
Nico Moser, Stefan Hauser, Carsten Gremzow

A hybrid transport/control operation
triggered architecture

Conference Object, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-5746.

Suggested Citation
Moser, Nico; Hauser, Stefan; Gremzow, Carsten: A hybrid transport/control operation triggered
architecture. - In: 23th International Conference on Architecture of Computing Systems 2010 : ARCS. -
Berlin, Offenbach: VDE-Verlag, 2010. - ISBN: 978-3-8007-3222-7. - pp. 1–5. - (Postprint version is cited,
available at http://dx.doi.org/10.14279/depositonce-5746, page numbers differ.)

Terms of Use
© © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/80494024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tcpdf.org

A Hybrid Transport/Control Operation Triggered Architecture
Nico Moser, TU Berlin, Department of Computer Engineering and Microelectronics, 10587 Berlin, Germany
Stefan Hauser, TU Berlin, Department of Computer Engineering and Microelectronics, 10587 Berlin, Germany
Carsten Gremzow, TU Berlin, Department of Computer Engineering and Microelectronics, 10587 Berlin, Germany

Abstract

We present an approach to a scalable and extensible processor architecture with inherent parallelism named synZEN. One
aim was to create a synthesizable application specific processor which can be mapped to an FPGA. Besides architectural
features like the interconnection network for flexible data transport and synZEN units with communication managing
interface we give an overview of the programming model, show basic operation design and depict assembler notations to
program these architecture. The paper closes with a brief toolchain overview and some synthesis results that support our
design decisions.

1. Introduction

1.1. Motivation

One major challenge in electronic design automation is
to generate hardware descriptions from software descrip-
tions. Most commonly it is justified with hardware soft-
ware codesign or with complexity of given specifications.
Many researchers try to cope with this challenge with de-
rived software languages [1] which often implies subsets
of them or extensions (e.g. in form of libraries) to avoid
widely known problems (e.g. pointer analysis) of hard-
ware synthesis from software language descriptions. But
those compromises lead to scattered developer landscape
and loss of implementations from software engineers.

Therefore we develop a structure aware framework [2]
based on runtime analysis which automatically partitions
given software implementation and maps it to different tar-
gets.

We searched for an application specific processor as one
of those targets that fulfills the following constraints: It
should be flexible, extensible, scalable, and support for in-
struction level parallelism. Beside the architectural fea-
tures it should be synthesizable to FPGAs. Our investiga-
tions lead us to the synZEN architecture described in this
paper.

In the second part of this section we will give an overview
of configurable architectures and a brief introduction of the
presented architecture synZEN. In the following sections 2
and 3 main components of the architecture are presented in
more detail. In section 4 a complete overview of synthesis
and programming toolchain is given. A brief program-
ming model overview can be found in section 5. In section
6 first results are presented. Finally the paper closes with
a conclusion.

1.2. Background

There are several commercial soft IP processors for FP-
GAs on the market: ARM Cortex M1 [3], Altera NIOS
[5] and Xilinx MicroBlaze [4]. Even though there were
different intentions to offer them - for the first to make the
ARM architecture available on even more development
channels, the latter to offer a complete digital design sys-
tem to developers using respective FPGAs - they have in
common that they are RISC based and only have limited
configuration capabilities (e.g. optional FPU) per core.
Although ρ-VEX [8] is a very practical approach to realize
a reconfigurable and extensible softcore VLIW proces-
sor, parallelism is limited by instruction width. Extensible
parallelism is offered by [7]. This co-processor provides
complex vectorization capabilities but cannot handle non
SIMD-like parallelism. Transport triggered architectures
(TTA) [6] are extensible and scale in parallelism because
of their dataflow character. Drawbacks of this attribute are
a lack of possibility to use more complex function units
as well as inherent storing capabilities to relax scheduling
issues.

1.3. Architecture

In figure 1 the top level structure of an exemplary synZEN
implementation is shown. The central and most significant
component is the interconnection network (ICN) which re-
sembles of TTA networks. In fact there are a lot of simi-
larities. Horizontal lines indicate busses. The number of
busses are in accordance with the maximal number of con-
current data movements respective parallelism. Data trans-
ports are triggered by transport operations which select
source and destination synZEN units. Per bus one trans-
port operation is needed and current transport operations
are stored in instruction register (IR) indicated at the left
side of figure 1.

