
HAL Id: hal-01273427
https://hal.inria.fr/hal-01273427

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revising OpenStack to Operate Fog/Edge Computing
infrastructures

Adrien Lebre, Jonathan Pastor, Anthony Simonet, Frédéric Desprez

To cite this version:
Adrien Lebre, Jonathan Pastor, Anthony Simonet, Frédéric Desprez. Revising OpenStack to Op-
erate Fog/Edge Computing infrastructures. IC2E 2017 : IEEE International Conference on Cloud
Engineering, Apr 2017, Vancouver, Canada. �10.1109/IC2E.2017.35�. �hal-01273427�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80489175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01273427
https://hal.archives-ouvertes.fr

Revising OpenStack to Operate Fog/Edge
Computing infrastructures

Adrien Lebre, Jonathan Pastor, Anthony Simonet
Inria, Mines de Nantes, LINA

Nantes, France
Email: firstname.lastname@inria.fr

Frédéric Desprez
Inria, LIG

Grenoble, France
Email: firstname.lastname@inria.fr

Abstract—Academic and industry experts are now advo-
cating for going from large-centralized Cloud Computing
infrastructures to smaller ones massively distributed at the
edge of the network. Among the obstacles to the adoption of
this model is the development of a convenient and powerful
IaaS system capable of managing a significant number of
remote data-centers in a unified way.

In this paper, we introduce the premises of such a
system by revising the OpenStack software, a leading IaaS
manager in the industry. The novelty of our solution is
to operate such an Internet-scale IaaS platform in a fully
decentralized manner, using P2P mechanisms to achieve
high flexibility and avoid single points of failure. More
precisely, we describe how we revised the OpenStack Nova
service by leveraging a distributed key/value store instead
of the centralized SQL backend. We present experiments
that validate the correct behavior and gives performance
trends of our prototype through an emulation of several
data-centers using Grid’5000 testbed. In addition to paving
the way to the first large-scale and Internet-wide IaaS
manager, we expect this work will attract a community of
specialists from both distributed system and network areas
to address the Fog/Edge Computing challenges within the
OpenStack ecosystem.

I. INTRODUCTION

To satisfy the escalating demand for Cloud Computing
(CC) resources while realizing economies of scale, the
production of computing resources is concentrated in
mega data centers (DCs) of ever-increasing size, where
the number of physical resources that one DC can
host is limited by the capacity of its energy supply
and its cooling system. To meet these critical needs
in terms of energy supply and cooling, the trend has
been toward building DCs in regions with abundant
and affordable electricity supplies or taking advantage
of free cooling techniques available in regions close to
the polar circle [13]. However, concentrating Mega-DCs
in only a few attractive places implies different issues.
First, a disaster1 in these areas would be dramatic for
IT services the DCs host as the connectivity to CC
resources would not be guaranteed. Second, in addition

1On March 2014, a large crack has been found in the Wanapum
Dame leading to emmergency procedures. This hydrolic plan supports
the utility power supply to major data centers in central Washington.

to jurisdiction concerns, hosting computing resources in
a few locations leads to useless network overheads to
reach each DC. Such overheads prevent the adoption
of the Cloud Computing paradigm by several kind of
applications such as mobile computing ones [24].

The concept of micro/nano DCs deployed at the edge
of the backbone has been proposed as a promising
solution for the aforementioned concerns [14]. Although
it has been proposed as soon as 2008, the model has been
debated for a couple of years because it was believed that
there would be no way to operate multiple small DCs
without increasing initial and exploitation expenditures.
A recent study demonstrated that a model leverag-
ing existing network facilities (a.k.a. network point of
presences) can deliver competitive solutions from the
economic viewpoint in comparison to current Amazon
offers [25]. Conducting such studies is important as the
advent of Internet of Things applications motivates even
more “in-network” Cloud Computing platforms [28],
a.k.a. “fog/edge computing” infrastructures [3], [27].

While the question of whether Fog/Edge computing
platforms will be deployed is not being debated any-
more, the question of how operating such a widely
geo-distributed infrastructure still remains. Indeed, at
this level of distribution, latency and fault tolerance
become primary concerns, and collaboration between
components that are hosted on different locations must
be organized wisely.

This paper proposes several contributions to make
progress on the aformentioned question.

First, we discuss some key elements that motivate the
choice of designing a system capable of supervising a
set of remote DCs in a unified way. We explain why
federated approaches [4] are not the best approaches to
operate Fog/Edge infrastructures and why designing a
fully distributed system makes sense.

Second, we present and evaluate a proof of concept
of a first-class Internet-scale IaaS manager. Because
fundamental capabilities of this system are similar to
those provided by existing IaaS managers and because
technically speaking it would be a non-sense to develop

Edge  
Frontier

Edge  
Frontier

Extreme Edge  
Frontier

Domestic network

Enterprise network

Wired link
Wireless link

Cloud Latency  
> 100ms

Cloud Computing

Intra DC latency
< 10ms

Inter Micro DCs latency
[50ms-100ms]

Micro/Nano DC

Fig. 1. Fog/Edge Computing Architecture Model

the system from scratch, we chose to build our prototype
on top of the OpenStack solution [22]. This will allow us
to propose a system that is as convenient to administrate
and as easy to use as existing IaaS managers. Specif-
ically, we describe how we revised the Nova service
(the OpenStack compute element) with a decentralized
key/value store in place of the centralized SQL database.
This revision enables us to distribute Nova over several
geographical sites. The correct functioning of this proof
of concept has been validated via several experiments
performed on top of Grid’5000 [1]. In addition to
tackling both the scalability and distribution issues of
the SQL database, our prototype leads to promising
performance. More than 80% of the API requests are
performed faster than with the SQL backend without
doing any modification in the Nova code.

