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Abstract

We present some verification test cases applied to a code developed at

EDF R&D for the simulation of two-phase flows with mass transfer. The

aim of this code is to allow the simulation of a wide range of industrial

situations by considering all the thermodynamic disequilibria between the

phases - pressure, temperature and chemical potential- and by assuming

the kinematic equilibrium - a single velocity for both phases. The under-

lying homogeneous model [1, 13] is based on the Euler system of equations

supplemented by a complex pressure law describing the behaviour of the

mixture of the two phases. Different first-order schemes are compared on

the basis of two analytical solutions: a classical Riemann problem and a

steady-state heated pipe test.

Key words : Homogeneous model, two-phase flows, verification.

1 Introduction

The production of electric power through pressurized water nuclear reactor, as many
other industrial processes, is associated with the control of the mass transfer phe-
nomena between liquid water and its vapor. The numerical simulation of two-phase
flows including phase change is then an important challenge though it is a difficult
task. For this purpose, several kinds of models have been proposed for approxi-
mately 50 years. The model retained in the sequel has been proposed quite recently
[1]. This two-phase flow model accounts for the complete thermodynamical disequi-
librium - namely the pressure, temperature and chemical potential disequilibrium
- but makes the assumption that both phases have the same velocity. It is based
on the Euler system of equations supplemented by a complex pressure law describ-
ing the behaviour of the mixture of the two phases. This pressure law depends on
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three mixture fractions which define the thermodynamical disequilibrium between
the phases, and the return to equilibrium is achieved by three source terms. In the
sequel, the verification test cases do not account for these source terms and the focus
is put on the convective terms of the model.

In [13], the behaviour of some explicit first-order schemes has been compared
on two Riemann problems, which are unsteady test cases. The aim of the present
paper is to extend this verification process to a steady-state analytical test-case and
to investigate the behaviour of a first-order semi-implicit scheme, based on a frac-
tional step algorithm [19]. The latter class of schemes is known to handle more
accurately steady-state situations than the first-order explicit schemes. Besides this
semi-implicit scheme, the VFRoe-ncv scheme and the Rusanov scheme already used
in [2] are retained here. In order to improve the accuracy of the VFRoe-ncv scheme
on the contact waves, a centered-pressure correction is proposed on the basis of the
work [4].

Two analytical test cases have been retained here. Both are representative of in-
dustrial applications at high pressure and temperature. First, as in [13] the different
schemes have been used to compute approximate solutions of a Riemann problem.
This unsteady test case allows to test the scheme for breach simulations which are
part of the validation test cases for industrial codes in the nuclear domain. The
second test case is a rough representation of the way a core or a steam generator
operates. It consists in computing the steady state reached by a mixture of liquid
and water which is heated by an external source. The solution proposed in [14] for
compressible single-phase flow is thus extended to two-phase flows without return
to equilibrium.

2 The homogeneous model

In the sequel the two-phase-flow homogeneous model [1, 15, 13] is based on the
Euler set of equations. The thermodynamic behaviour of the mixture is ruled by
two ingredients: three mixture fractions Y = (α, y, z)>, which are respectively the
volume fraction, the mass fraction and the energy fraction; and a mixture pressure
law P = P(Y, τ, e) defined through the Gibbs relation on the entropy of the mixture.
The thermodynamic disequilibrium and the return to equilibrium are taken into
account by source terms ΓY on the fraction equations. The whole model then reads:

∂

∂t
(ρY ) +

∂

∂x
(ρUY ) = ρΓY

∂

∂t
(ρ) +

∂

∂x
(ρU) = 0

∂

∂t
(ρU) +

∂

∂x

(
ρU2 + P

)
= 0

∂

∂t
(ρE) +

∂

∂x
(ρUE + UP ) = 0.