A
B
C
D
E
F
G
H

MULU
#0

MULU
#1

MULU
#2

SH
#3

LSU
#8

ALU
#4

ALU
#5

UART
#6

JMP
#7

Figure 1: synZEN overview: There are three main compo-
nents: on the left the instruction register, in the middle the
connection network, above and below the network synZEN
units for data operations.

Functionality of a particular implementation depends on
functionality of synZEN units attached to ICN. Beside bi-
nary operations and branch units, load and store units are
also possible as well as dedicated registerfiles. To extend
functionality one only has to connect another synZEN unit
to the ICN. As depicted in figure 1 sparse connection ma-
trices are possible and should be preferred, because there
is no necessity to use fully connected networks with pro-
hibitive costs.
By now the datapath consists of a two stage pipeline with
registers at input ports and output ports. Pipeline conflicts
have to be resolved by program code with e.g. delay slots.
Hardware solutions like interlocking and bypassing are not
practicable. Especially the latter would lead to exploding
hardware costs because of the vast number of connection
paths through inter connection network. In spite of the cut-
backs of pipelining it is necessary for control logic.

2. synZEN Unit

2.1. Structure and Datapath

As shown in figure 2 synZEN units can be divided into two
main components.
First and emphasized in grey in the figure is the function
unit part. For every operation in the application there has
to be at least one synZEN unit with function unit part that
can perform this operation. Function units which can per-
form several instructions are possible because operations
contain control bits reserved for operation codes. Besides
the need for interoperation with the interface part of the
synZEN unit there are no other constraints for these func-
tion units.

lir rir

Function Unit Interface

32 32

acc
lnk

0

e
f

CTRL

lnkout

lnkin

32

32

net net net

Figure 2: synZEN unit structure and datapath: A simpli-
fied version of synZEN unit datapath is depicted. Both
main components are shown: function unit and interface.
The latter manage communication with interconnection
network (net ports) and dataflow control. Additionally it
contains result registerfile with special purpose registers
(acc,lnk).

Second there is the synZEN unit interface part. This com-
ponent has to deal with several different tasks. On the
communication side all datapaths of a synZEN unit from
or to interconnection network (net) or other synZEN units
(lnkin, lnkout) has to pass through the interface. Further-
more it contains the 16-entry output registerfile with one
write port for the function unit results and one read port
for access from interconnection network. From top level
view the registerfiles can be used as distributed memory
that scales with the number of connected synZEN units.
Two of the entries have a special meaning, but can be used
as the other 14 in general manner as well:
The labeled entries acc/Re and lnk/Rf can be accessed sep-
arately from the general read port. While acc is directly
connected to entries of same synZEN unit lnk can be con-
nected to the entries of another synZEN unit.
At last the interface gets control data from operations and
distributes them to the different components (highlighted
by dashed lines):

• select signals for datasources at entry register of the
function unit (Data Transfer Mode)

• pass on operation code to the function unit

• address read and write ports of the output registerfile

2.2. Data Transfer Mode

The easiest way to reduce the interconnection network
complexity is to reduce data traffic and substitute a net-
work with a sparse version. To use alternative data paths
different modes were implemented.

2.2.1. Net Mode

It is the standard data transportation method. If there is
no other optimized possibility to transport data from one
unit to another a transport operation has to pass this data
through the interconnection network.

2.2.2. ACC Mode

The behavior of a synZEN unit is switched to that of a 1-
address-machine (respectively accumulator). Therefor the
control logic in the synZEN unit interface has to set the en-
try of one of the inputs to the accumulator shadow register
(acc).

2.2.3. Link Mode

It is possible to connect the link shadow register (lnk) of a
unit to another at configuration time. With the help of that
link data can bypass the interconnection network and con-
sequently relax data traffic in the interconnection network.
These links enable virtual grouping (or chaining) synZEN
units and realize polyadic operation units.

