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ON THE NAVIER–STOKES SYSTEM WITH THE COULOMB FRICTION

LAW BOUNDARY CONDITION

LOREDANA BĂLILESCU§,∗, JORGE SAN MARTÍN‡, AND TAKÉO TAKAHASHI†

Abstract. We propose a new model for the motion of a viscous incompressible fluid. More
precisely, we consider the Navier–Stokes system with a boundary condition governed by the
Coulomb friction law. With this boundary condition, the fluid can slip on the boundary
if the tangential component of the stress tensor is too large. We prove the existence and
uniqueness of weak solution in the two–dimensional problem and the existence of at least
one solution in the three–dimensional case, together with regularity properties and an energy
estimate. We also propose a fully discrete scheme of our problem using the characteristic
method and we present numerical simulations in two physical examples.

1. Introduction

In this paper, we analyze the existence and uniqueness of solutions for the Navier–Stokes
system when the boundary condition is governed by the Coulomb friction law. We recall that
the classical results of existence and uniqueness of solutions for the Navier–Stokes system
with Dirichlet or Neumann boundary conditions can be found in the literature in many
publications, as for instance [9, 17, 10]. In previous works [2, 15] and references therein,
these results have been extended to the case of solid–fluid interactions. In [15], the authors
have obtained a non–intuitive result, which asserts that two rigid solids can’t collide if they
are surrounded by a viscous incompressible fluid. In that result, a key ingredient is the non–
slip boundary condition. In order to get a more realistic model for this situations, the authors
in [4] studied the model with the so–called Navier boundary condition and after that, in [5]
they proved that with this boundary condition, the solid can collide with the boundary. In
our paper, we propose to study the existence of weak solutions for the Navier–Stokes system
when we impose the Coulomb friction law as a boundary condition. This boundary condition
seems to be more natural since, for small tangential stresses, it gives the non–slip boundary
condition and after a certain threshold the fluid can slip at the boundary.

In order to write this new boundary condition we use the technique of subdifferential. In
Section 2 we describe the model using this technique and we state the main result of the
paper. Section 3 is devoted to prove the main result. Finally, in Section 4 we propose a
numerical scheme and we present simulations in order to show the influence of this boundary
condition on two physical situations: an abrupt contraction and the vortices after a cylindrical
obstacle.
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2. Model Description and Main Result

We consider a viscous incompressible fluid that occupies an open bounded domain Ω ⊂ R
d,

with d = 2 or d = 3, where the boundary of Ω is locally Lipschitz. The Eulerian velocity
field u and the pressure field p of the fluid satisfy the following Navier–Stokes system:

∂u

∂t
+ (u · ∇)u− div σ(u, p) = 0 in Ω,(1)

divu = 0 in Ω,(2)

where σ denotes the stress tensor field. Using the classical notation D(u) = 1
2

(

(∇u) + (∇u)T
)

,
σ is defined by

(3) σ(u, p) = 2µD(u)− pId,

with Id the identity matrix in Md(R) and µ > 0 the dynamic viscosity of the fluid, which is
supposed to be a constant.

In order to describe the boundary conditions considered in this paper, we introduce some
additional notation. If we denote by n := n(x) the exterior unit normal of ∂Ω, we can
decompose any vector a ∈ R

d as follows:

(4) a = (a · n)n+
(

a− (a · n)n
)

.

Each component of this decomposition is denoted by an, respectively aτ . That is,

(5) an := (a · n)n, aτ := a− (a · n)n and a = an + aτ .

Using this notation, we are now able to describe the Coulomb friction law. The velocity field
u and the normal stress tensor σ(u, p)n on the boundary ∂Ω are decomposed in accordance
with (5). We first impose that the normal component of the fluid velocity un is equal to
0. Secondly, for the tangential components, we assume that there exists a physical constant
g > 0 such that if |(σ(u, p)n)τ | < g then uτ = 0 and if |(σ(u, p)n)τ | = g then uτ has the same
direction and sense with −(σ(u, p)n)τ . This boundary condition is known in the literature
as the Coulomb friction law (or dry friction law). We now use the classical convex theory
applied to mechanics and physics (see for instance [3, 7]), in order to show that this boundary
condition can be written as follows

un = 0 on ∂Ω,(6)

−uτ ∈ ∂IB(0,g)((σ(u, p)n)τ ) on ∂Ω,(7)

where IB(0,g) denotes the indicator function of closed convex ball B(0, g) and is defined by

(8)
IB(0,g) : R

d → R ∪ {+∞}

x 7→ IB(0,g)(x) =

{

0 if |x| ≤ g,
+∞ if |x| > g.

