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Abstract—Over the last decade, multicore architectures have
become omnipresent. Today, they are used in the whole product
range from server systems to handheld computers. The deployed
software still undergoes the slow transition from sequential to
parallel. This transition, however, is gaining more and more
momentum due to the increased availability of more sophisticated
parallel programming environments, which replace the some-
times crude results of ad-hoc parallelization. Combined with the
ever increasing complexity of multicore architectures, this results
in a scheduling problem that is different from what it has been,
because features such as non-uniform memory access, shared
caches, or simultaneous multithreading have to be considered.

In this paper, we compare different ways of scheduling multiple
parallel applications. Due to emerging parallel programming
environments, we only consider malleable applications, i.e., ap-
plications where the parallelism degree can be changed on the fly.
We propose a topology-aware scheduling scheme that combines
equipartitioning and coscheduling. It does not suffer from the
drawbacks of the individual concepts and also allows to run appli-
cations at different degrees of parallelisms without compromising
fairness. We find that topology-awareness increases performance
for all evaluated workloads. The combination with coscheduling
is more sensitive towards the executed workloads. However, the
gained versatility allows new use cases to be explored, which
were not possible before.

I. INTRODUCTION

Since the availability of multicore systems to the mass
market, the development of parallel applications has changed.
Gone are the days where developers themselves have to care
about the creation and management of threads. Instead, a lot
of expertise has gone into the creation of more advanced
parallel programming environments, which relieve today’s
programmers from some of the more mundane tasks, such
as OpenMP [1] or the Intel Threading Building Blocks [2].
These parallel programming environments boost the number
of available parallel applications, as they open the field also
to those developers that lack some of the expertise required
otherwise. Additionally, the environments enforce to some
degree sensible parallelizations, avoiding common beginner
mistakes. Often, the resulting applications are moldable or
malleable as defined by Feitelson and Rudolph [3]: the degree
of parallelism of a moldable application can be specified at
startup, making it portable to some extend, while a malleable
application also allows reconfigurations at runtime. While
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parallel application development has evolved, schedulers of
current operating systems have not — at least not with respect
to the execution of parallel applications. Here, schedulers still
consider every thread of a parallel application on its own; and
parallel programming environments have to cope with that.

Research on scheduling of multiple parallel applications
basically suggests two approaches based on partitioning: par-
titioning in space and partitioning in time. While the former
is usually just called partitioning, the terms coscheduling [4]
and gang scheduling [5] were coined for the latter. With
partitioning, each application is assigned to a different set
of processing elements within a parallel system; coscheduling
uses coordinated context switches to switch at application level
instead of thread level. Both approaches assign computational
resources at application level — a fact that applications can
take advantage of at design time: low latency communication
is possible, busy waiting and static load balancing can be used.
An application can also exploit that it gets exclusive access to
resources that are closely associated with the computational
resources (e.g., shared cache in a multicore processor). In
short, partitioning schemes allow to apply many optimizations
schemes that are widespread in, e.g., the HPC area. It is
important to note that software, which is optimized based
on certain assumptions, might experience extreme slowdowns
when those assumptions are not correct: Busy waiting without
simultaneous execution is probably the most disastrous com-
bination, followed by static load balancing without threads
making uniform progress, or algorithms optimized towards a
certain cache size without exclusively assigned caches.

In the absence of other objectives, such as job importance or
job scalability, it is normally desired to distribute the available
CPU time between multiple parallel programs in a fair manner,
giving each program an equal share. In the past, this has led
to equipartitioning [6]: the available computational resources
are split in space evenly between the running jobs. Whenever
a new job arrives or a running job terminates, the mapping
of jobs to processors is reorganized. This, however, requires
parallel applications to be malleable in order to maintain
a high efficiency. Such adaptations usually do not happen
instantaneously. Coscheduling, on the other hand, has no
reconfiguration overhead making job arrivals and terminations
very cheap. Instead, we get overhead from time-sharing and
reduced efficiency due to normally sub-linear speedups.



