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Abstract—In the past years, research and industry have in-
troduced several parallel programming models to simplify the
development of parallel applications. A popular class among these
models are task-based programming models which proclaim ease-
of-use, portability, and high performance. A novel model in this
class, OpenMP Superscalar, combines advanced features such
as automated runtime dependency resolution, while maintaining
simple pragma-based programming for C/C++. OpenMP Super-
scalar has proven to be effective in leveraging parallelism in
HPC workloads. Embedded and consumer applications, however,
are currently still mainly parallelized using traditional thread-
based programming models. In this work, we investigate how
effective OpenMP Superscalar is for embedded and consumer
applications in terms of usability and performance. To determine
the usability of OmpSs, we show in detail how to implement com-
plex parallelization strategies such as ones used in parallel H.264
decoding. To evaluate the performance we created a collection
of ten embedded and consumer benchmarks parallelized in both
OmpSs and Pthreads.

I. INTRODUCTION

Since the advent of multi-core processors and systems,
programmers are faced with the challenge of exploiting thread-
level parallelism (TLP). Writing parallel programs which
exploit TLP is commonly considered to be difficult. To relieve
programmers from the many issues associated with parallel
programming, recently, several parallel programming models
have been introduced, such as OpenMP [1], Boost Threads [2],
POSIX threads [3], OpenCL [4], Intel ArBB [5], CUDA [6],
OpenMP Superscalar [7], Cilk++ [8], and Intel TBB [9].

OpenMP Superscalar (OmpSs) is a novel task-based parallel
programming model which extends the OpenMP programming
model with the StarSs [10] task directives. In OmpSs, pro-
grams are parallelized by annotating functions as tasks using
the omp task input output inout pragmas. When these
annotated functions are called, they are added to a task graph
instead of being executed. The task dependencies are resolved
at runtime, using the input/output specification of the function
arguments. Once all input dependencies of a task are resolved,
it is scheduled for execution.

OmpSs has its origins in the HPC domain and previous
evaluations of the OmpSs programming model have shown
promising results [11]. The applicability of OmpSs to the
embedded and consumer application domains, however, re-
mains undiscussed. Applications in these domains are cur-
rently commonly parallelized using manual low-level thread-

ing approaches, which provide explicit control in the par-
allelization strategy. Other task-based programming models,
such as OpenMP and Cilk++, have yet to be widely adopted
in embedded and consumer application domains. Compared to
HPC applications, there is usually less data-level parallelism
available and the execution time is less dominated by small
pieces of the application.

A key difference between OmpSs and other task-based
parallel programming models is the ability to add tasks before
they are ready to execute, a powerful feature which allows
more complex parallelization strategies that simultaneously
exploit function-level and data-level parallelism. In embedded
and consumer application this is often required to compensate
for the less abundant data-level parallelism.

In this paper we will investigate the usability and perfor-
mance of OmpSs for embedded and consumer applications.
The contributions of this paper can be summarized as follows:

• We propose an evaluation methodology for classifying
and comparing the qualities and features of parallel
programming models.

• We show how to express complex parallelization strate-
gies in OmpSs using H.264 decoding as a case study.

• We discuss key usability aspects of OmpSs, such as the
toolchain quality, debugging facilities, and adaptability.

• We evaluate the performance of OmpSs using ten embed-
ded and consumer benchmarks, which are implemented
in both OmpSs and Pthreads.

The structure of this paper is as follows: Section II discusses
the methodology and the benchmark suite. In Section III we
investigate the expressiveness of OmpSs using H.264 video
decoding as a case study. Section IV extends this qualitative
analysis by investigating other important usability aspects. In
Section V the performance results of the ten benchmarks are
presented and analyzed. Section VI discusses related work and,
finally, in Section VII the conclusions are drawn.

II. METHODOLOGY

Evaluating parallel programming models is different from
evaluating processor architectures. Parallel programming mod-
els not only target good performance, but also must offer the
right abstraction to the programmer. Therefore, it is necessary
to investigate both the usability and performance of a parallel
programming model to evaluate its overall quality. To achieve



Name Type Application Domain Input Set Code Size
c-ray K Offline Raytracing Computer Graphics 192 objects, 1920×1080 500 LOC
md5 K MD5 Calculation Cryptography 512 MB 1000 LOC

rgbcmy K Color Conversion Image Processing 30.5 Megapixels 700 LOC
rotate K Image Rotation Image Processing 30.5 Megapixels 1000 LOC

kmeans K k-Means Clustering Artificial Intelligence 18 dimensions, 2670 points, 500 centers 600 LOC
rot-cc W rotate + rgbcmy Combined Workload 30.5 Megapixels 1400 LOC
ray-rot W c-ray + rotate Combined Workload 192 objects, 1920×1080 1300 LOC

streamcluster W k-Median Clustering Data Mining 1M points, 128 dimension, 10-20 centers 1100 LOC
bodytrack A Person Tracking Computer Vision 4 cameras, 4000 points, 5 annealing layers 6800 LOC
h264dec A H.264 Decoding Video Processing 3840×2160, YUV420, 50 fps 20000 LOC

TABLE I
EMBEDDED AND CONSUMER BENCHMARKS USED FOR THE PERFORMANCE EVALUATION. FOR EACH OF THE BENCHMARKS A SEQUENTIAL, PTHREADS,

AND OMPSS VARIANT IS DEVELOPED.

these goals we will evaluate OmpSs using a set of qualitative
usability aspects as well as a benchmark suite covering the
embedded and consumer application domains.