(1)
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The velocity of the mixture is denoted by U . No kinematic disequilibrium is taken
into account, then U also represents the velocity of each phase. We note: ρ = 1/τ
the density of the mixture, where τ is the specific volume, E = e+U2/2 the specific
total energy of the mixture and e the specific internal energy of the mixture. The
pressure law P is:

P(Y, τ, e) =

α
Tl
Pl + (1−α)

Tv
Pv

z
Tl

+ 1−z
Tv

, (2)

where the phasic pressures Pk = Pk(τk, ek) and temperatures Tk = Tk(τk, ek) must
be given by the user, with el = ze/y, ev = (1 − z)e/(1 − y), τl = ατ/y, τv =
(1 − α)τ/(1 − y) if Y represents the fraction of phase l. The source terms ΓY are
defined in agreement with the second principle of thermodynamics [1, 15, 13], but
they are not considered here for the proposed verification test cases and we set here:
ΓY = 0. In the sequel, a Stiffened Gas equation of states will be used for each phase:

Pk(τk, ek) =
ek
τk

(γk − 1)−Πkγk and Tk(τk, ek) =
ek −Πkτk
Cv,k

,

where γk, Πk and Cv,k are parameters. For these Stiffened Gas equations of states,
the model (1) is hyperbolic if the phasic temperatures are non-negative. Values of
the thermodynamical coefficients will be given in section 4. More details on the
whole model can be found in [1, 13].

3 Numerical schemes

The overall numerical scheme follows a fractional step algorithm in which convective
terms and source terms are treated successively [13]. Since source terms have been
omitted in the sequel, we only describe below the numerical schemes that have been
implemented to account for the convective part of the model (1). The numerical
approximations are obtained by using two different types of first-order finite-volume
schemes [5]:

• approximate godunov schemes which are explicit,

• and a semi-implicit fractional step scheme.

Considering the first class of schemes, three different schemes have been investi-
gated. As proposed in [13] a VFRoe-ncv scheme [2] is used to compute the numerical
fluxes at the interface between two cells. The linearised problem at the interface is
solved by considering the variables (Y, τ, U, P ). This algorithm is supplemented
with the entropic correction proposed in [12]. Moreover, a partial WFRoe scheme
[9] is performed to improve the prediction of the speed of the contact wave in the
linearised problem at the interface between two cells. Otherwise, non-symmetric
behaviours have been observed on some test cases, in particular for bubble collapse.
This scheme will be nicknamed here VFROENCV. In order to improve the accuracy
of this scheme, another version has been implemented on the basis of the idea of
[4]. The interfacial pressure issued from the linearised Riemann problem is mixed
with a centered pressure chosen as the mean of the pressure of the left (L) and right
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(R) cells. The blending function fb(M) for the pressure is based on the local Mach
number M = |uLR|/max(CL, CR), where uLR is the interfacial WFRoe-ncv velocity.
CL and CR are respectively the left and right sound speeds. We have chosen the
function:

fb(M) =

{
1−cos(ΠM/Mlim)

2 , if M ≤Mlim,
1, otherwise.

(3)

The modified interfacial pressure P ∗LR used to compute the numerical fluxes is then:

P ∗LR = fb(M)PLR + (1− fb(M))
PL + PR

2
;

where PLR is the interfacial pressure computed by the VFROENCV scheme, PL
and PR the left and right pressures. The parameter Mlim is the limit mach number
above which the pressure correction is not activated. The influence of this parameter
on the results will not be discussed here even if it is an important parameter. The
results of section 4 have been obtained with Mlim = 0.25. This scheme will be nick-
named here VFROENCV-C. More details about VFROENCV and VFROENCV-C
schemes can be found in appendix B. The Rusanov scheme [17] is also considered as
it remains a reference scheme, it will be denoted by RUSANOV.

The VFRoe-ncv scheme is an explicit scheme. In order to maintain the stability
of the numerical approximations a CFL condition must be fulfilled by the time-step.
Moreover, it is known that for low mach-number situations discrepancies may be
observed. These limitations can be strong drawbacks for industrial applications.

The semi-implicit scheme [7] relies on a fractional step method [19] which con-
sists in 4 main steps: a density step, a momentum step, a total energy step and a
mixture fraction convection step. The density step consists in solving the continuity
equation turned into a pressure equation (thanks to a linearization of the density).
This step yields a predicted pressure and allows to update the mass flux and the
density. The momentum step then consists in solving the momentum balance equa-
tion considering the explicit gradient of the predicted pressure and the updated mass
flux. The total energy step finally consists in solving the total energy balance equa-
tion considering the updated mass flux. The internal energy can at last be deduced
and is taken into account together with the updated density (from the density step)
in order to update the pressure. This scheme is detailed in appendix C. It will be
nicknamed here SEMI-IMP.