In this paper, we adapt the concept of equipartitioning to
contemporary multicore systems. In order to keep proper-
ties normally associated with partitioning, our approach is
topology-aware. Furthermore, we propose a combination with
coscheduling to address drawbacks associated with traditional
equipartitioning. In particular, our approach allows us to avoid
frequent reconfigurations and to achieve a fair distribution of
CPU time, even in presence of applications that must or should
be executed at a different degree of parallelism than indicated
by traditional equipartitioning.

The remainder of this paper is structured as follows: In
Section II, we give a detailed description of our approach,
which is then evaluated and compared to other established
approaches in Section III. Section IV reviews other work in
the area, and we conclude our paper in Section V.

II. TOPOLOGY-AWARE EQUIPARTITIONING

In this section we describe our approach in detail. We start
with the basic idea and develop several variants from that,
which are tailored towards specific needs.

Both, partitioning and coscheduling, give a parallel appli-
cation the illusion of being the only application in the system
while — unlike batch processing — allowing multiple applica-
tions to make progress. With partitioning, applications see a
system that is smaller than the real one; with coscheduling,
applications see the whole system but not for the whole time.
As outlined in Section I, both techniques allow to apply a wide
range of optimizations within applications. From the vantage
point of the system, partitioning causes less overhead than
coscheduling: there are less context switches and there is no
need to achieve a simultaneous context switch across multiple
CPUs which usually does not scale. Additionally, running
a job with less processors usually increases its efficiency
due to avoided parallel overhead. However, partitioning and
especially equipartitioning can be problematic for applica-
tions when there are dependencies between partitions that
can cause performance asymmetries or fluctuations within a
partition. For instance, applying partitioning at the granularity
of individual processor cores results in multiple jobs sharing
the same processor or one job being involuntarily spread out
over multiple NUMA nodes. This makes certain optimizations
(e. g. optimizations towards cache utilization) futile. Another
example are SMT siblings mapped to different partitions. Here,
any static load balancing at application level is void due to
unpredictable delays caused by contention for execution units.
Doing solely coarse-grained partitioning, e. g., at the level of
NUMA nodes, allows more optimizations within a program,
but results in a balancing problem for equipartitioning.

A. Basis

In order to create an equipartitioning scheme for modern
multicore architectures, we combine the idea of equipartition-
ing with coscheduling.

Modern parallel systems are not symmetrical in the sense
that arbitrary pairs of processor cores would always have the
same behavior regarding resource sharing and communication

system level oo -
processor level -.... >
core level -------- >
CPUO CPU1 CPU2 CPU3
Fig. 1. Hierarchy levels of a dual-socket dual-core system.

overhead. Instead, the topology of a machine defines sets of
cores that are closer than others. Therefore, we propose to
create partitions obeying these borders in order to minimize
influences between applications. More precisely, a partition is
either equivalent to a unit defined by the hardware topology or
a reasonable sized fraction of it. For example, we never create
partitions that span one-and-a-half NUMA nodes. Instead,
possible partitions are a NUMA node, a fraction of such a
node (e. g., half a node), or a fraction of the next higher layer
of the topology (e. g., half a system, which would be two nodes
in case of a four node system). Hence, every partition has a
homogeneous topology itself (given that the system topology
is homogeneous). This gives applications an environment for
which optimization is already established.

In order to achieve fairness, we only use identically shaped
partitions for all applications at first. In order to deal with
varying numbers of applications, we adapt the granularity of
our partitions dynamically. Due to the topology-awareness and
the identical shape requirement, there are only relatively few
possible partition shapes. When there are more applications
than partitions of a certain size — but not yet so much that it
makes sense to use the next smaller partition size — we use
coscheduling to schedule multiple applications in the same
place.

