subsequently. This means that if the inserted task had
dependencies on older tasks, it must wait until its dependencies
are fulfilled, and therefore cannot be reported by the Write
Back stage as a ready task. If the inserted task on the other
hand had no dependencies, the Write Back stage needs 3 cycles
to write it back to the Nexus 10 unit.

The pipeline shown in Figure 1 is, as mentioned before, an
example of inserting tasks that have 4 parameters each. In real
cases, tasks might have varying number of parameters. Also
stalls might happen in one or more stages, for example when
the task graph has no more room.

There exist also a second pipeline responsible for handling
finished tasks. Handling finished tasks includes kicking off any
waiting tasks, and cleaning up Nexus++ tables by deleting the
related information of the finished tasks.

Although Nexus++ has one central task manager, it has
demonstrated significant improvement over the software RTS
using trace-based simulations [11]. Nevertheless, Nexus++
could not improve the scalability of the H264dec benchmark
over the software version, since it doesn’t support the barrier
pragma tfaskwait on. Having lots of buffering in its pipeline, in
addition to having relatively long as well as variant pipeline
stages leaves some room for further improvement and opti-
mization, as well be discussed in the following section.

IV. NEXUS#: DISTRIBUTED TASK GRAPHS

The first thing to notice in the processing pipeline of
Nexus++, Figure 1, is that the unit being processed is a whole
task; i.e., the Insert stage does not start before having all
task parameters being buffered. One idea is to parallelize the
Insert stage in the pipeline, by replicating the task graphs,
and distributing the different memory addresses in a task’s
input/output list among them.

Looking at the original pipeline again, and having Amdahl’s
law [2] in mind, we notice that parallelizing only the Insert
stage will yield a maximum of 2x speedup in ideal cases,
since the first and third stages in the pipeline are still serial.

Furthermore, the 2x speedup is an ideal situation, since
practically parallelizing the insertion process of the different
parameters of a task, implies that a scatter-gather process
should take place, since those parameters belongs to the same
task, and a final decision must be made whether this task is
ready or not. Which introduces an additional overhead that
adds to the serial part in Amdahl’s equation.

Moreover, the pipeline under consideration is one example
of tasks that have 4 parameters each. In real applications, tasks

Nexus++ Pipeline

might have varying number of parameters. In fact, we are using
a set of benchmarks that have in most cases up to 3 parameters,
and in only one case (h264 decoding) 2 to 6 parameters [11],
as can be later seen in the experimental setup section. This
implies that the maximum task graphs that can be practically
used equals the maximum number of parameters a task can
have. Which is a scalability hard upper limit. Furthermore,
whenever a task with only one parameter is to be inserted,
only one task graph will be busy, and the others will be idle.
In order to overcome the above limitations, two design
decisions have been made. First: The first stage of the pipeline
must be broken down into smaller steps. Secondly: not only
parallelizing the insertion process of parameters of a single
task, but also those from different tasks. The latter decision is
to ensure that applications with very few number of parameters
per task can also utilize the different task graphs simultane-
ously, and thus removing the upper limit on the number of task
graphs that can be used, at least for this obvious scenario.

A. Nexus# Design Overview

The block diagram of the proposed distributed task graph
system, named Nexus# is depicted in Figure 2. Looking at
Figure 2 from top-to-bottom, tasks are still being submitted to
the Nexus IO unit. It has the same interface as in Nexus++,
which is necessary to comply with RTS-Nexus++ communi-
cation protocol used in [11].

Since the idea behind Nexus# is to parallelize the insertion
process of tasks’ parameters using a distributed task graphs,
and since the different parameters of a single task might go
to different task graphs, a scatter-gather approach must be
implemented.

One might think at first that whole tasks should be dis-
tributed instead to avoid the gathering step, but this way de-
pendencies between tasks cannot be tracked, which contradicts
the main functional requirement of our hardware co-processor.

B. Input Parsing

Since the Input Parsing stage in Nexus++ pipeline (Fig-
ure 1) waits for a whole task to arrive before forwarding it
to the next stage, this stage is relatively long, and as was
described before will be a scalability bottleneck according
to Amdahl’s law if left as is. Therefore, the Input Parser in
Nexus# reads new tasks’ parameters from the Nexus 10, and
distributes them immediately among the different task graphs
shown in Figure 2. This way, the insertion process of the first
parameter of a task can start, even before the second or rest
of parameters of the same task have arrived. Furthermore,
parameters of different tasks can be inserted in parallel, as
long as they do not share the same task graph.