4 Numerical results

The behavior of the schemes is compared on two different test cases: an unsteady
test case and a steady-state test case. For both tests we use the same parameters
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for the phasic equation of states:

Cv, v = 4.477815802223535 103 J/kg/K Cv, l = 1.395286166711847 103 J/kg/K
γv = 1.084875362318841 γl = 1.665128030303030

Πv = 0.0 Πl = 3.725876146842836 108 Pa
(4)

These parameters have been computed to be representative of steam-water flows
around 81 bars and at saturation (Tsat(81 bars) = 569 K).

The approximations obtained by the schemes on uniform meshes have been com-
pared with the analytical solution in terms of the L1 error:

err(φ, T ) =

∑N
i=1 |φapprox(T, xi)− φexact(T, xi)|∑N

i=1 |φexact(T, xi)|
, (5)

for the variables φ = {α, y, z, ρ, U, P}. This error is computed at the final time t for
the unsteady test case and when convergence in time is assumed to be reached for
the steady case (see section 4.2 for details on the convergence criterium).

4.1 A Riemann problem test case

As in [13], we consider here a Riemann problem consisting in a U -contact wave and
a U + C-shock wave. The U − C-wave is a ghost wave. The domain is [0, 1 m] and
the initial discontinuity is located at xd = 1/2 m. The boundary conditions are
Dirichlet conditions filled with the exact solution. The exact solution is composed
of the left and right uniform states, separated by an uniform intermediate state.
The intermediate state in table 1 represents the analytical solution between the U -
contact and the U+C-shock wave, that is for: (x−xd)/t > 5 m/s and (x−xd)/t < σ,
where the shock speed is:

σ = 857.774166173626327 m/s.

The left state represents the solution for (x− xd)/t < 5 m/s and the right state for
(x − xd)/t > σ. The solution is plotted on figure (2) at time t = 2. 10−4 s. The
error between the numerical approximations and the exact solution is computed at
this time. The approximate solutions have been computed with the four different

Left state Intermediate state Right state
α 1.38006860749359000 10−1 1.48006860749359009 10−1 1.48006860749359009 10−1

y 7.84348344805274079 10−3 8.84348344805273995 10−3 8.84348344805273995 10−3

z 1.51281566759211995 10−2 1.61281566759211986 10−2 1.61281566759211986 10−2

ρ (kg/m3) 728 738 733
U (m/s) 5.0 5.0 −0.817013411825560532
P (Pa) 7.69 106 7.69 106 4.02907811372492649 106

Figure 1: States for the first Riemann problem.

schemes: RUSANOV, VFROENCV, VFROENCV-C and SEMI-IMP. The meshes
have from 50 to 200000 regular cells, except for the SEMI-IMP scheme (up to 50000
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cells). The error defined in (5) is plotted on figures 3 and 4 and the different ap-
proximate solutions are compared on figure 5 for a mesh with 800 cells and a time
step chosen such that CFLU+C = 0.5.

Considering figure (3), it can be noted that all the schemes have almost the same
accuracy on coarse meshes, except the RUSANOV scheme that is less accurate for
α and τ . Nonetheless, when the mesh is refined, the VFROENCV-C scheme widens
the gap with the other schemes for the variable P , U and τ . Up to 200000 cells
the asymptotic order of convergence 1/2 is not yet reached with VFROENCV-C
for P and U . On the last three meshes the convergence rate is close to 1 for P
and U , which indicates that the scheme is very accurate on the contact wave. The
SEMI-IMP scheme with a time step chosen such that CFLU+C = 0.5 is close to the
VFROENCV scheme. Moreover, figure (4) shows that increasing the time-step for
SEMI-IMP leads to a loss of accuracy.

Besides the error analysis, one can observe on figure (5) that the schemes have
very different behaviours when a discontinuity is approximated, see figure (6).

• The U − C ghost wave (on the left on figure (6)).
From an analytical point of view all the variables remain constant when passing
through the wave U − C, but for all the tested schemes a “numerical wave”
U − C can be observed. These discrepancies disappear when the mesh is
refined, but they can be noticeable on coarse meshes. The VFROENCV-C
scheme shows very strong oscillations with respect to the other schemes, and
the SEMI-IMP scheme at CFLU+C = 0.5 is very close to the VFROENCV
scheme which remains quite accurate.

