
Stefan Hauser, Nico Moser, Ben Juurlink

SynZEN
a hybrid TTA/VLIW architecture with a distributed register file

Conference object, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-5743.

Suggested Citation
Hauser, Stefan; Moser, Nico; Juurlink, Ben: SynZEN: a hybrid TTA/VLIW architecture with a distributed
register file. - In: NORCHIP 2012. - New York, NY [u.a.] : IEEE, 2012. - ISBN: 978-1-4673-2221-8. - pp.
1-4. - DOI: 10.1109/NORCHP.2012.6403142. (Postprint version is cited, page numbers differ.)

Terms of Use
© © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/80494021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tcpdf.org


SynZEN: A Hybrid TTA/VLIW Architecture with a
Distributed Register File

Stefan Hauser, Nico Moser, and Ben Juurlink
Embedded Systems Architecture

Technische Universität Berlin

Abstract—The quest for higher performance within a certain
power budget in the fields of embedded computing demands
unconventional architectural approaches. To this end, in this
paper we present synZEN (sZ): a (micro-)architecture that
combines features of very long instruction word (VLIW) and
transport triggered architectures (TTAs) to cover the needs of
different applications. SynZEN features a distributed register
file (RF) (i.e., each functional unit (FU) has its own RF) and
a wide memory connection to exploit spatial data locality. FPGA
synthesis results demonstrate that due to the distributed RF the
sZ design can be implemented in less area (in terms of FPGA
slices) than existing TTA and VLIW designs. Furthermore, using
two micro-benchmarks we show that because of the wide memory
connection, sZ outperforms both the TTA as well as the VLIW
design.

I. INTRODUCTION

We present a processor architecture, called synZEN (sZ),
which was initially designed as an application-specific proces-
sor. The design goals of this architecture are to utilize inherent
parallelism, provide flexibility, and to be scalable. Therefore
our architecture combines features of two well known archi-
tectural concepts. We combine the powerful VLIW FUs with
a flexible interconnection network (ICN) based on the TTA
concept.

This paper focuses on presenting the micro-architecture and
outlines other engineering aspects necessary to understand
the architecture. Furthermore, we compare our approach to
a VLIW architecture and a TTA implementation. The main
contributions of this paper can be summarized as follows:
• We present an architecture which has the potential of

extracting high inherent instruction level parallelism (ILP)
of applications. Due to the very good architecture scalability
the extractable ILP scales too.

• sZ features a wide memory interface to the data memory,
which allows parallel access to consecutively stored data
which supports the parallelism of the architecture.

• With the distributed RF we significantly increase the scala-
bility and decrease the overall costs while avoiding reducing
the number of registers each FU has access to.

• We evaluate this hybrid architecture by comparing its per-
formance and cost to similar architectures. It is shown
that the combination of architectural features of different
architectures result in higher performance as well as in
lower resource consumption. We also show that the resource
consumption of our local registers increases only linearly
with the increasing number of FUs in contrast to the quickly
increasing cost of architectures with a central RF.

This paper is organized as follows. In the next section we
briefly review work related to our architecture. In Section III
we present the details of our hybrid architecture. After that, in
Section IV, experimental results are provided, which show the
capabilities of this architecture. Finally, Section V summarizes
and highlights the contributions of this work and presents our
final conclusions.

II. RELATED WORK

One major drawback of the VLIW architecture are the
hardware costs for the necessary multiport RF. The most
common solution to avoid these costs is using clustered
RFs [1] where each of these clustered RFs serves more than
one FU. Some approaches go even further and distribute the
control path also, such as [2]. This leads to a more difficult
branch handling. In contrast, in our approach there are no
clustered RFs, but the RF is distributed among the different
FUs and therefore scalable. Ongoing academic research takes
place in the %-VEX project, which is based on the VEX
compiler toolchain. After an initial parametrizable soft core
implementation [3], further research aims to enhance the
architecture. A promising approach by using FPGA specific
features to solve the multiport RF challenge is shown in [4].
This work also shows a way to use resource sharing in
multiprocessor settings, where control logic supports the use
of functional logic in different data paths [5]. Compared to our
architecture, the biggest bottlenecks are the restricted memory
interface and the central RF.