A. Usability Aspects

The usability of a programming model is a subjective
measure which differs from programmer to programmer. To
give the programmer the necessary information to be able to
form its own well-informed opinion about the usability, the
following list of qualitative aspects of a programming model
is discussed in this paper:

• Expressiveness
• Required code modifications
• Optimization opportunities
• Compilation toolchain
• Verification and debugging
• Code size
Because OmpSs is a novel programming model and cur-

rently not widespread, we found it is necessary to devote
more attention to expressiveness, required code modifications,
and optimization opportunities aspects. We, therefore, conduct
a case study in Section III, presenting the parallelization of
the H.264 decoding benchmark. This case study will show in
detail how some of the more complex parallel programming
constructs can be realized in OmpSs, without requiring ex-
cessive changes to the sequential base code. Additionally, we
will show how OmpSs specific optimization applied to H.264
decoding effect the performance. The remaining qualitative
aspects of a programming model are discussed in Section IV.

B. Benchmark Suite

To evaluate the performance of OmpSs, we have created
a benchmark suite for the specific purpose of evaluating
parallel programming models [12]. The suite contains 10
C/C++ benchmarks, partly taken from well-known benchmark
suites as PARSEC and listed in Table I, covering a wide range
of embedded and consumer application domains. The bench-
marks are classified as kernels, workloads, and applications,
based on their code size and parallelization complexity. For
each benchmark a sequential, Pthreads, and OmpSs variant has
been developed. For comparability the Pthreads and OmpSs
variants exploit the same parallelism.

1) Kernels: In our benchmark suite, kernels are small pro-
grams with less than 1000 LOC. The OmpSs implementations
exploit only DLP, using a single type of task without depen-
dencies. The benchmarks mainly differ in their computation-
to-communication ratios and the length of the parallel phases.

The c-ray kernel is a simple, brute-force ray tracer without
post-processing. Each ray which is shot into the scene can be
traced independently. To achieve a reasonably coarse granu-
larity of work units, several rays must be grouped together.
In the Pthreads implementation, each thread computes an
equally sized horizontal band of the image. In the OmpSs
implementation, the processing of one full image scanline is
annotated as a task.

The md5 kernel calculates the MD5 checksum of several
independent input buffers simultaneously. Therefore, paral-
lelism is abundantly available. For each input buffer, a separate
task/thread is created.

The rotate and rgbcmy kernels perform image processing
operations (rotation and color conversion, respectively). Both
kernels are pixel independent and mainly differ in there
memory access pattern. As in c-ray, the granularity must be
coarsened to achieve good performance. Therefore, processing
of a block of several image scanlines is performed by a
task/thread.

The kmeans kernels solves the problem of clustering an
arbitrary amount of n-dimensional data points using a k-
means offline clustering algorithm. The computationally most
demanding part is the calculation of the distance of each input
point to every current cluster center. This computation can
be performed independently for each input point, yielding a
straightforward parallelization approach by executing blocks
of input points in threads/tasks.

2) Workloads: Workloads are medium size programs
(1000-5000 LOC) with 2 or more types of tasks and medium
complexity parallelization. The suite contains the rot-cc, ray-
rot, and streamcluster workloads.

The rotate + color convert (rot-cc) and the c-ray + rotate
(ray-rot) workloads are derived by chaining the two kernels
after another. In both cases, the output from the first kernel is
fed into the input of the second kernel, yielding simple inter-
task data dependencies.

The streamcluster workload originates from the PARSEC



2.1 benchmark suite [13]. Like kmeans, it solves the cluster-
ing problem. There are two differences: First, streamcluster
uses an on-line method, processing a continuous stream of
input data, and second, it employs a state-of-the-art k-median
clustering algorithm. Parallelism is exploited in several phases
of the algorithm, but is always based on the independence of
the input data points. The parallel phases differ, however, in
their duration.

3) Applications: Applications are larger programs with
many tasks and different parallel stages. The benchmark suite
contains two applications, bodytrack and h264dec.

The bodytrack applications originates also from the PAR-
SEC 2.1 benchmark suite. Bodytrack tracks the 3D pose
of a marker-less human body through an image sequence
generated with four cameras with different view points. In the
benchmark, a frame is read from each camera sequence and
an edge map and binary map are created from it (preprocess),
followed by a configurable number of annealing iterations
estimating the 3D pose (estimation). Finally, the resulting pose
is projected on the original input image of each camera and
written to the disk (projection). The entire process is repeated
for each frame in the sequence.

In the PARSEC implementation the parallelism is exploited
in four parallel kernels, the edge map edge detect and edge
smoothing kernels of the preprocess stage, and the particle
weight calculation and particle resampling kernels of the esti-
mation stage. The PARSEC implementation, however, exhibits
limited scalability. After carefully studying the characteristics,
we decided to reimplement bodytrack with a more scalable
parallelization strategy. In our parallelization strategy the three
stages are pipelined on the frame level, which reduced the
sequential part of the application. Additionally, within the
preprocess and projection stage parallelism is exploited on the
camera level and the particle resampling and particle weight
calculation of the estimation stage are fused in one pass,
thereby reducing the parallel overhead by increasing the work
unit sizes.