Moreover, ∂IB(0,g)(x0) denotes the set of all subgradients at x0 of function IB(0,g), which is
defined by

(9) y ∈ ∂IB(0,g)(x0) ⇐⇒ IB(0,g)(x0) + y · (x− x0) ≤ IB(0,g)(x) ∀x ∈ R
d.

In order to rewrite the condition (7), we first note that definition (9) could be written as
follows

(10) y ∈ ∂IB(0,g)(x0) ⇐⇒ IB(0,g)(x0) + y · (x− x0) ≤ 0 ∀x ∈ B(0, g).

Using relation (10) we deduce that if x0 6∈ B(0, g), then ∂IB(0,g)(x0) is the empty set. For
x0 ∈ Int B(0, g), we have y = 0. Finally, for any x0 such that |x0| = g, we get that y belongs
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to the normal cone of B(0, g) in x0, then there exists α ≥ 0 such that y = αx0. Due to
the above remarks, we deduce that the boundary condition (7) is equivalent to the following
relations

(11) |(σ(u, p)n)τ | ≤ g

and

(12) uτ =

{

0 if |(σ(u, p)n)τ | < g,

−α(σ(u, p)n)τ if |(σ(u, p)n)τ | = g, where α ≥ 0.

Thus, relations (11)–(12) are exactly the classical expressions of the Coulomb friction law
described above.

Let us now use again results of convex analysis in order to transform the condition (7)
into a global inequality. We begin by recalling that, since IB(0,g) is a lower semi–continuous
function, then (7) is equivalent to

(13) − (σ(u, p)n)τ ∈ ∂I∗B(0,g)(uτ ),

where I∗B(0,g) represents the conjugate function of IB(0,g) with respect to the inner product in
R

d, which is defined by

(14) I∗B(0,g)(y) = sup
x∈Rd

{

y · x− IB(0,g)(x)
}

∀y ∈ R
d.

Simple computation yields to

(15) I∗B(0,g)(y) = sup
x∈B(0,g)

y · x = sup
x∈B(0,1)

gy · x = g|y| ∀y ∈ R
d.

Due to these relations, the boundary condition (7) can be written as follows

(16) (σ(u, p)n)τ · y ≥ g|uτ | − g|uτ + y| ∀y ∈ R
d.

We can now rewrite the complete system that we are interested in considering also the
corresponding initial data. Precisely,

∂u

∂t
+ (u · ∇)u− div σ(u, p) = 0 in Ω,(17)

divu = 0 in Ω,(18)

un = 0 on ∂Ω,(19)

(σ(u, p)n)τ · y ≥ g|uτ | − g|uτ + y| on ∂Ω, ∀y ∈ R
d,(20)

u(x, 0) = u0(x) ∀x ∈ Ω.(21)

Let us introduce the weak formulation of system (17)–(21). To this end, we consider the
following Hilbert spaces:

H = {v ∈ L2(Ω)d : div v = 0, vn = 0 on ∂Ω},

V = {v ∈ H1(Ω)d : div v = 0, vn = 0 on ∂Ω},

where L2(Ω) and H1(Ω) are the classical Lebesgue and Sobolev spaces defined in [1, Chapters
4 and 9]. Let us denote by V ′ the dual space of V with respect to H .

For any v ∈ V , we multiply equation (17) by v, we integrate by parts and we use the
definition (3) to get

(22)
∫

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx+ 2µ

∫

Ω

D(u) : D(v) dx =

∫

∂Ω

σ(u, p)n · v dΓ.
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Since vn = 0, using decomposition (5), we have

(23)
∫

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx+ 2µ

∫

Ω

D(u) : D(v) dx =

∫

∂Ω

(σ(u, p)n)τ · v dΓ.

Using inequality (20) and the fact that un = 0, we get

(24)
∫

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx+ 2µ

∫

Ω

D(u) : D(v) dx ≥

∫

∂Ω

(g|u| − g|u+ v|) dΓ,

that is

(25)
∫

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx+ a(u,v) + J(u+ v)− J(u) ≥ 0,

where we use the following notation:

a(u,v) = 2µ

∫

Ω

D(u) : D(v) dx,(26)

J(v) =

∫

∂Ω

g|v| dΓ.(27)

We remark that relation (25) will be used as a first step to construct a numerical scheme
(see Section 4 below).

Additionally, using the properties un = 0 and divu = 0, we deduce that

(28)
∫

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx =
d

dt

∫

Ω

u · v dx−

∫

Ω

(

u ·
∂v

∂t
+ [(u · ∇)v] · u

)

dx.