Compared to traditional equipartitioning which requires to
adjust partition sizes with each job arrival or termination,
and thus resizing and (depending on the implementation)
migrating applications quite often, this is not necessary with
our approach. We only perform this readjustment when certain
thresholds are crossed. To avoid frequent reconfigurations in
case that the number of applications is around the threshold, a
short-term hysteresis can be added. Consider, for example, the
system given in Figure 1. When the groups are currently at
the processor level, we switch to the system level, as soon as
at least one processor has nothing to do. However, to switch
from system to processor level, it can be sensible to require
more than two jobs. This logic is captured in Listing 1. Please
note, that the balancing logic is separate from the partitioning
logic.

It is also possible to replace the global decision of switching
levels with local decisions: as soon as a node in the hierarchy
has accumulated enough jobs, it switches to the next lower
level; if a node has nothing to do, despite balancing, its



int apps = 0;
int level = SYSTEM;

on_start (app a) {
apps++;
if (upper_threshold_reached(level, apps)) {
level++;
repartition_all_apps (level);
} else {
set_partition(a, level);
}
}
on_terminate () {
apps—-j
if (lower_threshold_reached(level, apps)) {
level-—;
repartition_all_apps (level);

}
Listing 1.
separately.

Basic partitioning logic; balancing of partitions is handled

siblings return their jobs to their parent. This spreads out
reconfigurations, but results in more reconfigurations over
time and creates imbalances in the CPU time distribution that
cannot be addressed by rebalancing alone.

The frequency of reconfigurations is important, as every
reconfiguration leads temporarily to over- or undersubscription
within affected partitions. This is caused by the temporal
granularity of the adaptation mechanism inside applications,
i.e., there is a phase where a change request is already
issued but the application has not yet responded to it. With
our strategy the number of such reconfigurations is reduced
compared to traditional approaches, therefore the impact of
this problem is also reduced.

B. Reaching an equilibrium

Despite having only equally shaped partitions, our approach
so far is still subject to load imbalances, when the number
of coscheduled applications per partition differs. One way to
solve this is to use a periodic rebalancing to even out this
imbalance as suggested in [7]. We propose a different way
to achieve uniform progress across all applications by again
employing coscheduling and to coschedule multiple hierarchy
levels. That is, we ensure that each partition in a hierarchy
level is equally loaded, and place odd elements in higher
hierarchy levels. The scheduler alternates execution between
different hierarchy levels, weighting each hierarchy level so
that each job receives the same amount of CPU time. Under
the assumption of similar speedup behavior, this leads to a
fair distribution of the available resources. To avoid rapid
reconfigurations, this kind of balancing is only feasible in
more or less stable situations. Figure 2 visualizes the resulting
schedules for our example system from one to eight jobs. The
figure shows no hysteresis, instead it is assumed that the state
had time to settle after each reconfiguration.

This coscheduling of hierarchy levels also allows to han-
dle reconfigurations of applications more application-friendly.
Instead of enforcing the new partition size immediately after
issuing a change request, applications have a grace period to
react during which the old partition size is kept. When the
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Fig. 2. Schedules generated by our approach for one to eight tasks on the
example dual-socket dual-core system.

application eventually changes, the operating system scheduler
can react immediately.

C. Being less restrictive

If we have additional information about individual ap-
plications, such as maximal or minimal parallelism degrees
or knowledge on which assumptions about the system an
application relies exactly, our approach can be easily fine-
tuned. For instance, not every application really profits from
being coscheduled, but still, avoiding oversubscription is ben-
eficial. Thus, we can enable and disable coscheduling on a
per application basis, allowing to execute threads of different
non-coscheduled applications within the same partition in an
uncoordinated way.

Due to the coscheduling of different hierarchical levels,
it is no problem to accommodate applications with special
needs regarding the parallelism degree. If desired, they can be
weighted appropriately, so that the amount of received CPU
time is fair compared to other applications. Especially, the
integration of moldable or evolving jobs is not problematic.