The h264dec application is a high performance parallel
H.264 decoder. The decoder originates from the highly popular
FFmpeg transcoder [14], which contains encoders and de-
coders for a plethora of audio and video codecs. The h264dec
is extracted from the FFmpeg transcoder and has previously
been parallelized using Pthreads. The H.264 decoder is com-
pliant to the High profile Level 5.1, which enforces one slice
per frame. The parallelization strategy is highly scalable by
exploiting both FLP and DLP, and is capable of decoding
QFHD (3840x2160) resolution sequences in realtime. This
benchmark will be discussed in detail in Section III, where
it serves as the OmpSs implementation case study.

C. Experimental Setup

To provide meaningful results not only for contemporary,
but also for future multi-core systems, it is necessary to extend
the benchmarking process beyond the core counts of what
current off-the-shelve CMPs can offer. To achieve this, we
use a 4-socket cc-NUMA machine with a total of 32 cores for

the performance evaluation. The full hardware and software
specification of our evaluation platform is listed in Table II.

Hardware Software
Processor Xeon X7550 OS Ubuntu 10.10
Cores 8 Kernel 2.6.35.10
Frequency 2.00 GHz Compiler GCC 4.4.5
Last level cache 18 MB OmpSs

compiler
Mercurium
(git Aug’11)Sockets 4

Total cores 32 OmpSs
runtime

Nanos++ (git
Aug’11)Total memory 1 TiB

Total mem. BW 102.3 GB/s Opt. level -O2
SMT Disabled
Turbo mode Disabled

TABLE II
EXPERIMENTAL SETUP.

III. CASE STUDY: PARALLELIZING H.264 DECODING IN
OMPSS

In embedded and consumer applications the parallelism is
less abundant compared to, for instance, HPC applications.
To achieve good speedup and efficiency, more complex par-
allelization strategies are required. A good example is the
challenging h264dec benchmark. It is challenging because
it is large, there is no single kernel that dominates the
execution time, and parallelism is not abundantly available.
One, therefore, needs to consider the entire application and
exploit both data-level parallelism (DLP) as well as function-
level parallelism (FLP) to obtain a high-performance and
scalable implementation. Furthermore, both the DLP and FLP
exhibit non-trivial data dependencies. For these reasons, it is an
excellent benchmark to evaluate the expressiveness, required
code modifications, and optimizations opportunities of OmpSs.

A. Pipelining H.264

The H.264 decoder pipeline consists in our design of 5
pipeline stages, shown in Figure 1. In the read stage the
bitstream is read from the disk and parsed into separated
frames. In the parse stage the headers of the frame are
parsed and a Picture Info entry in the Picture Info Buffer is
allocated. The entropy decode (ED) stage performs a lossless
decompression by extracting the syntax elements for each
macroblock in the frame. Some syntax elements are directly
processed, e.g. the motion vectors differences are transformed
into motion vectors. The macroblock reconstruction stage allo-
cates a picture in the Decoded Picture Buffer and reconstructs
the picture using the syntax elements and motion vectors. The
output stage reorders and outputs the decoded pictures either
to an output file or the display.

In contrast to other task-based programming models, like
Cilk++ and OpenMP, pipeline parallelism can be expressed
in OmpSs, because OmpSs tasks can be spawned before its
dependencies have been resolved [15], [16]. Listing 1 presents
the simplified code of the pipelined main decoder loop using
OmpSs pragmas. A task is created for each pipeline stage
in each loop iteration. For correct pipelining of the tasks, it
is required that all tasks in iteration i are executed in-order.
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Fig. 1. H.264 decoder pipeline stages in our design

EncFrame frm[N]; Slice slice[N];
H264Mb* ed_bufs[N]; Picture pic[N];
int k=0;
while(!EOF){

#pragma omp task inout(rc) output(frm[k%N])
read_frame_task(rc,&frm[k%N]);
#pragma omp task inout(nc,frm[k%N]) output(slice[k%N])
parse_header_task(nc,&slice[k%N],&frm[k%N]);
#pragma omp task inout(ec,slice[k%N]) input(frm[k%N])

output(ed_bufs[k%N])
entropy_decode_task(ec,&slice[k%N],&frm[k%N],ed_bufs[k%

N]);
#pragma omp task inout(rec) input(slice[k%N],ed_bufs[k%

N])
output(pic[k%N])

reconstruct_task (rec,&slice[k%N],ed_bufs[k%N],&pic[k%N
]);

#pragma omp task inout(dc) input(pic[k%N])
display_task(dc,&pic[k%N]);
k++;
#pragma omp taskwait on (*rc)

}

Listing 1. Pipelining the main decoder loop using OmpSs pragmas

To accomplish this, each task in the same iterations is linked
to the previous task in the same iteration via one or more
input and output/inout pairs. Additionally, task T of iteration
i must be completed before the instance of the same task T
in iteration i+1 is started. To accomplish this, each task has
a context structure that is annoted as inout, e.g., ReadContext
*rc, NalContext *nc, EntropyContext *ec, etc.

Three additional important observations regarding the
pipelining implementation can be made. First, the taskwait

on pragma ensures that the read task has been performed
before evaluating the while loop condition. This is necessary
to prevent tasks being added after the EOF has been reached.

Second, more importantly, the inputs and outputs of each
task is using an entry of a circularly buffer of size N. This
eliminates the WAR and WAW hazards that would have
occurred if the same entry is used in each iteration, which
would eliminate all the parallelism. OmpSs does not yet
support automatic renaming and therefore, at the moment, this
manual renaming method is required.