Thus, replacing (28) in (24), integrating in time and taking v(T ) = 0, the weak formulation
writes as follows:

(29) −

∫

Ω

u0(x) · v(0,x) dx−

∫

(0,T )×Ω

(

u ·
∂v

∂t
+ [(u · ∇)v] · u

)

dx dt

+

∫ T

0

a(u,v) dt+

∫ T

0

J(u+ v) dt−

∫ T

0

J(u) dt ≥ 0.

Definition 2.1. A weak solution u of the Navier–Stokes system with the Coulomb friction

law (17)–(21) is a function

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

such that (29) holds true for all v ∈ C 1
c ([0, T );V ).

We are now able to state our main result:

Theorem 2.2. If u0 ∈ H, then there exists at least one weak solution of the Navier–Stokes

system with the Coulomb friction law (17)–(21). Moreover, we have the following properties

∂u

∂t
∈ L2(0, T ;V ′) if d = 2,(30)

∂u

∂t
∈ L4/3(0, T ;V ′) if d = 3,(31)

and for almost every t ∈ [0, T ], we have

(32)
1

2
‖u(t)‖2L2(Ω)d +

∫ t

0

a(u,u) ds+

∫ t

0

J(u) ds ≤
1

2
‖u(0)‖2L2(Ω)d .
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Additionally, if d = 2, we have in particular that the solution is unique and that

(33) u ∈ C
0([0, T ];H).

Remark 2.3. It is easy to prove that if uD is a regular solution of the Navier–Stokes system

with homogeneous Dirichlet boundary condition, then it satisfies the following well–known

variational equation:

(34) −

∫

Ω

u0(x) · v(0,x) dx−

∫

(0,T )×Ω

(

uD ·
∂v

∂t
+ [(uD · ∇)v] · uD

)

dx dt

+

∫ T

0

a(uD,v) dt−

∫

(0,T )×∂Ω

(σ(uD, pD)n)τ · v dΓ dt = 0,

for all v ∈ C 1
c ([0, T );V ). Then, if we compute the left hand side of (29), we get

(35)
∫

(0,T )×∂Ω

(

g|v|+ (σ(uD, pD)n)τ · v
)

dΓ dt,

from where we conclude that uD is a solution of (29) if and only if |σ(uD, pD)n)τ | ≤ g.

3. Proof of main result

For any ε > 0 and m ∈ N
∗, we introduce a (ε,m)–regularized problem of (29) as follows:

we begin by defining

(36) Jε(v) =

∫

∂Ω

gjε(v) dΓ,

where jε(x) is a C 1 convex regularized version of |x| satisfying the following properties:

jε(0) = 0,(37)

∇jε(x) · x ≥ 0 ∀x ∈ R
d,(38)

|∇jε(x)| ≤ 1 ∀x ∈ R
d,(39)

|jε(x)− |x|| ≤ ε ∀x ∈ R
d.(40)

We then use the Galerkin method. To this end, let us consider an orthonormal basis (vj) of H
such that vj ∈ V and we denote by Vm = Span{v1, . . . ,vm}. Then, we find the approximate
solution of (29) as the function

uε,m(t,x) =
m
∑

j=1

ϕj(t)vj(x) with ϕj ∈ C
1(0, T ),

satisfying the following equation:

(41)
∫

Ω

∂uε,m

∂t
· v dx−

∫

Ω

[(uε,m · ∇)v] · uε,m dx+ a(uε,m,v) +

∫

∂Ω

g∇jε(uε,m) · v dΓ = 0,

for any v ∈ Vm, with the initial condition uε,m(0, ·) being the orthogonal projection of u0 onto
Vm. We remark that in order to write (41) we have considered an approximation of inequality
(25), where |u| has been approximated by the function jε(u). Since this function is convex
and differentiable, the variational inequality becomes a variational equation by using ∇jε.
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By taking the test function vi, relation (41) can be written as

(42) ϕ′
i(t)−

m
∑

j,k=1

[

∫

Ω

[(vj · ∇)vi] · vk dx
]

ϕjϕk +
m
∑

j=1

a(vj ,vi)
]

ϕj

+

∫

∂Ω

g∇jε

( m
∑

j=1

ϕj(t)vj(x)
)

· vi dΓ = 0,

for all i = 1, . . . , m and ϕi(0) =

∫

Ω

u0 · vi dx.

We note that equation (42) is of the form

ϕ′ = F (ϕ), ϕ(0) = ϕ0 ∈ R
m,

with F a Lipschitz continuous function (since ε > 0). Thus, using the Cauchy–Lipschitz
theorem, we deduce the existence of a and then of uε,m which is a local solution of (41) for
any v ∈ Vm. Moreover, multiplying each equation of (42) by ϕi and summing from i = 1 to
m, we deduce

(43)
1

2

d

dt
‖uε,m‖

2
L2(Ω)d + a(uε,m,uε,m) +

∫

∂Ω

g∇jε(uε,m) · uε,mdΓ = 0.