Furthermore, the knowledge on the speedup behavior of the
individual applications can be used to optimize the assignment
of applications to partitions, so that applications with a near
linear speedups get wider partitions (more cores) than appli-
cations with worse speedup behavior.

III. EVALUATION

In order to prove the applicability of our approach, we
compare two variants of it to several standard approaches. We
use randomly generated workloads stressing the malleability of
tasks. Our criteria for the effectiveness of an approach are the
realized response time of a task compared to its isolated execu-
tion, the overall makespan, and the number of reconfigurations.
Our workload is described in detail in Section III-A, followed
by a description of all tested approaches in Section III-B. Our
evaluation closes with the presentation and discussion of the
results in Section III-C.

A. Workload and Evaluation System

The evaluated workloads are composed of several OpenMP
applications taken from the NAS Parallel Benchmarks 3.3
described by Bailey et al. [8], [9] and developed by Jin et
al. [10]. We only selected short running benchmarks (around
one to three minutes when executed sequentially) that are



able to adapt the degree of parallelism at runtime, i.e., they
repeatedly enter and exit parallel regions. Classifying these
benchmarks according to their reconfiguration delay, we have
fast adapting benchmarks (bt .A, mg.B, sp.A and ua.3)
and slow adapting benchmarks (cg.B, ft.B, and is.C).
Benchmark 1u.2 is somewhat of a special case, as it is the
only one that uses active waiting at application level. Table I
gives more details about these benchmarks. All time related
measurements in that table were obtained in absence of other
interference. Thus, they are not valid when, e.g., memory
bandwidth is shared with other applications, but they give a
rough idea of the characteristics.

A workload consists of a selection of benchmarks with
exponentially distributed inter-arrival times. That is, the jobs
arrivals constitute a Poisson process. The benchmarks and
their start times are randomly selected for each workload.
Our evaluation infrastructure then allows to replay a certain
workload over and over again. Thus, we can feed different
scheduling approaches with identical workloads.

Our evaluation system is a quad AMD Opteron 8435,
a NUMA system with four six-core 45nm K10 processors
(codename Istanbul) clocked at 2.6 GHz. It has 64 GiB RAM
(DDR2-533, 16 GiB per NUMA domain) and runs Linux 3.8
with NUMA memory balancing enabled. The used version
of the GNU Compiler Collection — and thus also of GNU
OpenMP — is 4.7.2.

B. Considered Approaches

We consider six different approaches. The first two, Un-
controlled Execution and Load-adaptive Execution, are readily
available on today’s systems as they do not need additional
support from the operating system: all decisions are made
locally by the applications themselves. They give us the
off-the-shelf baseline. Standard Equipartitioning and Batch
Processing, on the other hand, are established approaches
that require additional support. They form the conceptual
baseline. Finally, we have two variants of our Topology-aware
Equipartitioning, with and without coscheduling.

a) Uncontrolled Execution (UE): This is probably the
variant that is most often used today. Each application just
considers itself, and the operating system is not aware of
parallel or malleable applications. Thus, every application does
what it wants and is not hindered by the operating system. In
our case, OpenMP applications, that usually means that each
application spawns as many worker threads as there are CPUs.

GNU OpenMP allows the user to select from three different
waiting policies: passive waiting, spin-blocking (the default),
and active waiting. In our experiments, we used spin-blocking
and passive waiting. With the former we get applications that
assume exclusive system access, while the latter sacrifices
single application performance for overall throughput.

b) Load-adaptive Execution (LLA): Another standard
approach. The operating system is still not aware of parallel
applications, but at least applications now recognize the fact
that they do not own the system. Instead, they regularly

poll the system load and adapt their own degree of paral-
lelism. GNU OpenMP supports this style of execution when
OMP_DYNAMIC is set. However, adaptations only happen
when a parallel region is entered. Thus, it heavily depends
on the program itself how often these adaptations take place.