Third, the Picture Info Buffer (PIB) and Decoded Picture
Buffer (DPB) structures are not passed in any argument
and, thus, are not considered for dependence checking. To
avoid having to reallocate the PictureInfo and DecodedPicture
structures every iteration, the entries of the PIB and DPB
are reused in the sequential code. The dependencies to these
buffer entries are purposely hidden from the OmpSs task
specifications, because we cannot predict which buffers entries
will be available at the time the task is spawned. This can only

be determined when the task is executed.
To fetch and release the buffer entries in a thread-safe way,

omp critical pragmas are used in the task bodies around
the fetch and release statements to protect accesses to the PIB
and DPB. For this method to work there must be enough buffer
entries available to accommodate the maximum parallelism.
Due to the manual renaming this is controlled by the variable
N, which leads to N+16 buffer entries for the PIB and DPB to
also accommodate for 16 reference frames.

Exploiting the FLP, however, is not enough to get scalable
performance. The performance of the pipelined implementa-
tion is limited by the longest stage in the pipeline. The entropy
decode and macroblock reconstruct stages take around 40%
and 50% of the total execution time, respectively. The total
speedup is in this case limited to a factor of two. To gain
additional speedups both the entropy decode and macroblock
reconstruct stages must be further parallelized.

B. Parallelizing Entropy Decoding

The ED stage performs entropy decoding using CABAC
or CAVLC. In both these methods the interpretation of each
bit in the stream depends on the previous bit. Therefore, no
task parallelism exists inside the entropy decode of one frame.
Multiple frames, however, can be decoded in parallel as they
are separated by start codes. The frames, however, are not fully
independent as illustrated in Figure 2.

I

1

P

2

B

3

B

4

Fig. 2. Parallelism in entropy decoding in multiple consecutive frames.
Colored MBs have been entropy decoded. Hatched blocks are decoded in
parallel.

In Figure 2, four frames are decoded in parallel. The hatched
blocks represent the current MBs that are decoded in parallel
and the blue blocks denote the already processed MBs in each
frame. For blocks in the B-frames some blocks may need the
motion vectors of the co-located block in the previous frame.
To express this parallelism, the code segment in Listing 2 can
be used replacing the entropy_decode_task in Listing 1.

The entropy decode task is split in three tasks. The init task
initializes the context tables, the decode_entropy_line_task
entropy decodes a macroblock line of the picture, and the
release task releases one or more Picture Info entries, which
are no longer referenced. To have multiple entropy decodes in
flight, the EntropyContext is renamed in the same fashion as
the pipeline buffers shown in Listing 1.

To maintain the dependencies shown in Figure 2, the
entropy_decode_line_task has several annotated arguments.
The EntropyContext is annotated with inout to enforce that
the lines of each picture are decoded sequentially. H264Mb



...
#pragma omp task inout(ec[k%N], slice[k%N], ed_bufs[k%N])

input(frm[k%N])
init_entropy_task(&ec[k%N], &slice[k%N], &frm[k%N],
ed_bufs[k%N]);

for(int i=0; i<row; i++){
#pragma omp task inout(ec[k%N], slice[k%N]) input(ed_bufs

[(k+N-1)%N][i])
output(ed_bufs[k%N][i])
entropy_decode__line_task(&ec[k%N], i, &slice[k%N],

&ed_bufs[(k+N-1)%N][i], &ed_bufs[k%N][i]);
}
#pragma omp task inout(slice[k%N], k)
release_PI_task(&slice[k%N], &k);
...

Listing 2. Code fragment replacing the entropy task to perform parallel
entropy decoding.

*mb_in is annotated as an input and H264Mb *mb_out is
annotated as an output, to maintain the dependencies between
frames. By passing the pointers to the first H264Mb of the
co-located line in the previous entropy buffer and the first
H264Mb of the current line in the current entropy buffer to
mb_in and mb_out, respectively, it is ensured that each line
x in frame n is decoded before starting to decode line x in
frame n+1. A task for each macroblock line is created instead
for each macroblock to increase the task granularity at expense
of parallelism. The parallelism is still sufficient, however, with
a maximum of 135 for QFHD resolution videos.

While the code fragment in Listing 2 is able to correctly
process multiple frames in parallel, it is not able to take
advantage of the fact that I- and P-frames do not depend on the
previous frames, as depicted in Figure 2. At the time the ED
tasks are added the frame type is not known, and, therefore,
it must be assumed to have the worst case dependencies for
correctness.

C. Parallelizing Macroblock Reconstruction

In the macroblock reconstruction stage the image is recon-
structed using the syntax elements produced by the entropy
decoding stage. To reconstruct a macroblock in H.264 several
pixel areas from adjacent reconstructed macroblock are re-
quired. For each hatched macroblock in Figure 3, the adjacent
red pixels are needed for the intra-prediction and the deblock-
ing filter kernels. Therefore, only macroblocks on a wavefront
are parallel. The wavefront parallelism is not massive, but
sufficient with a maximum of 120 free macroblocks in QFHD
resolution videos. The wavefront parallelism can be exploited
using the code fragment in Figure 3.

Decoded MBs

Dependency data

Parallel MBs

Fig. 3. Wavefront parallelism in H.264 macroblock reconstruction.