Current work on TTA uses the inherent streaming qualities
to realise TTA-based processors for GPU applications [6].
Caused by TTA origin this processor lacks data locality and
self-scaling local memory capabilities. In [7] an architecture
with distributed RFs is shown where the read access is
exclusive to assigned FUs. Compared to sZ this approach has
an ICN in common but has upstreamed RFs which causes data
duplication.

III. SYNZEN ARCHITECTURE

Our approach combines the advantages of VLIW architec-
tures, TTAs, and a distributed RF. Therefore we equip each
FU with a local small RF, and we call the combination a
processing unit (PU). This extends our approach to more ap-
plication domains, by overcoming some limitations of existing
solutions. Namely we intend more complex functionality for
our PUs compared to TTA FUs and we utilize a distributed



A
B
C
D
E
F
G
H

LSU
#0

JMP
#1

Ctrl
co

co

to

ALU
#2

co

ALU
#3

co

M/A
#4

co

M/A
#5

co

(a) The sZ-% instance, with LSU, ALU, and M/A

lir rir or

acc
lnk

volatile

Functional Unit Interface

32 32

32

(b) The sZ PU including functional unit and interface

Fig. 1. Architectural details of (a) a sZ instance and (b) a PU

RF. Additionally, we propose a proper memory connection to
provide sufficient data bandwidth and to utilize as many of our
PUs as possible. In this section we describe the sZ architecture
in detail.

A. Hybrid

Our sZ architecture contains multiple PUs. These units are
connected to each other by an ICN. So far this follows the clas-
sical TTA concept, as it was proposed in [8]. In a conventional
TTA, however, the number of operations that can be performed
by each unit is very limited. The operation to be executed is
defined by a part of the address, since a TTA supports only
transport operations. Therefore each unit has several addresses,
and depending on the address the unit performs a different
operation. This concept, called virtual addresses, is similar to
submitting an operation code to the designated unit itself over
the network. Consequently, it requires additional hardware in
terms of wiring fabric. In our design, which is exemplarily
depicted in Fig. 1a, we separate the operations for the unit
from the network operations. Accordingly, we have two kinds
of operations: (1) transport operations (TOs) to route the data
flow (2) control operations (COs) to select the instructions to
be performed by the PUs and address the register file within
the PUs. Besides the reduction of hardware complexity, we
also increase the instruction code density.

The number of PUs as well as their functionalities can
be configured according to the requirements of the target
application. The network is also freely configurable, so it can
be adapted to the communication structure of the application.
As shown in [9], a reduced network will also decrease the
hardware costs significantly. Nevertheless, it is essential to
access a sufficient amount of data to achieve an (almost) full
utilization of the PUs. To avoid communication over the ICN
several mechanisms are presented in [9]. These mechanisms
are based on program analysis. For example, if an operand
is used several times consecutively by the same unit, it can
be kept at the unit in an input register. This avoids again
transportation over the network. Furthermore, a PU can behave
like a 1-address machine, which means that only one operand
has to be delivered over the ICN. The second operand is stored
in an accumulator register, which is part of the local RF. In
addition, if an operand from another unit is required very
often, a link between both units can be established, thereby
again avoiding communication over the ICN. These modes can

be applied to both input operands. Hence, an unit can also
perform without data from the ICN. These modes distinguish
our approach from the conventional TTA.

B. Distributed Register File

It is well-known that the RF cost increases dramatically with
the number of ports [7]. One solution to overcome this is to use
a clustered architecture [10]. Even in one cluster instance of
clustered VLIW architectures, such as the %-VEX architecture,
a non-negligible number of ports is required. Especially for
FPGA-specific designs a huge number of ports is difficult to
implement, as FPGAs provide only dual-ported block RAMs
(BRAMs). A larger number of ports can be realized by using
additional logic cells.