In addition to that, achieved efficiency and fairness also
depends on the load adjustment implementation and whether
it uses additional sources of information. For instance, the
load itself does not carry information about the number of
concurrently running applications. Further, system load is
typically adjusted only in terms of seconds; thus, it is not
possible to react appropriately fast to thread creations and
destructions. The load adaptation of GNU OpenMP is rather
primitive, sizing the next parallel region to fill the free capacity
according to the 15 minute load average. Here, we also tested
spin-blocking and passive waiting.

c) Equipartitioning (EQ): While not supported by cur-
rent operating systems, we applied the basic idea of equipar-
titioning without further consideration of machine topology
or other factors. That is, we simply divide the available
processor cores by the number of applications and do static
assignments until the next reconfiguration occurs. Though, we
avoid migrations if possible, i.e., we only add and remove
processor cores to and from already assigned sets. We realized
this approach by explicitly managing the affinity of Linux
CPU-sets and a modified GNU OpenMP version that queries
the CPU-set size.

d) Batch processing (BP): While not useful in the inter-
active scenarios we consider, batch processing gives another
base line to compare our approach to. Arriving jobs are simply
processed in a FIFO order, one after the other. As our test
applications do not have ideal speedups, this style of execution
does not necessarily result in the shortest possible makespan.

¢) Topology-aware Equipartitioning (TA): This is a
variant of our approach without coscheduling. Compared to
the basic equipartitioning above, the partitions now respect the
system topology, so that whole topological units or fractions
thereof are used. Additionally, the possible partition sizes are
reduced as we strive to give out only equally sized partitions.
For our quad-socket, 24-core evaluation system, this results in
partition sizes of 1, 2, 3, 6 (one socket), 12 (half a system), and
24 cores (whole system). Just like the basic equipartitioning,
this was realized with the help of Linux CPU-sets and a
modified GNU OpenMP.

f) Topology-aware Equipart. with Coscheduling (CO):
This is our approach as described in Section II-A. We eval-
uated the basic version without extras to gauge the principle
applicability of our approach. That is, we did not apply the
ideas described in Sections II-B and II-C. Also, we did not use
a hysteresis, i.e., the thresholds for switching partition sizes
up and down are identical and correspond to the number of
available partitions on a particular level. For our evaluation
system and due to an implementation restriction, we have
partition sizes of 1, 3, 6, 12, and 24 cores. This means if
there is one application, it gets scheduled system wide, two to
three applications are coscheduled on 12-core partitions, four



TABLE I
NAS BENCHMARKS USED FOR EVALUATION AND THEIR CHARACTERISTICS.

Benchmark  Description Sequential ~ Speedup on partitions Reconfigurations Avg. Reconf. Delay

Exec. Time  of size 2, 3, 6, 12, and 24  (parallel regions)  (when run sequentially)
bt.A Block Tridiagonal 94 s 1.8,2.5,3.8,6.3, 134 1012 46 ms
cg.B Conjugate Gradient 169 s 1.8,2.5,29,55,9.2 231 365 ms
ft.B Fast Fourier Transform 82s 1.7,23,3.1,59, 11.7 112 365 ms
is.C Integer Sort 52s 1.9,28,4.7,78, 12.2 16 1627 ms
lu.A Lower-Upper symmetric Gauss-Seidel 75s 1.8,24,3.7,62, 129 518 73 ms
mg.B Multi Grid 13s 1.2,13,1.1,22,43 1281 5ms
sp.A Scalar Pentadiagonal 71s 1.5,1.7,1.8,3.3,7.0 3616 10 ms
ua.A Unstructured Adaptive 68s 1.6,19,27,58, 159 36510 1ms

TABLE II

CONFIGURATION OF WORKLOAD SETS USED FOR EVALUATION.