The wavefront dependencies are static and are covered
by the dependencies to the left macroblock and the upper

#pragma omp task input(*rc, *s, *ml, *mur) inout(*m)
void reconstruct_mb_task(MBRecContext *rc, Slice *s,
H264mb *ml, H264mb *mur, H264mb *m);

#pragma omp task inout(*rc) input(*s, mbs[0;rows*cols])
output(*pic)

void reconstruct_task(MBRecContext *rc, Slice *s,
H264Mb *mbs, Picture *pic){
init_ref_list(s);
get_picture_buffer(rc, s);
for(int i=0; i< rows; i++){

for(int j=0; j< cols; j++){
H264mb *m = &mbs[i*cols + j];
H264mb *ml = m - ((j > 0) ? 1: 0);
H264mb *mur = m - (((j < cols-1) && (i >0))

? cols-1: 0);
reconstruct_mb_task(rc, s, ml, mur, m);

}
}
H264mb *lastmb = &mbs[smb_width*smb_height -1];

#pragma omp taskwait on (*lastmb)
release_ref(rc, s);
*pic = s->pic;

}

Listing 3. Wavefront algorithm expressed in OmpSs.

right macroblock. The wavefront dependencies of the recon-
struct_mb_task are maintained through its H264mb*arguments
by annotating the left macroblock ml and upper right mac-
roblock mur as inputs and the current macroblock m as
inout. Since the reconstruct_mb_tasks are added in scan line
order, this input and the output specification ensures that the
wavefront dependencies are maintained. In addition to the
pragmas, only the code that computes the left and upper right
macroblock must be added to the sequential code. The ability
to express dependencies between tasks makes the OmpSs
implementation relatively clean and simple.

D. Optimizing Task Granularity

The OmpSs implementation of parallel macroblock recon-
struction shown in Listing 3 is a clean way to express the
wavefront parallelism. The decode_mb_tasks, however, are
fine-grained and have an average execution time of around 2µs
on a commodity processor. The task management overhead of
OmpSs does not allow such fine-grained tasks to perform well.
A technique to overcome this is to coarsen the tasks by group-
ing several macroblocks. Due to the wavefront dependencies,
however, macroblocks must be grouped in tetris-block shapes,
as shown in Figure 4.

Expressing task dependencies between these tetris-shaped
superblocks directly is not straightforward, especially when it
is desired to support an arbitrary picture and superblock sizes.
To overcome this the superblocks are remapped to a regular
structure. Independent of their shapes, all superblock variants
still exhibit wavefront dependencies. The dependencies can
be easily checked, in the same way as the regular ungrouped
macroblocks when they are remapped to a regular matrix form
as depicted in Figure 4.

The remapping does somewhat increase the code complex-
ity. First, it must be calculated how many superblocks fit in
the width and the height of a picture. Second, when decoding
the superblock it must be checked which macroblocks belong
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Fig. 4. Remapping the irregular superblock shapes back to regular shapes
simplifies the dependency expression for the programmer and task dependence
checking for the runtime system.

to this particular superblock. This check can be performed by
testing if the macroblocks covered by the superblock shape
are inside the picture.

If it is ensured that every first superblock in a line has the
maximum number of macroblocks in its top row, as is the
case in Figure 4, then the code fragment in Listing 4 can be
used instead of the code fragment in Listing 3 to reconstruct
coarsened superblocks instead of individual macroblocks, for
an arbitrary block and picture size.

#pragma omp task input(*rc, *s, *ml, *mur) inout(*m)
void reconstruct_super_mb_task(MBRecContext *rc,
Slice *s, Supermb *ml, Supermb *mur, Supermb *m){
for (int k=0, i=mby; i< m->mby + sheight; i++, k++)
for (int j= m->mbx -k ; j< m->mbx- k + swidth; j++){
// if (i,j) is a valid macroblock
if (i< rows && j>=0 && j<columns)
reconstruct_mb(rc, s, i, j);

}
}

#pragma omp task inout(*rc) input(*s,
smbs[0;srows*scols]) output(*pic)

void reconstruct_task(MBRecContext *rc, Slice *s,
Supermb *smbs, Picture *pic){
init_ref_list(s);
get_picture_buffer(rc, s);
for(int i=0; i< srows; i++)
for(int j=0; j< scols; j++){
Supermb *m = &smbs[i*scols + j];
Supermb *ml = m - ((j > 0) ? 1: 0);
Supermb *mur = m - (((j < scols-1) && (i >0)) ?
scols-1: 0);

reconstruct_super_mb_task(rc, s, ml, mur, m);
}

Supermb *lastmb = &smbs[srows*scols -1];
#pragma omp taskwait on (*lastmb)

release_ref(rc, s);
*pic = s->pic;

}

Listing 4. Decoding tetris-shaped superblocks instead of single macroblocks.

The code in Listing 4 resembles the code in Listing 3. The
main differences are the reduced loop boundaries smb_rows
and smb_columns, calling the reconstruct_super_mb_task, and
checking for valid macroblocks covered by the superblock
before calling the inner reconstruct_mb function. This method
is generally applicable to specify coarsened wavefront paral-
lelism in OmpSs for arbitrary superblock sizes and picture
dimensions with minimal runtime dependency checking over-
head.

In the implementation so far, only the wavefront (WF)
parallelism inside a frame is used. Wavefront parallelism,
however, suffers from parallelism ramp-up and ramp-down,

which reduces the average parallelism. By grouping the mac-
roblocks the parallelism is further reduced and could limit
performance scaling at higher core counts. The amount of
parallelism can be increased by reconstructing multiple frames
in parallel. A limitation is that the motion compensation kernel
inside the reconstruction stage uses reconstructed pixel areas
of previously decoded frames.