A key to enhanced utilization and scalability of Nexus# is
the distribution algorithm. It should have two essential prop-
erties; speed and fairness. Speed, since a slow algorithm will
bring us back to the long-delay pipeline stage, and fairness,
since having many task graphs that have nothing knocking
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their doors makes them useless. The fairness property must
also be time-wise. This can be explained by describing the
best and worst case scenarios. Let’s say that we have n task
graphs (T'Gy---TGp—1), and m items to be distributed. The
best case is when having a round-robin-like distribution. In
this case, T'Go does not get a second item at its input buffer
before all other n — 1 task graphs have also received some
inputs. This is to ensure that the different task graphs are busy,
while the distribution process goes on. The worst case on the
other hand is when the distribution algorithm gives the first
m/n items to the first task graphs, the second m/n items to
the second task graphs and so on. This scenario implies that
the task graphs are working in a serial fashion as shown in

(A) » Time

(A) Best vs. (B) worst case scenarios of exploiting 4 task graphs

Fig. 3.

Figure 3(B), exactly one after the other, which is equivalent
to having one active task graph at a time, in addition to the
extra overhead of running the distribution algorithm. Notice
that both scenarios have distributed exactly m/n items per
task graph eventually.

Given that the data to be distributed are 48-bit memory
addresses, and the number of task graphs to choose from is
relatively small (5 bits are needed to address 32 task graphs),
this problem sounds similar to error detecting codes problems.
In our case we should compute the target task graph index as
fast as possible (in 1 cycle if possible), therefore, multiple-
rounds algorithms, or those which use complex operations
like division should be avoided. Furthermore, since our input
data are memory addresses, we noticed that for a certain
application, the memory addresses it touches differ only in
the lower 20 bits. For these reasons, we empirically used the
following algorithm to compute the target task graph index:

TaskGraphID = [addr(19..15) @ addr(14..10)
@ addr(09..05) ® addr(04..0)]
mod num_task_graphs;

Our algorithm is based on simple XOR operations of the
lowest 20 bits of the input address, divided into 5-bit blocks. It
can be computed in one cycle, and has shown experimentally
good distribution of the input data among the task graphs,
regardless of the used number of task graphs, up to 32 though.

After having distributed all the memory addresses in the
new task’s input/output list, the Input Parser stores the new
task in the ZTask Pool. This is important at the end of a task’s
life cycle; i.e., after running it. At this point, the RTS should
report the task as a finished task, and the Input Parser will read
its input/output list from the Zask Pool, and distribute them
subsequently using the same algorithm, in order to update the
task graphs subsequently.

C. Data Insertion into Task Graphs

The insertion process starts at each task graph whenever
it receives data from the Input Parser. Additional buffers
must be added before each task graph, namely the New Args.
Buffers, in order to decouple the Input Parsing and Insertion
processes. The same principle is applied in case that the
incoming task is a finished task, in which case the Input Parser



will read its input/output list from the Task Pool, and distribute
them subsequently among the Finished Args. Buffers shown in
Figure 2.

Each one of the task graphs shown in Figure 2 is the same as
the one used in Nexus++ [7]. It uses the same set-associative
data structure to maintain a Kick-Off List for each incoming
memory address.

When processing the data in the New Args. Buffers, one
of two scenarios might occur. First one is when the task has
only one parameter that is to be inserted for the first time
in the task graph. This means that the processed task has no
other parameters at other task graphs, and therefore can be
immediately reported as a ready task. This helps to shrink the
size of the last gather step in our scatter-gather approach.
This kind of ready tasks are written at the Rdy Tasks Buffer
shown below every task graph in Figure 2.

The second scenario, is when the new task found dependent,
or when it has other parameters to be inserted at other task
graphs. In this case, the result is written in the Dep. Counts
Buffer shown below every task graph in Figure 2, indicating
the task’s id, and its dependence count: how many Kick-Off
Lists has it been added to in that task graph only.

The gather step then takes place by the Dependence Counts
Arbiter whenever any of the Rdy Tasks Buffer or the Dep.
Counts Buffer gets written. If any task was reported as ready,
the gather step in this case will be an arbitration of writing
them to the Internal Ready Tasks Buffer, in order to be
forwarded to the Nexus IO unit.

When gathering the results from the Dep. Counts Buffers on
the other hand, the gather step is relatively longer. It should
collect the results from the different task graphs, and conclude
the final dependence count of each incoming task.