For sZ we propose a distributed RF. Each PU has a local
RF of 16 registers. Hence, the number of registers scales with
the number of units. Each output of a PU is connected to one
local dual-ported RF, as depicted in Fig. 1b. The output port of
the RF is connected to the ICN. Parts of the control operation
specify which register is written and which register content is
forwarded to the ICN.

We compare two %-VEX RF configurations with our sZ
distributed configuration in Fig. 2. The figure depicts the hard-
ware costs in terms of FPGA slices (scaled logarithmically),
for a Xilinx Virtex 5 LXT 110 FPGA, for an increasing
number of FUs respectively PUs. Increasing the number of
units increases the number of registers and only for the %-
VEX the number of ports. The unit itself is not taken into
account. To achieve comparable results we block the utilization

1 2 3 4 5 6 7 8

101

103

105

No. of units

FP
G

A
sl

ic
es

sZ (16 regs./FU) ρ-VEX(64 regs.) ρ-VEX (16 regs./FU)

Fig. 2. Resource utilization using FPGA slices (Xilinx Virtex 5 LXT 110
FPGA) of a) the sZ RF, b) the %-VEX RF for different issues with 64 registers,
and c) the %-VEX-RF for different number of units and 16 registers per unit



of BRAMs. However, this only affects the case of one unit,
because of the low number of ports. We evaluate three different
configurations: the first bar represents our distributed sZ RF,
the second bar represents the %-VEX RF with a fixed number
of 64 registers, as it was specified by the original design. The
resource consumption of a centralized RF, where the number
of registers scales with the number of FUs, is visualized by
the third bar.

The figure shows that the resource consumption of both
%-VEX RF configurations (second and third bar in Fig. 2)
increases drastically with the number of ports, because per
unit one write and two read ports are required. Especially the
gap between one and two units is immense, because of the
limitations of FPGAs. Furthermore slice consumption for the
%-VEX version with 16 registers per FU increases significantly
if we apply more than four units. It is important, however, to
increase the number of registers with the number of FUs. By
doing so register allocation becomes more efficient, simpler,
and spill code can be avoided.

With our sZ architecture hardware cost is significantly
reduced with the same number of registers, as shown by the
first bar in Fig. 2. Of course, there is less connectivity, because
not every unit is able to write directly into each register but
sophisticated scheduling mechanisms, such as [7], are able to
solve this problem.

C. Memory Connection

Another challenge of such an architecture is to provide
sufficient memory bandwidth to keep all PUs busy. The TTA-
based Co-design Environment (TCE) approach [11] allows
connecting several load store units (LSUs), but the system is
limited to two LSUs and each LSU requires new hardware re-
sources and a memory connection, which results in more ports.
Our approach uses only one LSU, which can be connected to a
DDR RAM. This unit caches the data from the main memory,
and it provides one complete cache line to the ICN. Thus
several data words can be accessed at once. This approach
is inspired by the spatial locality principle, which states that
data required for consecutive operations are stored in close
proximity in memory. Providing a whole cache line at once
especially suits applications that exhibit data level parallelism
(DLP).

IV. RESULTS

Though our architecture is application-specific, the focus
is on one specific instance for the scope of this paper.
Therefore we created an instance, depicted in Fig. 1a, which is
comparable to the existing, publicly available implementation
of %-VEX [3]. This instance, called sZ-%, contains four PUs.
All PUs support arithmetic and logical operations. Two of
them also support multiplications, indicated by M/A. An LSU
has been added to load data from an external memory. In
sZ normally this unit behaves as a cache. To make a fair
comparison and since this feature is not supported by the other
considered architectures, we simulate the cache behavior with

Name #RF #reg #FU #LSU

sZ-% 4 64 4 1
%VEX 1 64 4 1
TCE 4 32 4 1/2

Fig. 3. Characteristics of the architectures

no delay. The LSU nevertheless reads one cache line, in this
case four times 32 bits, at once, as described in Section III-C.