To reconstruct more than one frame in parallel additional
dependencies must be expressed to superblocks/macroblocks
of previous frames that produce the reference pixel areas. The
motion vector pointing to the required pixel area is specific to
each macroblock and is not know until they have been entropy
decoded which poses a problem as the MBR tasks must be
spawned before the ED tasks finish to exploit the pipeline
parallelism. Some additional parallelism, however, can still
be exploited by assuming the worst case motion vector size,
which is 512 pixels in vertical direction. This assumption will
allow the wavefront parallelism to overlap consecutive frames.
The implementation of this technique will be referred to as the
overlapping wavefront (OWF).

The additional dependency can be implemented by adding
an extra input to the reconstruct_super_mb_task, which ex-
press a dependency to the macroblock producing the pixel area
512 pixels downwards of the previous frame. A consequence
for the implementation is that the MBR tasks cannot be
spawned in a nested task. This nesting would require that
OmpSs performs dependence checking over different sub task
graphs, which is not supported by OmpSs as this would break
deterministic task dependency resolution. Instead the MBR
tasks must be spawned in the main loop similar to the ED
tasks.

Up to 14 cores, OWF with a block size of 12×12 has the
highest performance, after which WF with a block size of
8×8 takes over. Due to the larger block size the additional
parallelism of overlapping consecutive frames is evened out.
The higher performance of OWF results from the more con-
stant supply of free tasks. In the WF variant, the rampup and
rampdown of the number of MBR tasks complicates locality
aware scheduling. To outperform the WF at higher core counts,
however, OWF requires faster dependency resolution with
large task windows. Several works have investigated hardware
support for OmpSs task dependency resolution [17], [18], [19].

IV. OTHER USABILITY ASPECTS OF OMPSS

A. Compilation Toolchain

OmpSs requires the use of the Mercurium C/C++ com-
piler and the Nanos++ runtime library [20]. The Mercurium
compiler interprets the OmpSs pragma annotated code and
performs a source-to-source transformation to an intermediate
code that contains the Nanos++ runtime library calls. The
source-to-object compiling is then performed by a regular
C/C++ compiler such as GCC. The Nanos++ runtime library
implements the OmpSs runtime dependency checking and task
scheduling.

To use OmpSs only a compiler switch is required. Because
the Mercurium compiler accepts most of the GCC options, it is



in almost all cases drop-in compatible with projects using the
GCC compiler. For our benchmarks, this worked out-of-the-
box for the C benchmarks. Some issues where found with the
C++ support which currently is still experimental. Annotation
of class member functions serializes the execution of these
tasks and any C++11 support is missing.

Furthermore, error messages of the Mercurium compiler are
often less descriptive than the ones produced by compilers
such as Clang and even GCC. Also the Mercurium compiler
sometimes does not behave well with incorrect input code,
resulting in compiler crashes. These are all relatively small
issues that could be worked around. Overall the compilation
toolchain can be considered stable and usable, but still needs
some polishing to be called production-ready.

B. Verification and Debugging

A common problem when developing parallel programs
is verification and debugging. It is difficult to ensure that
a parallel program is correct for all cases and debugging
parallel programs, which have non-deterministic behavior, is
non-trivial.

On the one hand, debugging OmpSs programs can be con-
sidered to be more difficult than debugging Pthreads programs
for two reasons. First, the integration with traditional open
source debugging tools like GDB [21] and Valgrind [22] is
suboptimal. The source-to-source compilation nature makes
stepping through code difficult because GDB shows the in-
termediate code. Also the Nanos++ runtime library triggers
Valgrind errors due to switching to unregistered stacks. Find-
ing real errors becomes difficult as they are flooded by errors
generated by the runtime library calls.

Second, the OmpSs programming model gives the program-
mer an abstracted view of the underlying task execution sys-
tem. In the case of program misbehavior, however, the raised
abstraction level could complicate locating and eliminating
bugs in cases where the programmer is not familiar with the
underlying task execution model. This problem is currently
more pressing due to a lack of documentation which describes
the semantics and the interactions of OmpSs pragmas. This
lack of documentation is partly due the fact that OmpSs is a
novel programming model and still subject to extensions.

On the other hand, OmpSs can also be considered easier
to debug due to tracing tools like Extrae [23] which is well
integrated in the Nanos++ runtime. With Extrae, traces can be
generated which show when and where the tasks are executed
as well as dependencies with other tasks. Additionally, OmpSs
ensures that the code without the pragmas is correct sequential
C/C++ code which allows the programmer to first solve all the
problems in the sequential code with conventional debugging
tools. Furthermore, tools specific to help debugging OmpSs
programs, like Starsscheck [24] and Ayudame/Temanejo [25]
are currently being developed. Starsscheck checks if all the
memory accesses made in the task function body are annotated
correctly. Temanejo is a visual debugging interface to Ayu-
dame, a StarSs task parallel debugger. Ayudame/Temanejo can

simplify debugging considerably by visually rendering the task
graph and allowing to manipulate and control task execution.

C. Source Code Size

The Pthreads benchmarks are in general larger than their
sequential and OmpSs counterparts. This increase is due to
the necessity of using multiple explicit threading and synchro-
nization statements. OmpSs has a clear advantage since the
only necessary additions to the code are #pragma statements
to declare functions as tasks. Common parallel programming
operations such as data replication and reductions have to
be performed for both programming models. The code size
difference between OmpSs benchmarks and their Pthreads
counterparts, shown in Table III is mostly due to manual
threading and synchronization.

Kernel LOC
abs.

LOC
rel.

Workload /
Application

LOC
abs.