2.2.4. Hold Mode

This mode is implemented for sequential operations with
constant operands. The current content of the input regis-
ter is held. It is only allowed to activate hold mode on one
of the inputs.

acc
lnk* lnk

+
#1 #2

net net

acc

Figure 3: In this figure two chained synZEN units of dif-
ferent functionality are shown. The marked datapathes
show possibilities given by the use of different data transfer
modes.

In figure 3 the use of different modes is depicted. In this
example data flow of a multiply accumulate operation

A = A+B ∗ C

which is often used in signal processing applications is
highlighted red. There are two synZEN units. The left
performs a multiplication and the right one an addition/ac-
cumulation. Both inputs of the left synZEN unit are in net
mode, while the left entry of unit #2 is in link mode and the
right in accumulate mode. Instead of using four transport
operations stressing the interconnection network only two
operations are necessary.

3. Network and Operations

With FPGAs as primary target architecture for synZEN
processors the use of multiplexer based networks is in-
evitable. We investigate two different approaches for top
level network architecture. First a unified approach similar
to TTA where control and transport communications are
combined in one network. Second we investigate a split
approach where data transport and communication infras-
tructure are separated. A comparison of both approaches
exceeds the scope of this paper. We present the split ap-
proach which is superior in hardware cost and program-
ming model.

An empirical proven general cost function for data trans-
port networks is shown below:

Cnet =
bus∑
i=1

(
cbus + nbus · 2dlog2mbus(i)+1e

)
+

in∑
i=1

(
cin + nin · 2dlog2min(i)+1e

)

The cost function Cnet mainly depends on the three param-
eters of the synZEN processor: number of busses (bus) and
unit inputs (in). Each partial cost function is structured
very similar. To reduce costs you can either reduce the
number of connection nodes (mx) or constant respective
variable costs (cx, nx). The former leads to sparse networks
- one goal of reducing network traffic by use of alternative
data transfer modes - the latter can be achieved by reducing
the number of signals per port.

CTRL

(a) synZEN unit with separate con-
trol path

0 1 2 4

(b) transport operation

0 3 1274 8 11 151 2

(c) control operation

Figure 4: Figures show the structure of synZEN unit (4a)
in split networks, transport operation (4b) that routes data
through ICN and control operation (4c) which is needed by
every synZEN unit.

Figure 4a depicts the control handling scheme in synZEN
units using an infrastructure separated from ICN. There
is no dependency between control signals and data trans-
ports.
Bit width of transport operation shown in figure 4b de-
pends on address space of sources and destinations con-
nected by busses in ICN. One transport operation is com-
posed of source address and destination address. In the
shown example first two bits TO[0:1] are source and last
three bits TO[2:4] destination address. Most synZEN units
represent dyadic functions. Therefore there are more des-
tinations than sources which can be addressed by transport
operation which leads to asymmetric segmentation of these
operations.
The control operation (fig. 4c) conjuncts all control vectors
needed by synZEN units. The different control bits encode
from least to most significant bit: data transfer mode for
left and right port (CO[0:1] and CO[2:3]), result register-
file write address (CO[4:7]) and read address (CO[8:11]),
and function unit operation code (CO[12:15]).
Beside obvious advantages like much smaller networks
contrary to unified networks (control operations can be
transferred peer to peer) other enhancements (like an ubiq-
uitous MOVE-immediate instruction) can be realized.

4. Toolchain
The initial interconnection network (ICN) description can
be generated in two independent ways. As shown in figure
5 you can either use java classes to program net architec-
ture and generate XML descriptions (JavaGen) or use a
tool that can visualize given net descriptions and even cre-
ate or modify net descriptions with graphical user interface
(NetView, NetEdit).