This shows, due to (38), that uε,m is a global solution of (41) in [0, T ]. Consequently, the
sequence (uε,m)ε,m is bounded in

(44) C ([0, T ], H) and L∞(0, T ;H) ∩ L2(0, T ;V ).

Moreover, using equation (41), we deduce that
∥

∥

∥

∂uε,m

∂t
(t)

∥

∥

∥

V ′

≤ C
(

‖uε,m(t)‖
2
L4(Ω) + ‖uε,m(t)‖V + 1

)

.

Then, using the classical Sobolev injections depending on the space dimension d (see for
instance [10, pp. 72–74]), we obtain that

∥

∥

∥

∂uε,m

∂t
(t)

∥

∥

∥

V ′

≤ C (‖uε,m(t)‖H‖uε,m(t)‖V + ‖uε,m(t)‖V + 1) if d = 2,(45)
∥

∥

∥

∂uε,m

∂t
(t)

∥

∥

∥

V ′

≤ C
(

‖uε,m(t)‖
1/2
H ‖uε,m(t)‖

3/2
V + ‖uε,m(t)‖V + 1

)

if d = 3.(46)

From the above estimates and from the regularities (44) of uε,m, we also deduce that the

sequence
(

∂uε,m

∂t

)

ε,m
is bounded in

L2(0, T ;V ′) if d = 2,(47)

L4/3(0, T ;V ′) if d = 3.(48)

Consequently, taking ε = 1
m

, and passing to the limit as m → ∞, we get that, up to a
subsequence,

uε,m ⇀ u weakly* in L∞(0, T ;H) ∩ L2(0, T ;V ),(49)
∂uε,m

∂t
⇀

∂u

∂t
weakly in L2(0, T ;V ′) if d = 2,(50)

∂uε,m

∂t
⇀

∂u

∂t
weakly in L4/3(0, T ;V ′) if d = 3.(51)
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In order to pass to the limit in the nonlinear terms, we use the compactness result stated
in Theorem 2.1 from [17, pp. 271]. To this end, we define the space V η as follows

V η = {v ∈ Hη(Ω)d : div v = 0, vn = 0 on ∂Ω},

with Hη(Ω) the classical interpolated Sobolev space (for its definition see, for instance, [11,
Chapter 9]. Since, for any η ∈ (0, 1), V ⊂ V η ⊂ H , where the first injection is compact (see
[11, Theorem 16.1]) then, from Theorem 2.1 in [17, pp. 271], we obtain that

(52) uε,m → u strongly in L2(0, T ;V η),

and, in particular, for η > 1/2, we deduce that

(53) uε,m → u strongly in L2(0, T ;L2(∂Ω)).

In order to pass to the limit, we begin by rewriting (41), for any v ∈ C 1
c ([0, T );Vm) and

integrating over [0, T ]. We have

(54) −

∫

Ω

u0
ε,m(x) · v(0,x) dx−

∫

(0,T )×Ω

(

uε,m ·
∂v

∂t
+ [(uε,m · ∇)v] · uε,m

)

dx dt

+

∫ T

0

a(uε,m,v) dt+

∫

(0,T )×∂Ω

g∇jε(uε,m) · v dΓ dt = 0.

Since jε is a convex function, we have

(55) ∇jε(uε,m) · (v + uε,m − uε,m) ≤ jε(v + uε,m)− jε(uε,m).

Using the above inequality in (54), it implies that for any v ∈ C 1
c ([0, T );Vm),

(56) −

∫

Ω

u0
ε,m(x) · v(0,x) dx−

∫

(0,T )×Ω

(

uε,m ·
∂v

∂t
+ [(uε,m · ∇)v] · uε,m

)

dx dt

+

∫ T

0

a(uε,m,v) dt+

∫ T

0

Jε(v + uε,m) dt−

∫ T

0

Jε(uε,m) dt ≥ 0.