• The contact wave (in the middle on figure (6)).
Through the contact wave, pressure and velocity are constant in the analytical
solution. The VFROENCV scheme presents small discrepancies on this wave.
The accuracy is then very good despite the fact that the pressure law does
not fulfil the requirement to ensure the preservation of P and U as exposed
in [8]. The VFROENCV-C scheme generates oscillations on both sides of the
contact wave, whereas the SEMI-IMP scheme presents a pressure over-shoot
combined with small oscillations.

• The shock wave (on the right on figure (6)).
Both SEMI-IMP and VFROENCV-C approximations have oscillations at the
shock location, but their order of magnitude is 100 times less for the former
than for the latter. They are thus almost negligible for the SEMI-IMP scheme
in comparison with the pressure jump through the schock wave (∼ 36 105 Pa).

International Journal on Finite Volumes 6
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Figure 2: Analytical solution at time t = 2. 10−4 s for the Riemann problem of
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is equal to 0.5 for all the schemes.
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plotted.
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4.2 A steady state test case

This test case consists in heating a mixture of water and vapor, assuming that the
source terms for the fractions are equal to zero. The heating of the mixture is
ensured by an external source term in the energy equation. The computation of
the corresponding steady state for system (1) is reported in appendix A. Due to the
complex mixture equation of state of the model, the solution at each x is obtained
by the mean of a Quasi-Newton algorithm. The boundary conditions are Dirichlet
conditions filled with the exact solution. The initial conditions are also the exact
solution for all x. The iterations are stopped when the relative L1-norm between
the variables Ψ ∈ {Y, τ, U, P} at iteration n and (n− 1) is less than 10−12:

∀Ψ ∈ {Y, τ, U, P},
∑N

i=1 |Ψapprox(tn, xi)−Ψapprox(tn−1, xi)|∑N
i=1 |Ψapprox(tn−1, xi)|

< 10−12.

The domain is x ∈ [0, 8 m]. The meshes contain from 60 to 12800 cells, except for
the SEMI-IMP scheme. Due to the computation time, the finer mesh contains 6400
cells. The source term Φ is applied for 2 m < x < 6 m and it is uniform within this
interval:

Φ(x) =

{
5.0 109 W/m3, if 2 m < x < 6 m,

0, elsewhere.
(6)

At the inlet x = 0 the reference state is:

ρ0 = 728.0 kg/m3;
U0 = 5.0 m/s;

P0 = 7.69 106 Pa;
α0 = 1.38006860749359 10−1;
y0 = 7.84348344805274 10−3;
z0 = 1.51281566759212 10−2;

(7)

The analytical solution, which is computed as explained in appendix A, is plotted
on figure 7.

Remark 4.1 The reference state corresponds to the left states of the Riemann
problem in section 4.1.

From a numerical point of view, the heating source term Φ is integrated using
a fractional step approach [19]. The convection terms are first computed and the
ODE system including Φ is then integrated by an explicit Euler scheme. For the
present steady-state test case with a constant source term, a well-balanced approach
could be helpful to improve the accuracy of the VFROENCV scheme. But we are
also interested in non constant source terms and unsteady situations for which the
fractional step approach remains efficient [10]. We thus focus here on SEMI-IMP
and VFROENCV-C schemes which improve the prediction of the steady-state solu-
tion as shown on figures (8), (9), (10), (11) and (12).
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It should be first mentioned that for all schemes the error between the approx-
imated fractions and the analytical solutions is equal to the round-off errors and
is thus not considered in the sequel. The convergence curves are plotted on fig-
ure (9). One can note that on coarse meshes VFROENCV-C is less accurate than
VFROENCV for the velocity variable, but more accurate for the pressure. As for
the problem of section 4.1, the VFROENCV-C scheme still shows an order of con-
vergence of the pressure and velocity greater than the asymptotic order. Due to
the discontinuity of the function Φ, a stationary contact wave is introduced in the
system of equations, which leads to an asymptotic order of convergence of 1/2. The
latter is recovered on almost all the variables of figure (9), except for the SEMI-IMP
scheme for which computations should be pursued on finer meshes.