4.3 extended Toolchain

JavaGen .xml

ICN

gennet .vhd

ICN

.xml Allocation linker
Makefile

.vhd

synZEN

xst

.asm

Program

Assembler .dat

NetView
NetEdit

.xml

Opcode

.vhd

Units

TECHGI2Praktikum

&

≥ 1

&

&

1

1

S1

S2

S7

S8

S3

S4

S5

S6
16 16

16

7

Figure 5: synZEN toolchain is shown: In the upper left
you can see different tools to generate net architecture
specifications. Together with assembler code and function
units and operation codes belonging to it the net specifi-
cations are consumed by core tools (highlighted by blue
background) to generate VHDL descriptions of synZEN
instances.

The created XML-description is consumed by the Java-
based tool gennet. It parses XML files and creates Java
data structures to perform consistency checks and com-
putes network features like control signal width or mul-
tiplexer and encoder amount. Control information repre-
sented as hash tables are handed out as XML file (Allo-
cation). Net structure information is generated as VHDL
descriptions. The VHDL descriptions contain the whole
ICN and instances of every connected synZEN unit.
The Assembler obtains information, to generate ma-
chine code from assembly descriptions from two different
sources. It gets control information from gennet as men-
tioned above. Operation codes for used function units are
delivered by a database. It depends on net organization
form (split vs. unified) whether one bit file is generated for
each bus or additional one for each function unit.
The linker binds bit files, VHDL net description and func-
tion unit components (semi automatically), and creates
VHDL description of whole synZEN architecture which is
consumed by third party tool (in figure 5 xst from Xilinx).
The depicted database in bottom of figure 5 contains func-
tion units and corresponding operation code. The only
criterion function units have to satisfy is that they can be
wrapped by the above-mentioned synZEN unit interface.

5. Programming Model
With every new synZEN instance resource allocation is
changing, too. In addition to that there are several trans-
port and control operations per cycle because of the mas-
sive parallelism of the architecture. Caused by these condi-

tions there is an imperative need for an assembly language.
We developed a context free assembly language and an as-
sembler with a parser frontend generated by JavaCC.

Listing 1 shows a short extract from an assembly program
computing fibonacci numbers. Transport operations are
shown as well as control operations of synZEN units con-
nected by the transport operations. The assembly code
was generated for the synZEN instance shown in figure
1 which was generated especially for computation of fi-
bonacci numbers.

1 { / / t r a n s p o r t o p e r a t i o n s
2 BUSA: SU5_O0 , SU0_I0 ;
3 BUSG: SU5_O0 , SU1_I0 ;
4 . . .
5 / / c o n t r o l o p e r a t i o n s
6 SU0 : NET−HLD, R0 , R0 .MUL;
7 SU5 :NOP, R1 ;
8 SU1 : NET−HLD, R0 , R0 .MUL;
9 . . .

10 }

Listing 1: Extract from an assembly program computing
fibonacci numbers.

Curly braces in Line 1 and 10 mark scope for all parallel
operations started at the same time step. Every operation
is noted in a single line ended by semicolon. Transport
and control operations are not strictly separated but differ
by discriminative labels in front of the line (BUSx, SUx).
These labels which are separated by colon from the rest
of the operation contain a unique identifier to exactly se-
lect component. For every single component is only one
operation during one period allowed.

The structure of transport operations is plain simple as the
respective machine code. Beside the mentioned label there
are descriptors for source address as well as destination
address. The code in line 2 can be read as: a date is sent
through bus A from first output port of synZEN unit #5 to
first input port of synZEN unit #0.

Control operations are more complex in structure and with
variable number of elements. The operations in line 6 and
line 8 show exactly the same operation setting for synZEN
unit #0 as well as #1: The first input register gets its data
from ICN while value in the second input register is held.
The output port reads its data from register 0 (R0) and the
result of performed operation (MUL) is written to register 0
(R0).

The control operation in line 7 shows a special case: No
Operation (NOP) has a parameter. Even if a unit (in
this case #5) should not perform an operation there has to
be the ability for transport operations to access data from
result register to profit from distributed registerfiles - one
main feature of this architecture. In the example shown
in listing 1 even two transport operations access the output
port of synZEN unit #5 which is synonymous to a multicast
access.