Having a distributed approach, some parameters of a certain
task might get processed sooner than others, by other task
graphs because of many factors. For example if one task graph
stalled and the other not, or if they stalled for different periods
of time. It can also be because one task graph got more data to
process than the other. In such cases, while waiting for all the
parameters of a certain task to be processed by the different
task graphs, the temporal dependence count of this task is
stored at Sim(-ultaneous) Tasks Dep. Counts Buffer shown in
Figure 2.

Having all task’s parameters processed and was found
ready, it will be written on the Internal Ready Tasks Buffer.
Otherwise, its dependence count will be stored in the global
Dep. Counts Table shown in Figure 2.

Finally, when processing finished tasks, if there were some
tasks waiting in the Kick-Off List of a finished task, those
waiting tasks will be written in the Wait. Tasks Buffer shown
below every task graph in Figure 2. The Dependence Counts
Arbiter after that decrements the dependence counts of those
waiting tasks one by one, and decides accordingly whether
they are ready to run, or not yet.

In the next section we will describe Nexus#’s pipeline, and
how it improves over its predecessor.

D. Nexus# Processing Pipeline

To demonstrate how Nexus#’s pipeline improves over that
of Nexus++, we show in Figure 4 the pipeline of inserting
tasks that have 4 parameters each, which is the same one used
to explain Nexus++ pipeline.

The pipeline of Nexus# has four stages. Input Parsing, data
INsertion to the task graph, dependence counts ARbiteration

Legend

[P e [ffo
n Input Parser i

INsert into task graph

ARbiter

Write Back ready tasks

Fig. 4. Nexus# average-case pipeline

as was described in Section IV-C, and finally, the Write ready
tasks Back to the Nexus IO unit.

The input parsing stage consumes two cycles to receive
the header word of the new task (its function pointer and
number of parameters), and another two cycles for each
parameter ([ P, and I P stages respectively in Figure 4). The
communication scheme is based on the PCle bus [7], therefore,
one parameter (48-bit memory address) takes two 32-bit PCle
packets, and thus two cycles.

The Input Parser directly distributes every incoming param-
eter to one of the different task graphs, and in our example,
after having distributed the four parameters of the new task,
this task’s descriptor gets written to the Task Pool in one cycle
(I Py stage in Figure 4).

fifo1_4 in the pipeline are the New Args. Buffers described
in Section IV-C. The date written to them needs 3 cycles to
appear at their output, which will trigger the next stage in the
pipeline: Data Insertion into the task graph. This stage takes 5
cycles per parameter, and once done, the Dependence Counts
Arbiter collects its result(AR stage in Figure 4).

Once have collected the results of all the 4 parameters of the
inserted task in our example, the arbiter checks the readiness
of the task. If the task was found ready, its id will be written
to the Internal Ready Tasks Buffer (fifo, in Figure 4). The
latter fifo takes also 3 cycles to get its data readable at its
output port, where the last stage of the pipeline (Write Back)
takes place. This stage consumes 3 cycles, and simply reads
the actual function pointer of the ready task from the Function
Pointers table shown in Figure 2, and forwards it to the Nexus
10 unit, to be read later by the RTS.

The difference between the two pipelines can be obviously
seen. The Insertion stage in the new pipeline consumed 11
cycles, compared to 18 cycles in the old pipeline. Furthermore,
it did not wait for the all the task’s parameters to arrive in order
to start inserting the first one. Most interesting, the write back
stage, where ready tasks gets forwarded to the Nexus /O unit,
took place every other 18 cycles in the old pipeline for our
example, where as this number decreased significantly to 11
cycles in the new pipeline.

Although the pipeline shown in Figure 4 is an example for
inserting tasks of 4 parameters each, in real runs, the pipeline
might look different. The pipeline shown in Figure 4 assumes
that the input buffers of the task graphs are empty, hence the
non-perfect parallel insertion of the different parameters. If
on the other hand the 4 parameters of our example task were
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already in the buffers, the pipeline in this best-case scenario
will behave as can be seen in Figure 5. In this scenario,
the Write Back stage will take place every other 5 cycles.
It is worth mentioning that in this case, the arbiter consumes
only two cycles, to collect the results of all the task graphs,
and conclude the final dependence count of the corresponding
tasks.