Set  Work-  Jobs per Arrivals Application mix
loads workload  per minute

A 5 40 6 all

B 8 40 9 all

C 4 40 9 all except 1u.A

D 8 40 9 all except £t .B and mg.B

to seven applications are coscheduled on sockets, eight to 23
applications use half-socket partitions, and finally 24 or more
applications are executed as single-threaded programs.

To realize this, we used a modified Linux 3.8 kernel with
coscheduling support. The concept of that coscheduler and
its Linux implementation are described by Schonherr et al.
in [11]. Basically, it allows selected applications to be cosched-
uled while retaining the properties of the original scheduler.
The Linux implementation gets information about groups of
tasks to be coscheduled and their desired coscheduling granu-
larity via the Linux cgroup interface. The actual placement
and balancing is done with the normal Linux rules.

C. Results

For our evaluation, we analyzed different sets of workloads
against the different scheduling approaches. The workload sets
differ in their application mix and in their average number of
jobs. Their properties are given in Table II. Each experiment
was repeated five times, to see how stable the results are. For
each experiment we determined the makespan (i.e., the time
the system is not idle while processing a workload), individual
job slowdowns (i.e., response times normalized to isolated
parallel execution times), and the number of reconfigurations.
These values are summarized in Table III.

One exemplary workload of each, set A and B, is given
in Figures 3 and 4, respectively. They show the number
of concurrently running applications over time. They are
typical in that UE and LA generate unusually long makespans
compared to the other approaches. This is due to the non-
coscheduled oversubscription and applications making use of
spin-blocking and, in case of lu.A, active waiting. LA is
generally better than UE, as oversubscription subsides over
time due to increasing system load and a slowly reacting load
adaptation. Due to the active waiting in lu. A, switching the

waiting policy of OpenMP to passive waiting, does not help
significantly, as demonstrated by UEp and LAp, which are
equivalent to UE and LA except for the passive waiting policy.
Only for workloads without any active waiting, such as those
in our set C, this changes as shown in Figure 5. Because of
these results, we refrained from further experiments with UE
and LA and concentrated on the three partitioning approaches
only.

Another general trend in these workloads is that TA is better
than EQ, which in turn is better than CO. Though, this really
depends on the actual application mix within a workload.
This is demonstrated on the one hand with the workload
set C, where 1u.A is missing (see Figure 5). This particular
benchmark is very sensitive with respect to interferences on
the L3 cache of our system, and it profits from having cache
just for itself. EQ ignores the topology and applications likely
end up spread across multiple sockets, a worst case scenario
for 1u.A. Thus, removing 1u.A gives EQ a boost compared
to TA and CO. Between TA and CO, 1u. A favors CO, because
this approach issues larger partitions than TA, though this is
not visible in our presented workloads as the effect is coun-
tered by applications which prefer smaller partitions due to
bad speedups. Another benchmark with similar characteristics,
though not as extreme as 1u.A, is cg.B.

If, on the other hand, we remove benchmarks mg.B and
ft .B from the application mix as in set D, then CO is better
suited for the resulting workloads than EQ (see Figure 6).
Here, two effects accumulate: Benchmark mg.B is severely
memory-bound and does not profit from multiple cores of
one socket. That CO issues larger partitions on average than
EQ or TA is also not helpful. Instead, mg.B profits from the
likely spread out execution of EQ. When paired with some
other application that is not that memory-bound, mg.B has
more memory bandwidth available. Similar for £t . B, though
it scales a bit better.

Besides the experiments discussed here, we also explored
the design space of our topology-aware schemes. Foremost, for
our topology-aware approaches being competitive on NUMA
systems, a mechanism is necessary that keeps memory and
tasks close together. If such a mechanism does not exist,
topology-aware schemes often separate tasks from their mem-
ory and an approach like EQ is actually better, as there
is probably at least some memory allocated at the NUMA
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TABLE III
AVERAGED RESULTS OF DIFFERENT APPROACHES PER SET.