6. Results
Synthesis is performed by the commercial tool Xilinx XST
version 9.2i for Xilinx Spartan 3A DSP 3400 (xc3sd3400a-
4-fg676) FPGAs. Tests in this section were run on a Intel
Xeon 3.0 GHz with 4 MB Cache and 32 GB main memory
running ubuntu linux with kernel version 2.6.24.

#unit #bus dst. src. slices longest path synth. time
Unified Network

1 4 2 6% 13,4ns 0m37.684s
2 8 16 8 4 12% 15,0ns 1m34.687s
3 11 6 19% 18,8ns 3m40.005s
4 6 3 14% 12,6ns 2m12.813s
5 12 24 8 4 17% 15,3ns 2m10.118s
6 12 6 29% 19,2ns 8m53.159s

Split Network
1 4 2 5% 11,4ns 0m26.821s
2 8 16 8 4 9% 12,8ns 0m54.085s
3 11 6 16% 18,9ns 2m23.957s
4 6 3 11% 12,4ns 1m54.780s
5 12 24 8 4 14% 12,8ns 1m20.329s
6 12 6 24% 20,1ns 5m05.724s

Table 1: Synthesis results of generic communication
network variants with different number of connected
synZEN units, busses, as well as connected sources and
destinations.

We created a set of generic test cases with slightly differ-
ent parameters. Results are shown in table 1. The parame-
ters we changed were numbers of synZEN units (#unit) and
busses (#bus) to vary parallelism combined with different
numbers of destination ports (dst.) and source ports (src.)
to vary network connectivity. These six test cases were in-
vestigated as unified network implementation (top half) as
well as split network implementation (bottom half).
At first we can observe that connectivity costs more than
parallelism. Comparing results 3 and 5 of both types from
the table shows clearly that the test case with less func-
tion units and busses but more addressable destinations and
sources costs more area, synthesis time and frequency than
the compared one. And these results are independent from
the kind of network.

7. Conclusion
We presented in this paper a new processor architecture
which combines features of several established architec-
tures like transport triggered architectures (flexible inter-
connection network) and RISC (registerfile). We made
progress in network design and could show improvements

with regard to costs. Furthermore we could introduce
synZEN unit techniques to relieve data traffic load on ICN.
Additionally we showed the synZEN generation toolchain.
With help of [2] we will analyze applications to specify
synZEN features in future work.

References
[1] S. Edwards, The challenges of hardware synthesis

from C-like languages,Design, Automation and Test in
Europe, 2005. Proceedings, pp. 66-67, vol. 1, 2005

[2] C. Gremzow, Quantitative Global Dataflow Analysis
on Virtual Instruction Set Simulators for Hardware/-
Software Co-Design, 26th IEEE International Confer-
ence on Computer Design, Lake Tahoe, Kalifornien,
USA, 2008

[3] ARM Cortex-M1 - ARM Processor,
http://www.arm.com/products/CPUs/ARM_Cortex-
M1.html,
last visit: August 2009

[4] MicroBlaze Soft Processor Core,
http://www.xilinx.com/tools/microblaze.htm,
last visit: August 2009

[5] Embedded Processor,
http://www.altera.com/products/ip/processors/nios2/ni2-
index.html,
last visit: August 2009

[6] H. Corporaal, Microprocessor Architectures from
VLIW to TTA, John Wiley & Sons, Ltd., 1998.

[7] C. Kozyrakis, D. Judd, J. Gebis, S. Wlliams, D. Pat-
terson, and K. Yelick, HardwareCompiler Codevelop-
ment for an Embedded Media Processor, Proceedings
of the IEEE, pp. 1694 - 1709, vol. 89 (11), 2001

[8] S. Wong,T. van As, and G. Brown, ρ-VEX: A Re-
configurable and Extensible Softcore VLIW Processor,
Field-Programmable Technology, 2008. FPT 2008. In-
ternational Conference on, pp. 369 - 372, 2008

[9] I. Janssen, Enhancing the Move Framework. Endian-
ness Port and Immediates Handling., Master Thesis,
May 2001.

	Abstract
	1. Introduction
	2. synZEN Unit
	3. Network and Operations
	4. Toolchain
	5. Programming Model
	6. Results
	7. Conclusion
	References