There are also scenarios where the insertion stage takes
longer periods of time, if for example the task graph stalled
due to not fining an empty slot for in a certain line in the
set-associative structure. The task graph must then wait until
one task finishes, which its parameters share the same line.
The good thing about such a scenario is that this gives time to
the Input Parsing stage to fill up the input buffer of the stalled
task graph, increasing the chance that all task graphs work in
parallel as in the best-case scenario shown in Figure 5.

The Dependence Count Arbiter handles a relatively large
amount of computation, which might eventually make it a
bottleneck. To avoid this, we designed it in a way to iterate
between the three buffers at the end of each task graph in a
prioritized fashion. The highest priority goes to reading the
Ready Tasks Buffer, since they are ready tasks and only need
to be forwarded to the next pipeline stage. Second priority is
for reading the Waiting Tasks Buffers, since they have potential
ready tasks. While serving one of the previous two scenarios,
this gives time for the different task graphs to finish what they
do, namely inserting new items to the task graph. Therefore,
this increases the chance of reaching the best-case scenario
pipeline shown in Figure 5. To accomplish this, the lowest
priority in the Dependence Count Arbiter is for reading the
Dep. Counts Buffers.

In the whole design process, we made sure that Nexus#
is deadlock-free, by well-dividing it into different blocks,
with fifo lists used as the communication medium to ensure
decoupling, and testing it thoroughly.

E. Nexus# Synthesis

Nexus# synthesizablity was tested targeting the Xilinx
ZYNQ-7 ZC706 FPGA board. It has a relatively larger FPGA
compared to the Virtex-5 board used in the evaluation of
Nexus++ [7]. In Nexus#, we wanted to evaluate the distributed
task graphs paradigm, which did not fit on the Virtex-5
FPGA board, and thus the switch to the ZYNQ-7 ZC706

Block Max.(Test)  Total
Configuration Registers LUTs RAMs Freq.(MHz)  Util.
ZC 706 (Totals) 437200 218600 545
Nexus++ 1% 7% 14%  114.44 (100.00) 7%
Nexus# 1 TG 1% 8% 13%  112.63 (100.00) 7%
Nexus# 2 TGs 2% 15% 25%  112.63 (100.00)  15%
Nexus# 4 TGs 3% 29% 47% 85.26 (83.33)  29%
Nexus# 6 TGs 4% 44% 69% 55.66 (55.56)  44%
Nexus# 8 TGs 4% 58% 91% 43.53 (41.66)  58%

TABLE I

DEVICE UTILIZATION USING DIFFERENT DESIGN CONFIGURATIONS ON
THE ZC706 FPGA BOARD

FPGA board. Table I shows an overview of the target FPGA
utilization, using different design configurations.

Our baseline is the Nexus++ [7] design. Although it
was evaluated using a different FPGA board, we have re-
synthesized it again using the ZC706 FPGA board to make
comparable with the other configurations.

The three main criteria shown in the table are the registers,
look-up tables(LUTs), and block RAMs. The latter reflects
the data structures used in the design, mainly the tables in
the task graphs for example, while the first two reflect the
computational part of the design, i.e., the state machines.

Having only one task graph in the configuration of Nexus#
is most analogous to Neuxs++. This can be seen in Table I,
as both have very close utilization values.

By increasing the number of task graphs in Nexus#, one can
notice how this is reflected in Table I: the number of block
RAMs almost doubles due to using multiple task graphs, and
the number LUTs also doubles because of the extra work the
Input Parser and the Dependence Counts Arbiter blocks have
to manage every time the number of task graphs doubles.

Hardware-wise comparison with [20], [19] shows that their
design consumes 29,138 registers and 110,729 LUTs respec-
tively, which is comparable to the resources needed by our
8 task graphs design (19,350/127,290 registers/LUTSs respec-
tively), and 6x more than the resources needed by the 1 task
graph configuration. Moreover, using a micro benchmark built
after [19] that includes inserting 5 independent tasks, each with
two parameters, Nexus# (with one task graph) consumes 78
cycles compared to 172 cycles consumed in [19]. Their design
runs at a higher frequency though (150 MHz).

V. PERFORMANCE EVALUATION

To evaluate the performance of Nexus#, we ran several
trace-based simulations using various benchmarks. The pur-
pose of our experiments is to measure the enhancements of
the scalability that can be obtained by the new distributed
task graph, and compare it to the related architectures.