Set  Approach Makespan Average  Reconfig-
(BP=100%)  Slowdown urations

A BP 100% 6.7 0
EQ 89% 4.8 155

TA 95% 4.7 81

CcO 100% 6.2 74

B BP 100% 10.2 0
EQ 94% 8.4 170

TA 91% 7.3 103

(€(0) 100% 104 64

C BP 100% 10.7 0
EQ 92% 8.9 178

TA 90% 8.3 104

CcoO 101% 13.1 88

D BP 100% 11.9 0
EQ 92% 11.1 167

TA 86% 8.6 112

(€(0) 89% 10.3 51

node(s) where the tasks are executed. With Linux 3.8 a very
simple NUMA memory balancing mechanism is available,
which periodically enforces a migrate-on-next-touch policy to
move memory to where it is needed. This helps also EQ and
delivers consistently better performance in our experiments
than doing nothing or forcing an interleaved memory policy.

With CO we have the additional freedom to restrict allowed
partition sizes without running into fragmentation or fairness
issues. The results above use a mostly unrestricted set, where
partition of sizes 1, 3, 6, 12, and 24 cores are allowed (due
to an implementation restriction, supporting 2 and 3 at the
same time is not possible). We also ran some experiments with
more restrictions and only allowed sizes of 1, 6, and 24 cores —
core, socket, and system. However, with only 1u.A and cg.B
profiting from this, it did not give good overall results. For a
similar reason, we did not try the balancing scheme proposed
in Section II-B, as it requires application knowledge to be
effective. Instead, we experimented with periodic rebalancing
for CO, which works fine as long as rebalancing applications
across NUMA domains is kept at a very low frequency.
Otherwise the resulting remote memory accesses and triggered
page migrations can quickly kill the performance. (Periodic
rebalancing with an interleaved memory policy is fine, but
that does not give performance either.)

Very brief experiments indicate, that we could get a few
percent more performance out of CO with an increased average
time-slice length. However, we intentionally use the operating
system defaults, as our goal is a flexible, easily integrable
scheme that does not cause inconveniences for applications
out of its scope.

IV. RELATED WORK

The idea of operating system enforced fairness between
multiple parallel applications is not new. A pioneering work
is [6], which introduces Process Control: a method to fairly
distribute the available CPUs among running parallel applica-

tions. It includes a concept of malleability and also considers
non-malleable applications by reducing the pool of available
CPUs for malleable applications accordingly. CPUs are dis-
tributed in a round robin fashion, until either an application
reaches its individual maximum or no more CPUs are left.
The approach does not consider the system topology in any
way, but for the targeted early shared memory systems this
does not really matter.

On distributed memory systems, on the other hand, topology
has always been important. In [7], two concepts for such
systems are presented: Equipartition and Folding. Equipar-
tition conceptually splits a regular, non-hierarchical system
topology (e.g., a grid) into connected, almost equally sized
partitions. Folding always splits the largest partition in two
halves (with, e. g., hypercubes in mind). This has the benefit of
avoiding parallel reconfigurations. The more unfair distribution
of CPU time is countered with periodic rotations of appli-
cations. Folding is also recognized as a possibility to make
rigid or moldable applications pseudo-malleable: due to the
halving of partitions, non-malleable applications experience
always a doubling of threads per processor, which works
reasonably well as long as there is not much synchronization.
Both approaches do not consider any form of coscheduling.
However, as far as partition sizes are concerned, our approach
is quite similar to Folding. For example, the idea of pseudo-
malleable applications can be used with our approach without
problems. Contrary to Folding, we achieve a fair CPU time
distribution without periodic rotations.