The results for the different schemes have been plotted on figure (8) for a mesh
with 400 cells. The RUSANOV and VFROENCV schemes introduce unphysical
pressure gaps at the inlet and outlet of the heating zone (where the source term is
discontinuous). These gaps disappear when the mesh is refined (see figure (10)), but
on industrial meshes they can lead to unexpected vaporisation/condensation when
dealing with mass transfer. The SEMI-IMP (CFLU+C = 25) and the VFROENCV-
C schemes do not present such important pressure gaps, but oscillations appear
arround the location of the sudden change of the heating source term. The amplitude
of these oscillations is smaller for the SEMI-IMP scheme, but a more important error
is observed in the bulk of the heated zone when compared with the VFROENCV-C
scheme. This explains why the error on the pressure variable is greater with the
SEMI-IMP scheme compared with the error obtained for the VFROENCV-C (see
figure (9)).
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Figure 7: Analytical solution for the steady state heating case.
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Figure 11: Comparison of the approximated pressure for VFROENCV-C on different
meshes. The CFLU+C is equal to 0.5.
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Figure 12: Comparison of the approximated pressure for SEMI-IMP on different
meshes and for a time-step corresponding to CFLU+C = 25.
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5 Conclusion

Four schemes have been tested on two different verification test-cases, which are
sketches of industrial configurations. Though the VFROENCV-C scheme presents
the best results in terms of the error analysis, the oscillations that appear where dis-
continuities are computed could be a drawback for industrial purposes. They could
for instance be confusing in the case of a configuration where physical oscillations
might naturally appear. There are also oscillations in the results obtained with the
SEMI-IMP scheme, but their amplitude is smaller on the proposed test cases. On
the contrary, the VFROENCV scheme does not generate oscillations, but the main
drawback is that it is globally less accurate than the latter two schemes.

Some additional investigations should be performed. In particular a quantitative
comparison of the error with respect to the CPU-time would be worthwhile. Actu-
ally, if the SEMI-IMP and VFROENCV-C schemes have lower approximation errors
for a given mesh size with respect to VFROENCV and RUSANOV, the CPU-time
is far greater on the steady-state case of section 4.2. This difference of CPU-time
is less important for the unsteady test of section 4.1. Some additional comparisons
could also be carried out:

(i) different values of the parameter Mlim of the VFROENCV-C scheme ;

(ii) different values of the time-step for the SEMI-IMP scheme ;

(iii) a regular source term Φ ;

(iv) uniform initial conditions and an outlet boundary conditions at x = 8.
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6 Appendix A: A class of analitycal steady-state solu-
tions for compressible two-phase heated flows

In the following, we extend the solution obtained for single-phase flows in [14] for
two-phase flows.

We restrict ourselves to the steady-state solutions of (1) without the source terms
SY . The variables thus only depend on the space variable x and their space evolution
follows the ODE system:



d

dx
(ρUY ) = 0

d

dx
(ρU) = 0

d

dx

(
ρU2 + P

)
= 0

d

dx
(U(ρE + P )) = Φ,

(8)

where the thermodynamical behaviour of the mixture is described by a law link-
ing Y , ρ, e and P . We set here e = ε(Y, ρ, P ). The source term Φ(x) denotes an
external source of heat and it only depends on the space variable x.

The second equation of (8) states that the mass flow rate ρU is uniform, so that
we denote it by D0 = ρU . The system (8) can thus be written:



D0
d

dx
(Y ) = 0

U = τD0

D0
d

dx
(U) +

d

dx
(P ) = 0

D0
d

dx
(E) +

d

dx
(UP ) = Φ.

(9)

We assume that D0 6= 0, so that the fractions Y are uniform: Y = Y0. Thanks
to the second equation of (9), we replace U by τ in the third and fourth equation
of (9). We get the two equations:


D2

0

d

dx
(τ) +

d

dx
(P ) = 0

D0
d

dx
(e) +

D3
0

2

d

dx

(
τ2
)

+D0
d

dx
(τP ) = Φ.