A. Benchmarks

We use four benchmarks from the Starbench benchmark
suite [3]: c-ray (ray tracing), h264dec (H.264 video decoding),
rot-cc (image rotation and color conversion) and streamcluster
(k-median clustering). To these benchmarks, we add sparselu
(sparse LU matrix factorization benchmark used by the OmpSs
developers).

c-ray and rot-cc have simple dependency patterns, with tasks
working on each line of the input image independently. For
c-ray, there is only one task per line, which means that all
tasks are independent. For rot-cc there are two tasks per line,
one for rotation and one for color conversion, with the second
depending on the first. All pairs are independent from each



# tasks  total work (ms)  avg task size (us) # deps
c-ray 1200 7381 6151 1
rot-cc 16262 8150 501 1
sparselu 54814 38128 696 1-3
streamcluster 652776 237908 364 1-3
h264dec-1x1-10f 139961 640 4.6 2-6
h264dec-2x2-10f 35921 550 15.3 2-6
h264dec-4x4-10f 9333 519 55.6 2-6
h264dec-8x8-10f 2686 510 189.9 2-6

TABLE II

BENCHMARKS’ DURATIONS OBTAINED FROM TRACES COLLECTED ON A
XEON E7-4870 MACHINE

Matrix dimension # Tasks ?{g;%e task ‘Z?ght
250 31,374 167 0.084
500 125,249 334 0.167
1000 500,499 667 0.334
3000 4,501,499 2012 1.006
TABLE III

GAUSSIAN ELIMINATION TASKS FOR DIFFERENT MATRIX SIZES

other. c-ray is a best case for this type of runtime, as it has
long tasks and ample parallelism, thus most runtime overhead
can overlap with task execution.

streamcluster is a streaming data analysis kernel with fork-
join-style parallelism. It consists of a chain of groups of about
400 tasks followed by a taskwait.

sparselu and h264dec have more complex dependency
patterns. sparselu is a sparse matrix LU factorization kernel
from the developers of OmpSs. It scales well, as the gran-
ularity is designed to match Nanos overheads. The H.264
decoder, on the other hand, can be configured to run with
variable granularity by setting the number of macroblocks
that are processed by one task. At the extreme, a new task
is created for each macroblock. This fine-grain parallelism
is especially challenging to manage. We test 4 variation of
the h264dec benchmark varying the number of macroblocks
that are mapped to one task. h264dec-1x1-10f indicates that
only 1 macroblock is mapped to one task, h264dec-2x2-10f
mappes 4 macroblocks to one task, and so on. All variation
has 10 full HD frames (hence the 10f) of a video stream
(pedestrian_area.h264) as input.

To validate the dummy tasks/entries approach, the task
graph of Gaussian elimination with partial pivoting [18] is
used. In this benchmark, the number of tasks that depend on
a certain memory segment depends on the size of the input
matrix as depicted in the dependency pattern of Figure 6,
assuming an n X n matrix. Table III gives an overview about
number and granularity of Gaussian tasks for different matrix
sizes.

Fig. 6. Dependency pattern for the Gaussian elimination benchmark. Tl.j :
1,7 row and column numbers respectively

B. Experimental Setup

From the execution of each benchmark on a 40-core Xeon
E7-4870 machine running at 2.40GHz, we collected traces
that include the task descriptors (which specify the inter-task
dependencies) and the execution time of each task. The test
bench simulates the RTS. It submits new tasks to Neuxs#,
receives ready task information from it, schedules ready tasks
to worker cores and simulates their execution, and finally
notifies Nexus# of finished tasks. Using the information from
the traces, we performed two sets of simulations:

No Overhead: This simulates the execution of an application
without any overhead, to determine the lower bound for the
execution time of the benchmarks. In this simulation, the
simulation time does not advance while dependencies are
resolved. Only the execution time of the tasks is taken into
account. This allows us to determine when the lack of available
parallelism in the application is the limiting factor.

Nexus# only: In this simulation, we additionally account for
the dependency resolution overhead incurred by the Nexus#
core. If an application scales much worse in this simulation
than in No Overhead, it indicates a bottleneck inside the
design. In this simulation free worker cores start executing
tasks directly after they are reported as ready by Nexus#. No
communication or other non-dependency resolution overhead
is accounted for.

These simulations are compared to the actual runs of the
benchmarks on the same machine that the traces were collected
on, compiled using the Mercurium compiler version 1.3.5.8
and linked to the accompanying Nanos runtime library. We
also compare them to the results obtained when using Nexus++
as the task manager.