Corbalan et al. suggest Compress&Join [12], a combina-
tion of coscheduling and partitioning, where job malleability
is used to reduce fragmentation normally associated with
coscheduling: based on an ideal number of processors for
each application, their approach fits multiple applications into
a coscheduled time slot, possibly sizing them down a bit with
a bounded deviation from the ideal size. Fairness and system
topology are not considered; and while exclusive resource
usage due to coscheduling is mentioned, it is not considered
when partitioning a time slice. Bhadauria and McKee [13], on
the other hand, consider fairness and resource contention in
their partitioning scheme. Similar to Corbalan et al., they also
use partitioning within coscheduling. However, they use a sam-
pling and feedback mechanism to intelligently select and size
applications to be scheduled simultaneously, so that contention
of system resources is hopefully minimized. A hierarchical
system topology is not considered. Both approaches require
large time slices (measured in seconds) and long running
applications. Contrary to that, our approach works with short
time slices (measured in milliseconds, similar to usual OS
time slices) and does not disturb interactive behavior. Our
nesting of time and space slicing only requires partition wide
synchronization (instead of system wide synchronization) and
enables variable length time slices. Additionally, we recog-
nize hierarchically arranged resources. We currently do not
consider application speedups and do not arrange for certain
applications to run simultaneously. However, our approach is
flexible enough that these features can be easily added. In fact,



we plan to integrate some of these ideas to exploit the potential
of our approach and to make it more robust to a wide variety
of workloads.

V. CONCLUSION

In current operating systems, scheduling of applications is
done from within the operating system scheduler that keeps
all details, like system load or resource status, hidden from
user-level applications, following the concept of separation
of concerns. But in these days with emerging many-core
systems and an increasing count of parallel applications, new
challenges arise when it comes to scheduling targeting high
and efficient CPU utilization in non-HPC environments, which
might require a change in this policy. Despite a whole lot of
research that has been published about efficient scheduling
of parallel applications within the last decades, nothing of
this is available in today’s operating systems. Hence, parallel
programs for end-user devices are on their own and must base
their degree of parallelism on assumptions, such as the overall
system load, and enforce their thread placement manually.
We believe that this stems from the inflexibility of suggested
approaches that cannot handle or incorporate legacy situations
and thus force an all or nothing decision.

In this paper, we tackled the problem by introducing a new
equipartitioning scheme that combines the approaches of par-
titioning and coscheduling. On the one hand, topology-aware
partitions allow us to retain a high potential for application-
level optimizations. On the other hand, we apply coscheduling
to reduce the number of reconfigurations without sacrificing
the advantages of partitioning and to reach a perfectly balanced
distribution of computational power in every (stable) situation.
The result is a flexible concept that can handle high application
birth and death rates and that can also easily incorporate
applications with special requirements.

We implemented our approach and executed a series of
experiments with multiple parallel applications. The results
were mixed. Topology-awareness in itself turned out very
beneficial for all evaluated workloads. The gain in commu-
nication speed outweighs everything else. The addition of
coscheduling, which gives us our sought after conceptual
flexibility, makes our approach more sensitive towards the
executed workload. However, the evaluated applications were
not specifically selected to play the strengths of our approach:
they do not scale particular well on multicore systems and they
are not short enough (or their reconfiguration delays not long
enough) so that the reduction in the number of reconfigurations
becomes noticeable. Overall, this indicates that coscheduling
(contrary to partitioning) should not be applied blindly.

The continuation of the research presented here basically
addresses these remaining issues. First, there is the incorpora-
tion of application specific knowledge into our approach in
order to apply it more selectively. This includes optimiza-
tions discussed in Section II-C: enforcing coscheduled and

topology-aware partitions only for applications that benefit
from it, and doing a speedup-aware mapping of differently
sized partitions to applications. Another area of interest is
that of resource contention, where application placement and
partition size selection can be influenced, so that unfortunate
combinations are avoided. Second, there is the exploration of
new use cases. The ability of our approach to utilize short
time slices allows for dynamic adaptations during application
execution to match the partition size to a varying degree of
parallelism. This way, we can address short phases of lower
parallelism and evolving applications.

In the end, we see our approach as a versatile, customizable,
and eventually robust building block in upcoming operating
system schedulers.
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