For the comparison to a TTA implementation we employed
the TCE [11]. This framework allows to configure an instance
by defining the number of FUs and the functionality of each
FU. We applied a design similar to our sZ-% instance. Four
FUs with similar functionality plus four centralized RFs with
32 registers in total are included. More registers are not
required, because the existing ones are not fully utilized.
Furthermore, the framework does not allow synthesizing a
larger RF. Two other realizations are analyzed by increasing
the number of LSUs. This allows a better comparison to the
sZ implementation, since the latter employs a wider memory
connection, as has been described above.

Furthermore, we assured that our sZ architecture provides
the same functionality as the %-VEX architecture. Therefore a
fully connected ICN is used. Otherwise, not every unit could
access all registers, as is needed for the %-VEX architecture.
Fig. 3 shows that the different architectures are configured in
a comparable way.

A. Resource Consumption

We synthesized our design, the %-VEX implementation, and
the two TTA-configurations for a Xilinx Virtex 5 LXT 110
FPGA. All designs are able to operate at a clock frequency of
up to 80 MHz. The occupied slices after place and route for
memory and logic are depicted in Fig. 4.

It can be seen that the TTA and our sZ-% require signif-
icantly fewer resources than the %-VEX. This is due to a
smaller control path and simpler FUs. The simplified control
logic results mainly from the lack of finite state machines,
which are required for the multicycle implementation of the %-
VEX. The impression that our design requires less memory is
not correct, since the dual-ported memories of our design can
be mapped to existing blocks. So the memory consumption
of the sZ is comparable to the TTA realization. Due to our

(i) (ii) (iii) (iv)
0

2,000

4,000

Sl
ic

es

Logic
Memory

(i) %-VEX
(ii) TCE 1 LSU

(iii) TCE 2 LSU
(iv) sZ

Fig. 4. Slice consumption



4 8 12 16 20 24 28 32
0

1

2

3

4
·105

(a)matrix multiplication

C
yc

le
s

%-VEX/6
TCE 1 LSU
TCE 2 LSU

synZEN

45
0

50

100

150

200

(b)Fib
Fig. 5. Performance evaluation

distributed design, however, definitely less resources for logic
are required.

B. Performance

To compare sZ-% to the other two architectures, applications
which run on all architectures are needed. Furthermore, due
to the lack of a suitable compiler for our architecture, we
are currently limited to simple applications, and therefore we
employ Fibonacci numbers and matrix multiplication as test-
kernels.

For the TTAs the tcecc-compiler of the TCE [11] is utilized.
The %-VEX test code was first created by VEX compiler
toolchain [12], but it was discovered that the performance
results were poor. Hence, a hand-optimized assembler version
is used. For the sZ-% architecture, hand-optimizations were
necessary, too.

Since the available %-VEX architecture is a multicycle
implementation, it is difficult to perform a fair comparison.
But %-VEX can also be implemented in a pipelined way.
To overcome this we assume an ideal pipeline, which means
that there are no stall cycles at all and that the pipeline is
always completely filled. To approximate this we divided the
number of cycles for the %-VEX by 6, as in the multicycle
implementation each instruction requires 6 cycles. The results
for matrix-multiplication are depicted in Fig. 5a. The perfor-
mance gap between our architecture and the TTA is due to
the distributed RF and the wide memory connection. For non-
streaming applications the centralized RF in the TTA approach
has significant disadvantages. By adding a second LSU a
wider memory connection can also be realized for the TTA
architecture. This reduces the number of cycles for n < 16,
but for n ≥ 16 the compiler cannot utilize this additional LSU
in a noticeable fashion.