VI. EVALUATION RESULTS

The first test we carried out to evaluate Nexus# was the
scalability test: we simulated the H264dec benchmarks with
changing the number of task graphs (TGs) used in Nexus#, in
order to get the optimal configuration. We chose the H264dec
benchmark because we can group several macroblocks to be
decoded by one task, and hence varying the task size. The
finer the tasks are, the more challenging it is for any task
graph manager, since the worker cores will finish executing
their fine tasks quickly and demand the scheduler for new ones
more often. This way, we can see the impact of task size on the
performance Nexus#. Grouping several macroblocks together
is not a trivial task, and requires the programmers to explicitly
specify which macroblocks can be grouped together in order
to preserve dependencies. The goal of Nexus# is to alleviate
the programmer from doing this, by being able to manage the
finest tasks without the need to apply the grouping technique
(1 macroblock per task).

The results of the different scalability tests are depicted in
Figure 7. The upper graphs (a) in Figure 7 shows the results
of running Nexus# at I00MHz, regardless the number of task
graphs used. This is to give a fair scalability test and relating
it to only the number of task graphs used. Figure 7(b) on the
other hand, depicts the results of running Nexus# at variable
frequencies depending on the number of task graphs, as per
Table I. This gives the relaistic performance of Nexus# using
a certain number of task graphs, and helps to determine the
optimal configuration of Nexus#.

No grouping of macroblocks exist in the left-most graphs
in Figure 7, meaning that this experiment has the finest tasks.



(a) Nexus# running at 100MHz regardless the number of task graphs
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Fig. 7.

The other graphs include grouping of macroblocks: from left-
to-right order, 2 x 2, 4 x 4, and 8 x 8 macroblocks per task
respectively. Looking back at Table II, one can see the effect
of grouping on task size, which went from 4.6 us on average
in case of no grouping, to about 190 us in case of grouping
8 x 8 macroblocks per task. Having the same input, the total
number of tasks also changed drastically between the different
configurations.

The red line (most-upper in all graphs) in Figure 7 is the
ideal scalability curve, where only the execution times of
tasks have been simulated, without adding the time needed
to resolve dependencies as was described in Section V-B:No
Overhead.

It can be seen that the larger the task size is, the easier it
becomes to Nexus# to handle them, since it could get closer
to the ideal scalability curve, even using small number of task
graphs. Most interestingly is the hardest experiment shown
in the left-most graphs in Figure 7, where one can see that
Nexus# scales up to 7x, using 6 task graphs. The differences
between using 4, 6, and 8§ task graphs are very minimal, but
we chose to use 6 task graphs for our later evaluation, since
this configuration achieves the best scalability results.

Changing the number of task graphs in Nexus# impacts the
maximum operating frequency as was shown in Table I, since
the design has more structures as the number of task graphs
grows. This imposes more work on the Dependence Counts
Arbiter; the unit responsible for gathering results from the
different task graphs.

The results of the two experiments shown in Figure 7(a),
with Nexus# running at 100MHz and (b), with it running
at the test frequency shown in Table I, they both confirm
our observation that using 6 task graphs achieves the best
scalability results. Although the operating frequency has been
reduced significantly in experiment (b) of Figure 7 using 6 and
8 task graphs to 55.56 MHz and 41.66 MHz respectively, their
performance results were slightly smaller than their higher
speed siblings in Figure 7(a). The following experiments were
done using 6 task graphs running at 55.56 MHz. First, we
evaluate the benchmarks listed in Table II.

Figure 8 shows the performance evaluation of Nexus# using
6 task graphs, and compares it to other task graph managers:
1- our baseline OmpSs runtime system called Nanos, and 2-
Nexus++. Furthermore, the ideal scalability curve for each
benchmark is also added to the different graphs in order to
see the big picture. All speedup results are calculated against

Scalability of Nexus# running different configurations of the H264dec benchmark

the single core execution time of the ideal curve, which
very close (although faster) to the sequential version of the
benchmark. The results of Nanos are only up to 32 cores,
which is limited by the hard number of cores our test machine
has. In Figure 8(a), the c-ray benchmark represent an easy
case for all the task managers; it has relatively large tasks (6
msec on average), and has only independent tasks. All task
graph managers performed well and were close to the ideal
scalability curve and scored 31.5x speedup on 32 cores.
Nexus# continued its excellent performance and scored 194 x
on 256 cores, compared to 60.4x achieved by Nexus++.

The rot-cc benchmark has smaller tasks, with pairwise inde-
pendent tasks, which is a harder case for the task graph man-
agers than c-ray, but still relatively easy. Both the hardware
task managers (Nexus++ and Nexus#) scored 32X speedup
on 32 cores, which is better than the software task manager
(Nanos) which scored only 24 x. Nexus# and Nexus++ con-
tinued scaling to 256 cores, both achieving 254 x speedup.