Let fix v ∈ C 1
c ([0, T );Vm0

) and let pass to the limit in (56). From the weak convergence (49),
it follows that we can pass to the limit in all linear terms. Moreover, using the compactness
properties (52)–(53) and property (40), we can also pass to the limit in the nonlinear terms
and thus we get

(57) −

∫

Ω

u0(x) · v(0,x) dx−

∫

(0,T )×Ω

(

u ·
∂v

∂t
+ [(u · ∇)v] · u

)

dx dt

+

∫ T

0

a(u,v) dt+

∫ T

0

J(v + u) dt−

∫ T

0

J(u) dt ≥ 0,

for any v ∈ C 1
c ([0, T );Vm0

).
For any v ∈ C 1

c ([0, T );V ), we denote by Pmv the orthogonal projection of v on Vm with
respect to the inner product on V . We use Pmv as the test function in (57) and we get

(58) −

∫

Ω

u0(x) · Pmv(0,x) dx−

∫

(0,T )×Ω

(

u ·
∂Pmv

∂t
+ [(u · ∇)Pmv] · u

)

dx dt

+

∫ T

0

a(u, Pmv) dt+

∫ T

0

J(Pmv + u) dt−

∫ T

0

J(u) dt ≥ 0.

Therefore, using the strong convergence of Pmv to v in C 1([0, T ];V ), we can pass to the
limit as m → ∞ in all terms of (58) and we get the inequality (29) for all v ∈ C 1

c ([0, T );V ).
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Therefore, we have proved the existence of a weak solution of the Navier–Stokes system with
the Coulomb friction law stated in Theorem 2.2.

Let us now prove the inequality (32). To this end, we integrate (43) in [0, t] and we get

(59)
1

2
‖uε,m(t)‖

2
L2(Ω)d −

1

2
‖uε,m(0)‖

2
L2(Ω)d +

∫ t

0

a(uε,m,uε,m) ds

+

∫ t

0

∫

∂Ω

g∇jε(uε,m) · uε,m dΓ ds = 0.

Since jε is a convex function, we have jε(0) ≥ jε(uε,m) + ∇jε(uε,m) · (0 − uε,m) and using
(37), we can write

(60)
1

2
‖uε,m(t)‖

2
L2(Ω)d −

1

2
‖uε,m(0)‖

2
L2(Ω)d +

∫ t

0

a(uε,m,uε,m) ds+

∫ t

0

Jε(uε,m) ds ≤ 0.

We multiply this equality by φ(t), where φ ∈ D((0, T )), φ(t) ≥ 0, and we integrate in time
to get
(61)
∫ T

0

φ(t)

{

1

2
‖uε,m(t)‖

2
L2(Ω)d −

1

2
‖uε,m(0)‖

2
L2(Ω)d +

∫ t

0

a(uε,m,uε,m) ds+

∫ t

0

Jε(uε,m) ds

}

dt ≤ 0.

Then, by taking the limit inferior of the above inequality and using the convergences (49)
and (53), we obtain

(62)
∫ T

0

φ(t)

{

1

2
‖u(t)‖2L2(Ω)d −

1

2
‖u(0)‖2L2(Ω)d +

∫ t

0

a(u,u) ds +

∫ t

0

J(u) ds

}

dt ≤ 0.

Thus, inequality (32) is a direct consequence of the fact that the above estimate is valid for
any φ ∈ D((0, T )), φ(t) ≥ 0.

Finally, let us prove the uniqueness in the 2–dimensional case (d = 2). First, from Lemma
1.2 in [17, p. 260], we obtain (33). We can integrate by parts in (29) and rewrite it as

(63)
∫

(0,T )

〈∂u

∂t
,v

〉

V ′,V
dt−

∫

(0,T )×Ω

[(u · ∇)v] · u dx dt

+

∫ T

0

a(u,v) dt+

∫ T

0

J(u+ v) dt−

∫ T

0

J(u) dt ≥ 0.

Now, a density argument shows that (63) holds for test functions v such that

v ∈ L2(0, T ;V ).

In particular, for any w ∈ L2(0, T ;V ) and any t ∈ [0, T ], we can take the special test function
v defined by

(64) v(s) =

{

w(s)− u(s) if s ∈ [0, t],

0 if s ∈ (t, T ]
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and we obtain:

(65)
∫

(0,t)

〈∂u

∂t
,w− u

〉

V ′,V
ds−

∫

(0,t)×Ω

[(u · ∇)w] · u dx ds

+

∫ t

0

a(u,w − u) ds+

∫ t

0

J(w) ds−

∫ t

0

J(u) ds ≥ 0.

Assume now that we have two solutions u(1) and u(2) of system (65). Taking w = u(2) as
a test function in the inequality (65) satisfied by u(1) and taking w = u(1) as a test function
in the inequality (65) satisfied by u(2), we deduce

(66)
1

2

∫

(0,t)

∂

∂t
‖u(1) − u(2)‖2L2(Ω)2 ds+ 2µ

∫

(0,t)×Ω

|D(u(2) − u(1))|2 dx ds

≤

∫

(0,t)×Ω

[

(u(1) · ∇)u(1)
]

· u(2) dx ds−

∫

(0,t)×Ω

[

(u(2) · ∇)u(1)
]

· u(2) dx ds

= −

∫

(0,t)×Ω

[

((u(1) − u(2)) · ∇)u(1)
]

· (u(1) − u(2)) dx ds.