The %-VEX architecture performs better than the TTA, since
this architecture is more suited to this kind of applications. The
reason for this is, that the second matrix cannot be loaded
consecutively. Therefore a lot of results must be stored. For a
TTA this means additionally transportations: First to the RF
and second later to the next unit. The performance is lower,
however than our sZ approach. The reason for this is the
limited memory bandwidth. In this architecture only one load
operation per cycle is possible.

The 45th Fibonacci number is computed by the second
benchmark. Fig. 5b shows the results. On this benchmark the
TCE design performs better than the %-VEX architecture, be-
cause the application is more suited to data flow architectures.
However, the central RF is the limiting factor; therefore the
sZ architecture achieves the best results.

V. CONCLUSIONS

In this paper we have presented a hybrid architecture, which
combines VLIW and TTA features. In addition, we have
applied a distributed RF and a wide memory connection.
Furthermore, we have evaluated our architecture in terms of
resource consumption and performance.

We have demonstrated that our approach is competitive. Due
to adaptable PUs and simple control logic, our design con-
sumes fewer resources than the other considered approaches.
Even increasing the number of registers, with the number of
units, is possible. Furthermore the down streamed RF allows
to interrupt the dataflow with less overhead. So results can be
stored directly in the output RF of the computing unit and later
they can be transported further. This makes our design suitable
for several application domains in contrast to a classical TTA
approach. Beyond that, it simplifies the instruction scheduling
and helps to avoid spill code.

Furthermore, we achieve a remarkable performance through
the different features of our architecture described in this
paper. Especially if we consider the low resource requirements,
which makes it feasible to create an instance with more units
or to combine several instances within one FPGA.

In future work we intend to evaluate the power consumption
of the sZ architecture. Furthermore, we aim at integrating sZ
as an ILP accelerator in a heterogeneous multicore architec-
ture. In addition, we are currently working on improving the
toolchain and especially the compiler, as well as evaluating
the performance of sZ on complete applications.

REFERENCES

[1] R. Simar et. al., “How TI adopted VLIW in digital signal processors,”
Solid-State Circuits Magazine, IEEE, vol. 1, no. 3, pp. 10–14, 2009.

[2] H. Zhong et. al., “A distributed control path architecture for VLIW pro-
cessors,” in Parallel Architectures and Compilation Techniques, PACT.,
Sept. 2005, pp. 197–206.

[3] S. Wong et. al., “rho-VEX: A reconfigurable and extensible softcore
VLIW processor,” in ICECE Technology. FPT., Dec 2008, pp. 369–372.

[4] F. Anjam et. al., “A multiported register file with register renaming
for configurable softcore VLIW processors,” in Field-Programmable
Technology (FPT), Dec 2010, pp. 403–408.

[5] F. Anjam et. al., “A shared reconfigurable VLIW multiprocessor sys-
tem,” in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), Apr 2010, pp. 1–8.

[6] C. S. de La Lama et. al., “Programmable and Scalable Architecture for
Graphics Processing Units,” Transactions on HiPEAC, vol. 5, 2010.

[7] P. Mattson et. al., “Communication Scheduling,” SIGARCH Comput.
Archit. News, vol. 28, no. 5, pp. 82–92, Nov 2000.

[8] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, 1997.

[9] N. Moser et. al., “A Hybrid Transport/Control Operation Triggered
Architecture,” in Workshop on Parallel Systems and Algorithms ARCS,
Feb 2010, pp. 121–125.

[10] J. A. Fisher et. al., Embedded Computing. A VLIW Approach to
Architecture, Compilers and Tools. Morgan Kaufmann, 2005.

[11] TCE, “TTA-based Co-design environment. http://tce.cs.tut.fi/” 2012.
[12] HP Lab, “VEX Toolchain. http://www.hpl.hp.com/downloads/vex/” 2012


	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. SYNZEN ARCHITECTURE
	A. Hybrid
	B. Distributed Register File
	C. Memory Connection
	IV. RESULTS
	A. Resource Consumption
	B. Performance
	V. CONCLUSIONS
	REFERENCES