The sparselu benchmark has more complex dependencies
between its tasks, and again, the hardware task managers
performed better than Nanos (31x vs. 24.5x speedup on 32
cores respectively). Nexus# achieved up to 94.4x speedup on
256 cores, which is slightly better than the 84.9x speedup
achieved by Nexus++.

The streamcluster benchmark is a more difficult one for the
task graphs. Nanos achieved only 4.9x on 32 cores, whereas
Nexus++ and Nexus# achieved 7.9x and 30.1x respectively.
Nexus# continued scaling achieving about 39x speedup on
>=64 cores.

The performance of the H264dec benchmarks are depicted
in Figure 8(b). Our main focus is on the left-hand side graph,
which does not requires the programmer to do any grouping
of macroblocks per task. In this graph, we can see that
Nanos performs pretty bad and cannot achieve any speedup.
Nexus# on the other hand achieved up to 6.9 on >= 16
cores. Nexus++ does not support the "task-wait-on" OmpSs
pragma [11], and achieved only 2.2x speedup on >=4 cores.

Grouping several macroblocks per task increases the average
task size, and makes the management of the task graph much
easier. Nanos in particular achieves its best performance when
8 x 8 macroblocks are grouped in one task, and scored 3.9x on
8 cores. Its performance drops down when using larger number
of cores though. Nexus# achieved slightly better speedup, and
sustained its performance for larger number of cores.

From all the graphs in Figure 8, it can be clearly seen that
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Benchmark Nanos Max.  Nexus++ Max.  Nexus# Max.
c-ray 31.4x 60.4x 194.0x
rot-cc 24.5% 254 x 254
sparselu 24.5% 84.9x 94.4x
streamcluster 4.9% 7.9% 39.6x
h264dec-1x1-10f 0.7x 2.2x 6.9%x
h264dec-2x2-10f 1.4x 2.7x 7.7x
h264dec-4x4-10f 3.6 2.7x 6.8
h264dec-8x8-10f 3.9% 2.5% 4.7%
TABLE IV

MAXIMUM SCALABILITY USING THE DIFFERENT TASK GRAPH MANAGERS

Nexus# has the upper hand over the other two task graph
managers. Most interestingly are the cases where tasks are very
fine grained. We think that such tasks are the key to utilizing
the ever-increasing computing power being embedded on the
state-of-the-art and future SoCs. In such cases, the strength of
Nexus# is most clear and needed. Table IV summarizes the
maximum achievable speedup for the different benchmarks
using Nanos, Nexus++, and Nexus#. Since we based our
evaluation results on the single-core ideal simulations, it is
also worth mentioning that the sequential version for most of
the benchmarks has a very close (slower) execution time as
our baseline. The only exception is the H264dec benchmark,
where the sequential execution is almost twice as fast as the
single-core ideal simulation. This shows the potential overhead
of porting an application to the task execution model. Hence,
the maximum (real) speedup achieved in the case of H264dec
benchmarks is about 3x.

Figure 9 shows the speedup achieved by running the Gaus-
sian elimination problem (Figure 6) on different multicore
systems for different matrices of sizes ranging from 250 x 250
to 3000 x 3000. The Gaussian elimination benchmark is
a micro benchmark that is not trace-based as the previous
benchmarks. This benchmark in particular is a worst-case
scenario for Nexus# as the example described in Figure 3(B).

Running the application on a 250 x 250 matrix for example,
starts by having one ready task (77), and 249 dependent tasks.
Those are direct dependencies, meaning that all the 249 tasks
have the same memory address as input, that is to be produced
by the first ready task (77). This indicates that regardless the
number of task graphs used in Nexus#, only one will be used to
insert the first 250 tasks, and another one for the next wave of
tasks, and so on. For this reason, increasing the number of task
graphs used for this benchmark will have a negative impact

Performance of Nexus# running different benchmarks, in comparison to other task managers

on performance, mainly because the clock frequency deriving
Nexus# decreases as the number of task graphs increases.
Furthermore, the tasks generated in this benchmark has only
up to 2 parameters per task. As a result, we chose to evaluate
this benchmark using only 2 task graphs.