(10)
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Since the mass flow rate D0 is uniform and since the source term Φ only depends
on x, we can integrate this subsystem as follows on [x0, x]:{

D2
0(τ − τ0) + (P − P0) = 0

D0(e− e0) +
D3

0
2 (τ2 − τ2

0 ) +D0(τP − τ0P0) =
∫ x
x0

Φ(s)ds,
(11)

where a subscript 0 denotes the value at x0 which must be given by the user. The
symbols without subscript denote the values at a point x. Due to our choice for the
equation of states, we have:

e = ε(Y, ρ, P ) and e0 = ε(Y0, ρ0, P0).

The first equation of (11) gives explicitly τ as a function of P and since we have
Y = Y0, the second equation of (11) is a non linear equation for P :{

τ = τ0 − (P−P0)
D2

0

D0(ε(Y0,
1
τ , P )− e0)− (P 2−P 2

0 )
2D0

=
∫ x
x0

Φ(s)ds.
(12)

Hence, solving this equation for P allows to compute the value for τ (with the
first equation of (12)), and then, since D0 = ρ0U0 = ρU , we get U . Obviously,
depending on the equation of state ε, Φ and D0, the problem can have one, several
or no solution. Moreover it can be complex to solve and it may require the use of
numerical algorithm to compute P at each x.
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7 Appendix B: The VFROENCV-C and VFROENCV
scheme

The VFROENCV and the VFROENCV-C schemes rely on the VFRoe-ncv scheme
using the variable (Y, τ, U, P ) [2]. Let us first recall the latter algorithm.

For the sake of simplicity, we restrict to regular meshes of size ∆x such that:
∆x = xi+ 1

2
−xi− 1

2
, i ∈ Z. We denote ∆t the time step, where ∆t = tn+1− tn, n ∈ N.

In order to approximate solutions of the exact solution W ∈ Rp of the conservative
hyperbolic system: {

∂

∂t
(W ) +

∂

∂x
(F (W )) = 0

W (x, 0) = W0(x)

with F (W ) in Rp. Let Wn
i be the approximate value of

1

∆x

∫ x
i+1

2

x
i− 1

2

W (x, tn)dx.

Integrating over [xi− 1
2
;xi+ 1

2
]× [tn; tn+1] provides:

Wn+1
i = Wn

i −
∆t

∆x

(
φn
i+ 1

2

− φn
i− 1

2

)
The numerical flux φn

i+ 1
2

through the interface {xi+ 1
2
} × [tn; tn+1] is defined below.

The time step must agree with a CFL condition detailed below. The flux φn
i+ 1

2

depends on Wn
i and Wn

i+1 when restricting to first order schemes. The approximate
Godunov flux φ(WL,WR) is obtained by solving exactly the following linear 1D
Riemann problem: 

∂

∂t
(Z) +B(Ẑ)

∂

∂x
(Z) = 0

Z(x, 0) =

{
ZL if x < 0
ZR otherwise

(13)

with the initial condition: ZL = Z(Wi) and ZR = Z(Wi+1). The matrix:

B(Z) = (W,Z(Z))−1A(W (Z)) W,Z(Z)

(A(W ) is the Jacobian matrix of flux F (W )). Once the exact solution Z∗(xt ;ZL, ZR)
of this approximate problem (13) is obtained, the numerical flux is defined as:

φ(WL,WR) = F (W (Z∗(0;ZL, ZR)))

Let us set l̃k, λ̃k and r̃k, k = 1, ..., p, left eigenvectors, eigenvalues and right eigenvec-
tors of matrix B(Ẑ) respectively. The solution Z∗(xt ;ZL, ZR) of the linear Riemann

problem is defined everywhere (except along x
t = λ̃k):

Z∗
(x
t

;ZL, ZR

)
= ZL +

∑
x
t
>λ̃k

(t l̃k.(ZR − ZL))r̃k

= ZR −
∑
x
t
<λ̃k

(t l̃k.(ZR − ZL))r̃k
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or in a slightly different form:

ZR − ZL =
∑
k=1,p

(t l̃k.(ZR − ZL))r̃k =
∑
k=1,p

α̃kr̃k (14)

setting:
α̃k =t l̃k.(ZR − ZL)

The only remaining unknown is the mean Ẑ which must comply with the condi-
tion:

Ẑ(Zl = Z0, Zr = Z0) = Z0

The standard average which is used is:

Ẑ(ZL, ZR) = (ZL + ZR)/2

The explicit form of the approximate Godunov scheme will be under conservative
form:

Wn+1
i −Wn

i +
∆t

∆x

(
F (W (Z∗(0;Zni , Z

n
i+1)))− F (W (Z∗(0;Zni−1, Z

n
i )))

)
= 0

Remark 7.1 A different prediction may be obtained using instead:

Ẑ(ZL, ZR) = Z∗(0;ZL, ZR)

where the approximate value at the interface Z∗(0;ZL, ZR) is obtained solving (13)
with:

Ẑ(ZL, ZR) = (ZL + ZR)/2

This corresponds to the WFRoe-ncv scheme [9].

The two shemes VFROENCV and VFROENCV-C proposed in the sequel are
based on the variable change Z = (Y, τ, U, P ). Moreover, the velocity value of the
average state Ẑ(ZL, ZR) = (ZL + ZR)/2 is replaced by the value of the velocity
U∗(0;ZL, ZR) which is computed through (13) as in the WFroe-ncv scheme.

At last, for the VFROENCV-C, the pressure P ∗(0;ZL, ZR) obtained by solving
(13) is blended with the centred pressure (PL + PR)/2 as proposed in [4]. The
blending function fb(M) for the pressure is based on the local Mach number

M = |U∗(0;ZL, ZR)|/max(CL, CR),

where CL and CR are respectively the left and right sound speeds. We have chosen
the function:

fb(M) =

{
1−cos(ΠM/Mlim)

2 , if M ≤Mlim,
1, otherwise.

The modified interfacial pressure P ∗LR used to compute the numerical fluxes is then:

P ∗LR = fb(M)P ∗(0;ZL, ZR) + (1− fb(M))
PL + PR

2
;

where PL and PR are the left and right pressures. The parameter Mlim is the limit
mach number above which the pressure correction is not activated.
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8 Appendix C: The SEMI-IMP scheme

The algorithm detailed below is based on a fractional step method [19] and follows
the classical idea of the so-called pressure correction schemes [3, 16, 18]. Each time
step from tn to tn+1 is divided into five steps:

(i) a mass balance step allowing to update the density and to predict an approx-
imation of the pressure;

(ii) a momentum balance step allowing to update the velocity;

(iii) an energy balance step allowing to update the total energy;

(iv) a step for the pure convection of the mixture fractions Y = {α, y, z};

(v) and source term step that accounts for the return to the thermodynamical
equilibrium.

For each one of the above five steps (i) to (v), the time derivatives are discretized
using an implicit Euler scheme. Moreover, the scheme used for the source term step
(v) is exactly the same than that used with all the other schemes of the paper [13].

The time step is defined as ∆tn = tn+1 − tn. By abuse of notation, for any
variable Ψ, Ψn = Ψ(tn). Moreover Ψn+1,− stands for the estimation of the variable
Ψ during the fractionnal step, and we set δΨ = Ψn+1,− −Ψn. All the variables are
then updated (from tn+1,− to tn+1) once the source term step (v) is achieved.

In the following, we set Q = ρU , E = ρE, and we present the convective part
(i.e. steps (i) to (iv)) of the scheme denoted by SEMI-IMP in the paper. It should
be mentionned that this algorithm is conservative and it allows then to retrieve the
correct shock solutions.

8.1 Mass balance step

In this first step, pressure and density are implicit, while the velocity, the mixture
fractions Y and the entropy are considered frozen at time tn. The convective mass
flux is computed as well, it will be noted Q∗ in order to distinguish it from the mass
flux computed at the next step. The mass balance equation is integrated in time
between tn and tn+1 and in space over Ω:∫ tn+1

tn

∫
Ω

(
∂ρ

∂t
+∇ ·Q

)
dΩdt = 0.

The two terms of the above equation are treated separately. The divergence term
is implicit and Green formula is applied:∫

Ω
ρ(x, tn+1)− ρ(x, tn)dΩ + ∆tn

∫
Γ
Qn+1 · ndΓ = 0.
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In fact, the momentum Qn+1 is approximated by the momentum Q∗ obtained
through the following simplified momentum balance equation:

∂tQ+∇P (ρ, s) = 0, (15)

which yields:
Q∗ = Qn −∆tn∇Pn+1,−. (16)

The finite volume scheme becomes:

vol (Ω)
(
ρn+1,− − ρn

)
+ ∆tn

∫
Γ
Q∗ · ndΓ = 0.