LOC
rel.

c-ray 53 8% rot-cc 142 12%
md5 21 2% ray-rot 176 15%
rgbcmy 50 8% streamcluster 142 14%
rotate 77 8% bodytrack 241 3%
kmeans 84 13% h264dec 600 3%

TABLE III
ADDITIONAL LINES OF CODE OF THE PTHREADS VARIANT COMPARED TO

OMPSS VARIANT FOR EACH BENCHMARK.

V. QUANTITATIVE EVALUATION

The performance of OmpSs is evaluated by comparing it
against Pthreads using the ten benchmarks described in Sec-
tion II-B. All the experiments are performed with the hardware
and software setup described in Section II-C. Experiments
have been performed using 1, 8, 16, 24 and 32 cores. For each
core count the minimal number of sockets is used. In OmpSs
this is done by default, while for Pthreads this is enforced
using the --physcpubind option of the numactl tool. The
number of cores used in OmpSs applications is controlled by
an environmental variable.

A. Overall Benchmark Scalability

Figures 5(a) to 5(f) show the speedup for the kernels,
workloads, and applications for both OmpSs and Pthreads.
The speedup is relative to the execution time of the sequential
version of the benchmarks, which contains no parallel over-
head. The figures show that not all benchmarks scale well. For
32 cores, the benchmarks parallelized with Pthreads achieve
speedups in the range from 7.0× to 29.3×. OmpSs manages
to achieve overall comparable speedups ranging from 9.1× to
33.5× with 32 cores.

Both programming models show the highest scaling for
the c-ray, md5sum and ray-rot benchmarks, due to their high
computation to communication ratios. For the c-ray kernel
there are two Pthreads versions. The base version divides
the horizontal picture bands evenly over the cores, while in
the dynamic version the lines of the picture are dynamically
distributed using an atomic counter. The dynamic distribution
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Fig. 5. Speedup results for all benchmarks. The results for the kernel, workload and application benchmarks are shown in different graphs.

improves performance, because not every line has the same
amount of work. This dynamic distribution is performed
automatically in OmpSs, and, therefore, the OmpSs version
performs better out-of-the-box.

The lowest scaling occurs in the rgbcmy kernel with a
maximum speedup of 7.0× and 10.8× for Pthreads and
OmpSs, respectively. Neither programming model manages
to achieve outstanding speedup for this kernel, because the
benchmarks is memory-bound and the duration of the parallel
phase is small. For similar reasons the scaling of the rotate,
kmeans, rot-cc, and streamcluster benchmarks saturates before
reaching 32 cores.

As described in Section II-B, an improved parallelization
strategy is used in bodytrack compared to its original imple-
mentation of PARSEC 2.1. The figures show that the improved
parallelization strategy is around two times more efficient,
with 16.8× compared to 8.2× at 32 cores, indicating the
importance of a balanced parallelization strategy. Furthermore,
it quantifies the benefits of the additional expressiveness of
OmpSs, since the improved parallelization strategy cannot be

expressed using OpenMP.

B. Head-to-Head

In Table IV the speedup of the OmpSs variant over the
Pthreads variant is shown for each benchmark and core count.
For benchmarks with multiple version the version shown
with a marker in Figures 5(a) to 5(f) are used. Overall five
benchmarks are faster with OmpSs and four with Pthreads.
The largest gains are observed with the c-ray, rgbcmy, and
ray-rot benchmarks. The largest loss is observed with h264dec
benchmark.

OmpSs performs better with the c-ray benchmark mainly
due to the dynamic load balancing, because the Pthreads
c-ray version with dynamic work distribution also achieves
similar scaling. The OmpSs version even achieves superlinear
speedups, which can be attributed to the automatic prefetching
of task inputs performed by the runtime system.

In the rgbcmy benchmark multiple iterations are performed
for run time stability, with a task/thread barrier separating each
iteration. The absolute time for one iteration, however, is short



Benchmark 1 8 16 24 32 Mean
c-ray 1.03 1.11 1.12 1.11 1.14 1.10
rotate 1.06 1.04 1.09 1.02 0.86 1.01

rgbcmy 1.02 0.98 1.14 1.40 1.53 1.19
md5 1.00 1.02 1.10 1.14 1.05 1.06

kmeans 0.91 0.87 1.30 0.95 0.88 0.97
ray-rot 1.02 1.10 1.65 1.46 1.20 1.27
rot-cc 1.00 1.06 1.17 1.14 1.04 1.08

streamcluster 0.93 0.84 0.91 0.99 0.99 0.93
bodytrack 0.98 0.99 1.05 0.97 1.00 1.00
h264dec 0.94 1.07 0.87 0.57 0.42 0.73

Mean 0.99 1.00 1.12 1.05 0.97 1.02

TABLE IV
SPEEDUP FACTORS AND GEOMETRIC MEANS OF OMPSS OVER PTHREADS

FOR EACH BENCHMARK AND CORE COUNT.

with less than 20ms on 16 cores. In this benchmark, the OmpSs
variant is able to scale better at higher core counts because it
employs a polling task barrier instead of the more expensive
blocking thread barrier.

In the ray-rot benchmark the output of the c-ray kernel
is the input of the rotate kernel. In the ray-rot benchmark
OmpSs performs better than Pthreads, because the runtime
task scheduler places depending tasks on the same core.
Scheduling tasks that have an input output relation back-to-
back on the same core improves cache locality. In the Pthreads
implementation the two kernels are separated by a barrier.
Interestingly, due to the locality advantage over Pthreads, the
gains of the combined ray-rot workload exceed the gains of
the individual c-ray and the rotate kernel.