The above inequality and the Sobolev embedding theorem yield

(67)
1

2
‖u(1)(t)− u(2)(t)‖2L2(Ω)2 + 2µ

∫

(0,t)×Ω

|D(u(2) − u(1))|2 dx ds

≤ C

∫

(0,t)

∥

∥u(1) − u(2)
∥

∥

H1(Ω)2

∥

∥u(1) − u(2)
∥

∥

L2(Ω)2

∥

∥u(1)
∥

∥

H1(Ω)2
ds.

By using the Young, PoincarÃľ and Korn inequalities we get

(68)
1

2
‖u(1)(t)− u(2)(t)‖2L2(Ω)2 ≤ C

∫

(0,t)

∥

∥u(1) − u(2)
∥

∥

2

L2(Ω)2

∥

∥u(1)
∥

∥

2

H1(Ω)2
ds.

Uniqueness is a direct consequence of the Gronwall inequality applied to (68) and thus we
conclude the proof of Theorem 2.2.

4. Numerical Tests

In order to write a numerical algorithm to solve the Navier–Stokes/Coulomb friction law
system (17)–(21), we begin by writing a mixed formulation of inequality (25). To this end,
we introduce the following vectorial spaces

M =
{

q ∈ L2(Ω) :
∫

Ω

q dx = 0
}

,

V0 =
{

v ∈ H1(Ω)d : vn = 0 on ∂Ω
}

.

Using these spaces, the problem (17)–(21) can be written as follows: Find (u, p) ∈ V0 ×M
such that

(69)
∫

Ω

(∂u

∂t
+ (u · ∇)u

)

· v dx+ a(u,v) + b(v, p) ≥ J(u)− J(u+ v) ∀v ∈ V0,

(70) b(u, q) = 0 ∀q ∈ M,

for a.e. t ∈ (0, T ), where

(71) b(u, q) = −

∫

Ω

divu q dx ∀u ∈ V0, q ∈ M.
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It is easy to prove that the system (69)–(70) is equivalent to equation (25).
In order to treat the nonlinear term (u · ∇)u, we use the characteristic functions method

(see, for instance, [12, 16, 14, 13]). More precisely, we define the characteristic function
ψ : [0, T ]2 × Ω → Ω as the solution of the initial value problem

(72)







d

dt
ψ(t; s,x) = u(t,ψ(t; s,x)) ∀t ∈ [0, T ],

ψ(s; s,x) = x.

It is well-known that the material derivative
du

dt
=

∂u

∂t
+ (u · ∇)u of u at instant t0 satisfies:

(73)
du

dt
(t0,x) =

∂

∂t
[u(t,ψ(t; t0,x))]|t=t0

.

Additionally, we introduce two families of finite element spaces which approximate the
spaces V0 and M . To this end, we consider the discretization parameter h > 0 and a quasi-
uniform triangulation Th of the domain Ω. We denote by Wh the P2–finite element space
associated with Th for the velocity field in the Stokes problem and by Mh the P1–finite element
space for the pressure (see for instance [6]). Then, we define the following finite element space
for a conform approximation:

Vh = Wh ∩ V0.

Finally, to approximate the functional J(v), we use the function Jh(v) defined by:

(74) Jh(v) =

∫

∂Ω

gjh(v)dΓ,

where

(75) jh(v) =

{

1
4h
|v|2 if |v| < 2h,

|v| − h if |v| ≥ 2h.

Using this notation, the discretization of our problem is the following:
Let N be a positive integer. We denote ∆t = T/N and tk = k∆t for all k ∈ {0, . . . , N}.

Assume that the approximate solution (uk
h, p

k
h) of (69)–(70) at t = tk is known. We describe

below the numerical scheme allowing to determinate the approximate solution (uk+1
h , pk+1

h )

at time t = tk+1. First, we compute the approximated characteristic function ψk
h defined as

the solution of

(76)







d

dt
ψk

h(t; tk+1,x) = uk
h(ψ

k
h(t; tk+1,x)) ∀t ∈ [tk, tk+1],

ψk
h(tk+1; tk+1,x) = x.

Then, we define

(77) X
k

h(x) = ψ
k
h(tk; tk+1,x) ∀x ∈ Ω.