Figure 9 shows the results of the Gaussian elimination
benchmark using Nexus++, Nexus# with one task graph
(1TG), Nexus# with two task graphs (2TG) respectively,
all running at 100 MHz. The baseline here is the single-
core execution time using Nexus++. Each worker core is
assumed to be able to do 2 GFLOPS, which means that
the average computation time (in ps) of the Gaussian tasks
= 2000/#FLOPs, as can be seen in Table III above. It can
be seen that Nexus# (2TG) has a slight improvement over
Nexus++. About 19% in case of the very fine grain tasks in
matrix-250, and as the matrix size (and hence larger number of
tasks of larger granularity) increases, Nexus# has about 10%
performance improvement over Nexus++. This benchmark,
as was described before, is to show that our hardware task
managers don’t have a static limit on the number of tasks that
can wait for a certain memory address.

According to Vandierendonck et al. [17], the runtime over-
head of their proposed software task graph manager can go as
low as 400 cycles (0.2 us on their test machine) per task, their
experiment assumed inserting 1-parameter tasks to an empty
task graph, which is an ideal case. Therefore, we still think
that hardware acceleration is vital.

‘l Nexus++ M Nexus# 1TG © Nexus# 2TG
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Fig. 9. Performance of Nexus# running Gaussian elimination benchmark for
different matrix sizes



Designing a hardware accelerator for the RTS in a multicore
system implies that a communication between the two to take
place in real time. Our hardware task manager is meant to be
integrated in future many-core chips, which in the era of high
integrity and homogeneity, we believe that an FPGA will also
be integrated on the same chip. This will provide a low-latency
communication channel between the computing cores and the
user design on the FPGA.

Compared to the state-of-the-art clock frequencies that drive
microprocessors found in HPC machines or even consumer
products, Nexus# runs at a relatively very low frequency (50
- 100 MHz). Although power-consumption analysis is part
of the future work, Nexus# has a potential to manage the
task graphs in a wide range of multicore machines, without
being the power-drain hot spot. Depending on the use case, the
number of needed number of task graphs can be accordingly
configured. In cases with limited number of cores and/or
limited power, as in smart phones and other consumer devices,
it can even be turned off (as dark silicon) if the number of
ready tasks exceeds a certain threshold.

Since multiple applications use different memory spaces
inherently, Nexus# can manage them at the same time. The
door is wide open ahead of Nexus# to be integrated in real
multicore/manycore SoCs, as we think that task-based, data
flow execution model is a key to utilizing the computational
power of such systems. For example, OpenMP 4.0 has adapted
the tasking model, and is a suitable target to analyze and see
the impact of integrating Nexus# with it. Also important is
to analyze the effect of data communication and RTS’s non-
dependency-related tasks on the scalability figures. Therefore,
the next step will be to integrate Nexus# with the ARM-core
on the target Xilinx ZYNQ platform to run real benchmarks
on CPU+FPGA, in a tightly-coupled fashion.

VII. CONCLUSIONS

We presented Nexus#, a VHDL prototype of a hardware
task manager for the OmpSs runtime system. Supporting the
in, out, inout, taskwait, and taskwait on pragmas, Nexus#
is suitable for wide range of applications, including H264
decoding. It employs a distributed task graph management
strategy, which enables the parallel insertion of the input/out-
put memory addresses of the incoming tasks. Besides imple-
menting a low-latency task graph look-up mechanism using
set-associative cache-like structures, Nexus# also uses a fast
distribution function that directs seamlessly the incoming
memory addresses to the proper task graph.

Generating data and runtime traces for multiple benchmarks
in the Starbench suite, and embedding them in a Model-
sim testbench, the experimental results show that Nexus#
achieved significant speedups for all the benchmarks on a
256-core pseudo-machine. Results also prove that Nexus#
perform better than Nanos, the official OmpSs runtime, as
well as Nexus++, our central task graph manager, by orders
of magnitude, for benchmarks that have very fine grain tasks
and/or complex dependency patterns. We have also shown that
a benchmark modeled after Gaussian elimination, where the
number of tasks that depend on a certain task is not constant,
ran successfully and efficiently with an achieved speedup of
19x for a 3000 x 3000 matrix using 64 cores.

Nexus# is fully configurable, and depending on the use
case, the number of task graphs can be changed. Although
targeting OmpSs applications, Nexus#’s low-latency retrieval
task graphs can be used with other programming models. We

well focus in the future on tightly-coupling Nexus# with real
CPUs, as well as on power analysis, and the possibility of
dynamically turning (parts of) it on and off (as a dark silicon),
in order to integrate it with low-power mobile systems.
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