It is then assumed that, for a constant entropy, we have:

δP =
(
c2
)n
δρ, (17)

with
(
c2
)n

= c2(Pn, ρn) (see remark 8.1). This linearization is then used to obtain
the form:

vol
(

Ωφ
) 1

(c2)n
(Pn+1,− − Pn) + ∆tn

∫
Γ
Q∗.ndΓ = 0. (18)

Since Q∗ depends on Pn+1,− through equation (16), the pressure Pn+1,− can
be computed from equation (18). This step then allows to obtain Pn+1,−, from
which ρn+1,− can be deduced using the relation (17). This update of the density is
mandatory in order to ensure the mass conservation.

Remark 8.1 Actually, for non constant entropy s, the relation is dP = c2dρ+ βds
with β = ∂P (ρ,s)

∂s . In the mass balance step, it is thus assumed that the entropy
remains constant.

8.2 Momentum balance step

In this second step, the velocity is computed implicitely, while the density and the
pressure are known from the previous step; the total energy and the mixture fractions
remain steady here. The momentum balance equation is integrated in time between
tn and tn+1 and in space over Ω:∫ tn+1

tn

∫
Ω

(
∂Q

∂t
+∇ ·

(
u⊗Q

)
+∇P

)
dΩdt = 0.

As for the mass balance step, the different terms of the equations are treated sep-
arately. By applying Green formula and using an upwind scheme for the convective
term, the following time scheme is obtained:

vol (Ω)
(
Qn+1,− −Qn

)
+ ∆tn

∫
Γ

(
u
(
Q.n

))n+1,−
dΓ

+ ∆tn
∫

Γ
Pn+1,−ndΓ = 0.

This step allows to obtain un+1,−, and thus Qn+1,− = ρn+1,−un+1,−.

Remark 8.2 It is possible to rewrite

Qn+1,− −Qn = ρn(un+1,− − un) + un+1,−(ρn+1,− − ρn)

considering that the increment (ρn+1,− − ρn) is known from the previous step.
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8.3 Energy balance step

In this third step, the total energy is computed with a semi-implicit scheme, while
the velocity, the pressure and the density are known from the previous steps. The
mixture fractions Y still remain constant in this step. The energy balance equation
(written in terms of the total energy) is integrated in time between tn and tn+1 and
in space over Ω: ∫ tn+1

tn

∫
Ω

(
∂E
∂t

+∇ · (u(E + P ))− Φ

)
dΩdt = 0,

where Φ stands for the external energy source term.

Once again, the terms of the equation are treated separately and Green formula
is applied. Using an upwind scheme for the convective term, the following time
scheme is deduced:

vol (Ω) (En+1,− − En) + ∆tn
∫

Γ
(Q∗ · n)

(
E + P

ρ

)n+1,−
dΓ (19)

− ∆tnvol (Ω) Φn+1,− = 0.

We use the mass flux Q∗ computed during the mass balance step in order to ensure
the consitency with the mass balance equation.

This step allows to obtain the variable En+1,−.

8.4 Convection of the mixture fractions Y

In this fourth step, the mixture fractions Y are simply convected using an upwind
scheme with the mass flux Q∗ computed during the mass balance step:

vol (Ω) ρn+1,−(Y n+1,− − Y n) + ∆tn
∫

Γ
(Q∗ · n)Y n+1,−dΓ = 0.

We use the mass flux Q∗ to ensure the consitency with the mass balance equation.

This step allows to obtain the variable Y n+1,−.

8.5 Update of the variables at t = tn+1

At the end of each time step, the variables are updated from tn+1,− to tn+1 as
follows:

ρn+1 = ρn+1,−

un+1 = un+1,−

En+1 = En+1,−

Y n+1 = Y n+1,−

Pn+1 = P (Y n+1, ρn+1, εn+1)

where: εn+1 =
En+1

ρn+1
− 1

2
(u2)n+1
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