With these notations, we consider the following mixed variational fully discrete formulation:
Find (uk+1

h , pk+1
h ) ∈ Vh ×Mh such that

(78)
∫

Ω

(uk+1
h − uk

h ◦X
k

h

∆t

)

·v dx+ a(uk+1
h ,v)+ b(v, pk+1

h )+

∫

∂Ω

g∇jh(u
k+1
h ) ·v dΓ = 0 ∀v ∈ Vh,

(79) b(uk+1
h , q) = 0 ∀q ∈ Mh.
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We remark that since the approximation jh(v) of |u| is convex and differentiable, the
discrete formulation associated with the variational inequality (69) is a variational equation
by using ∇jh. It is clear from (75) that

(80) ∇jh(v) =
1

max{2h, |v|}
v.

Consequently, the discrete formulation writes: Find (uk+1
h , pk+1

h ) ∈ Vh ×Mh such that

(81)
∫

Ω

(uk+1
h − uk

h ◦X
k

h

∆t

)

· v dx+ a(uk+1
h ,v) + b(v, pk+1

h )

+

∫

∂Ω

g

max{2h, |uk+1
h |}

uk+1
h · v dΓ = 0 ∀v ∈ Vh,

(82) b(uk+1
h , q) = 0 ∀q ∈ Mh.

The discretized system (81)–(82) is still nonlinear, due to the boundary integral. In order
to deal with this nonlinearity, we use an iterative fixed point method, where we compute
u
k+1,i+1
h in term of uk+1,i

h by solving (81)–(82), with the boundary integral replaced by
∫

∂Ω

g

max{2h, |uk+1,i
h |}

u
k+1,i+1
h · v dΓ.

Let us now use the numerical scheme defined in (81)–(82) in two numerical tests. In the
first one, we study the flow of a viscous incompressible fluid through the rectangular channel
with an abrupt contraction (see Figure 1 below). In the second example, we consider the
classical fluid flow after a cylindrical obstacle in a rectangular channel (see Figure 2 below).

Γ2H

L1 L2

Γ1

Γ4

Γ3

hΓ1

Γ1

Figure 1. Horizontal channel with an abrupt contraction.

H

x0

y0

Γ2 Γ4

Γ1

Γ1

L

Γ3

Figure 2. Horizontal channel with a cylindrical obstacle.

In both of these domains, we decompose the domain boundary in subsets where we impose
the following different boundary conditions:
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Γ1: Homogeneous Dirichlet boundary condition (ux = uy = 0), modelling the contact with
an infinitely adherent wall.

Γ2: Inlet Dirichlet boundary condition, where the inlet velocity field is given by a parabolic
profile with a maximum value equal to umax (ux = 4umax

y
H
(1− y

H
), uy = 0).

Γ3: Outlet boundary condition ((σn)n = 0, uy = 0).
Γ4: Special wall where we study the Coulomb law effect.

For each example, we are interested in the numerical influence of the Coulomb law on
Γ4 over the solution of Navier–Stokes system. For this reason, we compare the solution
obtained using this new boundary condition with the solutions resulted by imposing the
classical Dirichlet and Neumann boundary conditions on Γ4. To this end, we present three
simulations considering the following boundary conditions on Γ4:

a) Homogeneous Dirichlet boundary condition for both components of the velocity field
(un = 0 and uτ = 0).

b) Homogeneous Dirichlet boundary condition for the normal velocity field and Neumann
boundary condition for the tangential component of the stress field (un = 0 and
(σn)τ = 0).

c) Coulomb boundary condition given in (6)–(8).
The simulations considered are divided in two parts. In the first one, in order to construct

an initial velocity field, we solve the Stokes system considering one of the three above bound-
ary conditions on Γ4. Then, using this initial condition, we solve Navier–Stokes system for
t ∈ [0, T ] with the previous corresponding conditions on Γ4. In the sequel, we show the most
relevant results of these computations for both domains, separately.

The simulations presented here were partially made with the software FreeFem++ [8] (for
the case of the Dirichlet boundary condition and the Neumann boundary condition) and with
the software Matlab (for the Coulomb law).

4.1. Results for the rectangular channel with an abrupt contraction. In this section,
we show the numerical results obtained for the solutions of Stokes and Navier–Stokes systems
for the first geometry given in Figure 1. In the case of the Coulomb law boundary condition,
we consider the parameter g = 0.015, because it is smaller than the tangential stress obtained
by imposing Dirichlet boundary condition. We have verified that if this parameter is greater
than the tangential stress of the problem with the boundary condition a), the solutions of
Navier–Stokes system with Coulomb and Dirichlet boundary conditions coincide.