The largest performance difference between Pthreads and
OmpSs occurs in the h264dec benchmark. Figures 5(e)
and 5(f) show that the performance results of the two are
similar up to 8 cores, but are drifting further apart at higher
core counts. In Section III-D we have shown that increasing
the task granularity is necessary to improve the overall per-
formance of OmpSs. By grouping the macroblock reconstruct
tasks, however, the parallelism is limited, which in turn limits
the performance at higher core counts. In the Pthreads version
of h264dec the synchronization is highly optimized using
a line decoding strategyand, therefore, grouping of tasks is
not necessary. Also overlapped reconstruction of consecutive
frames is less effective for OmpSs, due to increasing task
overhead with larger task windows.

Over the entire benchmark suite, OmpSs performs 2% better
compared to Pthreads. At 1 and 8 cores the performance
is very close, while at 16 and 24 cores OmpSs is slightly
faster. At 32 cores OmpSs is slightly slower mainly caused by
the lower performance in the h264dec benchmark. Thus, we
argue that performance wise OmpSs can compete with manual
threaded solutions in the embedded and consumer benchmarks
used in this paper.

To be a true alternative for manual threading, however,
OmpSs processes must be able to dynamically share resources
with other processes. Currently, OmpSs programs use a static
number of cores controlled by an environmental variable.
Furthermore, because the Nanos++ runtime implements core

communication in a polling fashion for performance reasons,
e.g. task barriers, all the used cores are always loaded fully
even if there is insufficient work which reduces overall system
responsiveness and power efficiency when too many cores are
used.

VI. RELATED WORK

A previous investigation of the programmability and per-
formance of OmpSs was performed by Duran et al. [11].
In their work, they present the Barcelona OpenMP Task
Suite (BOTS), consisting of several common HPC kernels, to
evaluate the tasking capabilities of OpenMP. OpenMP tasks,
however, lack the more intricate features of OmpSs such
as automatic dependency resolution while these features are
explicitly emphasized in our work. Additionally, Duran et al.
only use HPC applications for their study and a comparison of
OmpSs to other, more established programming models such
as Pthreads is missing.

Podobas et al. [26] evaluated and compared three task-
or function-based parallel programming models, OpenMP,
Cilk++, and a novel approach, Wool. In their study, detailed
performance analyses are performed, such as investigating the
costs of creating, spawning, and joining tasks, leading to an
overall performance analysis. The powerful OmpSs feature of
delayed task execution, however, is not supported by any of the
programming models used in their study and the applications
used are, in contrast to our work, a small set of widely known
HPC-like kernels such as FFT or Strassen. Information about
the programmability of either of the programming models is
not given.

An study conducted by Ravela [27] utilizes Intel TBB,
Pthreads, OpenMP, and Cilk++ to inquire into the performance
achieved with HPC benchmarks written using these models as
well as the development time required to create the respective
benchmark versions. While this approach attempts to objec-
tively compare the development time using person-hours, it
cannot deliver in-depth information on why development with
one programming model might have taken longer than with
another. In our work, we give key insights into several usability
metrics of programming models such as the toolchain quality
to make the development process as transparent as possible.

VII. CONCLUSIONS

In this paper, we have evaluated the applicability of
OpenMP Superscalar to embedded and consumer applications.
For this evaluation we have used ten benchmarks with different
complexities and sizes, covering important embedded and con-
sumer application domains. For comparability the benchmarks
have been implemented in both Pthreads and OmpSs and
exploit the same type of parallelism.

The case study of parallelizing H.264 decoding shows how
a more complex parallelization strategy can be expressed in
OmpSs, which captures the function-level as well as the nested
data-level parallelism. This cannot be achieved in other task
parallel programming models, such as the vanilla OpenMP
and Cilk++, as they do not allow tasks to be spawned before



they are ready to execute. The required dependency checking,
however, introduces too much overhead for fine-grained tasks
such as reconstructing a single macroblock to scale well. To
achieve good performance these fine-grained tasks have to be
coarsened to reduce the dependence checking overhead.

We also have commented on other usability aspects of
OmpSs, namely the compilation toolchain, ways for verifi-
cation and debugging, adaptability and portability, and source
code size. To compile OmpSs programs a compiler change
to the GCC compatible Mercurium source-to-source compiler
is required. The toolchain works for most programs out-of-
the-box, but is not yet production ready as it also serves as
the research platform for OmpSs. A debugging feature OmpSs
currently offers for debugging is automatic instrumentation to
generate execution traces. Furthermore, a graphical task-based
debugger is in development allowing manipulation of task
execution. Finally, compared to thread-based programming
models, OmpSs has a slight code size advantage.

From a performance perspective, over all ten benchmarks,
OmpSs delivers performance comparable to Pthreads. Due to
the built-in dynamic load balancing OmpSs is able to achieve
better performance than statically load balanced Pthreads
benchmarks while having a simpler implementation. The
Pthread H.264 decoder, however, is up to two times faster
at higher core counts because bundling tasks in OmpSs re-
duces the parallelism, which in turn limits the speedup at
higher core counts. In the bodytrack benchmark, due to the
higher expressiveness, OmpSs was able to use the improved
parallelization strategy introduced in this paper. Using the
improved parallelization strategy the performance of bodytrack
increased by more than twofold compared to the PARSEC
implementation.

Therefore, we argue that OmpSs is a potentially more viable
programming model than other less expressive task-based
parallel programming models for embedded and consumer
applications. Like many other parallel programming models,
however, a better integration with the operating system is
required to increase resource awareness and composability.
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