In Figure 3, we present the velocities fields obtained as solution of the Stokes system for the
three considered boundary conditions. These velocities fields are considered to be the initial
conditions for the Navier–Stokes system. In Figures 4–5, we see the corresponding velocities
fields obtained solving Navier–Stokes system at time t = 1s and t = 5s. In Figures 6–9,
we see the corresponding tangential stress (σn)τ and tangential velocities fields uτ obtained
solving Navier–Stokes system at time t = 1s and t = 5s.
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0.8

1
Coulomb (T=0.000s)

Figure 3. Velocity field at t = 0, obtained as the solution of the Stokes sys-
tem with the following boundary conditions on Γ4: a) Homogeneous Dirichlet
boundary condition; b) Neumann boundary condition; c) Coulomb boundary
condition.
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Figure 4. Velocity field at t = 1s, obtained as the solution of Navier–Stokes
equation with the three boundary conditions on Γ4: a) Homogeneous Dirichlet
boundary condition; b) Neumann boundary condition; c) Coulomb boundary
condition.
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Figure 5. Velocity field at t = 5s, obtained as the solution of Navier–Stokes
equation with the three boundary conditions on Γ4: a) Homogeneous Dirichlet
boundary condition; b) Neumann boundary condition; c) Coulomb boundary
condition.
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In Figure 6, we represent the tangential stress (σn)τ on the boundary Γ4 at different
instants t ∈ [0, 1]. In each instant, in the same graphic, we can see the tangential stress
for the three different boundary conditions considered. We can remark that from t = 0.1s
the tangential stress obtained for the Coulomb law reaches the bound 0.015 in positive and
negative directions. Before t = 0.1s the tangential stress is almost positive. In Figure 7, we
plot the tangential velocity on the boundary Γ4 at the same instants t ∈ [0, 1] considered in
Figure 6. Here, we can confirm that, for t < 0.1s, there is no negative tangential velocity on
Γ4 for the Coulomb case. Figures 8–9 are similar to Figures 6–7, but for instants t ∈ [1, 6].
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Figure 6. Tangential stress (σn)τ on Γ4 at different instants t ∈ [0, 1].
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Figure 7. Tangential velocity field uτ on Γ4 at different instants t ∈ [0, 1].
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Figure 8. Tangential stress (σn)τ on Γ4 at different instants t ∈ [1, 6].
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Figure 9. Tangential velocity field uτ on Γ4 at different instants t ∈ [1, 6].
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4.2. Results for the flow around a cylindrical obstacle in a rectangular channel.

This numerical test has been performed in the documentation of the FreeFem++ program
(see [8]) for the case of the Dirichlet boundary condition on Γ4. For the case of the Coulomb
law we consider two cases: the first one with g = 0.07 and the second with g = 0.2. The first
value was chosen below the maximum tangential stress obtained for the Dirichlet boundary
condition at t = 0. The second value is greater that the maximum stress at t = 0 (then it is
not active for the initial condition, but it becomes active afterward during the simulation).
In Figures 10–11, we present the velocity field obtained for the four different boundary
conditions at t = 0 and t = 2s. In Figure 10, we remark that the solutions of the Stokes
problem, subplots a) and d) are the same, since the Coulomb law is reduced to the Dirichlet
case with our choice of g. In Figure 11, the four velocity fields are different.

In Figures 12–14, we plot the tangential velocity field and the tangential stress on the
boundary Γ4 for the four different boundary conditions considered. In the first one, we
present the dependence of both quantities with respect to the angular position around the
cylindrical obstacle at t = 2s. In the second one, we give the evolution in time of the
maximum of the same quantities for t ∈ [0, 2]. Finally, in Figure 14, we show a zoom of the
same evolution for t ∈ [0, 0.2].
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Figure 10. Velocity field at t = 0, obtained as the solution of Stokes equation
with different boundary conditions on Γ4 (with Re = 100): a) Homogeneous
Dirichlet boundary condition b) Neumann boundary condition c) Coulomb
boundary condition with g = 0.07 d) Coulomb boundary condition with g =
0.20
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Figure 11. Velocity field at t = 2s, obtained as the solution of Navier–Stokes
equation with the four boundary conditions on Γ4 (with Re = 100): a) Zero
Dirichlet boundary condition b) Neumann boundary condition c) Coulomb
boundary condition with g = 0.07 d) Coulomb boundary condition with g =
0.20
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Figure 12. Tangential velocity uτ and tangential stress (σn)τ on the bound-
ary Γ4 of the cylinder.
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Figure 13. Graphics in time t of the tangential velocity uτ and the tangential
stress (σn)τ on the boundary Γ4 of the cylinder.
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Figure 14. Graphics of the tangential velocity uτ and the tangential stress
(σn)τ on the boundary Γ4 of the cylinder for t ∈ [0, 0.2].
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