The last contribution underlines a set of challenges
and opportunities that are unique to Fog/Edge computing
infrastructures. These challenges go well beyond the
scope of this paper and require a large community, with
academic and industry specialists from many different
fields such as operating systems, networks, scheduling
and programming models. With this work, we hope to
bring attention to the matter and start building a large
community around an OpenStack-based Internet-scale
IaaS Manager, like it was once done for Linux and HPC.

The remaining of the paper is as follows. Section II
explains our design choices. Section III describes Open-
Stack and how we revised it. The validation of our
prototype focusing on the Nova service is presented in
Section IV. In Section V, we present challenges related
to the design and development of an Internet-scale IaaS
manager. Finally Section VI concludes and discusses
future research and development actions.

II. DESIGN CONSIDERATIONS

The massively distributed cloud we target is an in-
frastructure that is composed of up to hundreds of
micro DCs, which are themselves composed of up to
one hundred servers (up to two racks). Figure 1 gives
an overview of a Fog/Edge architecture. with several
micro/nano DCs and the expected latency between each
element. The network links can be either wired or
wireless (represented by plain and dashed lines on the
figure). Finally, it might be possible to consider ad-
ditional DCs deployed at the Extreme Edge, within a
private institution.

In this section, we discuss design considerations that
motivate our implementation choices.

A. Broker vs Cooperative Systems

Cloud Federations based on brokering approaches are
the first solutions that are considered when it comes to
use distinct clouds. Each micro DC hosts and supervises
its own CC infrastructure and a brokering service is
in charge of provisioning resources by picking them
on each cloud. While federated approaches with a sim-
ple centralized broker can be acceptable for basic use
cases, advanced brokering services become mandatory to
meet requirements of production environments (monitor-
ing, scheduling, automated provisioning, SLAs enforce-
ments . . .). In addition to dealing with scalability and
single point of failure (SPOF) issues, brokering services
become more and more complex to finally integrate most
of the mechanisms that are already implemented by IaaS
managers [5], [16]. Consequently, the development of
a brokering solution is as difficult as the development
of an IaaS manager but with the complexity of relying
only on the least common denominator APIs. While few
standards such as OCCI [20] start to be adopted, they
do not allow developers to manipulate low-level capa-
bilities of each system, which is generally mandatory to
finely administrate resources. In other words, building
mechanisms on top of existing ones, as it is the case
of federated systems, prevents them from going beyond
the provided APIs (or require intrusive mechanisms that
must be adapted to the different systems). The second
way to operate a cloud infrastructure that is spread ac-
cross distinct sites is to design and build a dedicated sys-
tem, i.e., an Internet-scale IaaS manager. Such a manager
will define and leverage its own software interface, thus
extending capacities of traditional Clouds with its API
and a set of dedicated tools. Designing a specific system
offers an opportunity to go beyond classical federations
of Clouds by addressing all crosscutting concerns of a
software stack as complex as an IaaS manager.

Moreover, a IaaS manager for Fog/Edge platforms
will natively allow the extension of a private cloud

deployment with remote physical resources. Such a sce-
nario is a strong advantage in comparison to the current
hybrid offers as it does not break the notion of a single
deployment operated by the same tenant. Each time a
company will face a peak of activity, it will be possible
to provision dedicated servers and attach them to the
initial deployment. Those servers can either be provided
by dedicated hosting services that have DCs close to
the institution or by directly deploying transportable and
containerized server rooms close to the private resources.
For instance on Figure 1, one can consider to extend the
resource available in a company (left side on the figure)
with resources provided by the first micro DCs present
in the network. This notion of WANwide elasticity can
be generalized as it will be possible to deploy such
containerized server rooms whenever and wherever they
will be mandatory. As examples, it can be possible to
temporarily deploy IT resources for sport events such as
olympic games or for public safety purposes in case of
disasters. Network/Telecom operators will also be able to
deploy IT resources on their radio base stations they op-
erate in order to deliver Fog/Edge computing solutions.
The common thread in these use-cases is the possibility
of extending an infrastructure wherever needed with
additional resources, the only constraint being to be
able to plug the different locations with a backbone
that offers enough bandwidth and quality of service to
satisfy network requirements. The major advantage is
that such an extension is completely transparent for the
administrators/users of the IaaS solution because they
continue to supervise/use the infrastructure as they are
used to. This kind of features cannot be achieved with a
brokering approach, unless the brokering middleware is
already present and always the cloud entry point.

B. From Centralized to Distributed

Considering the advantage of a Internet-scale IaaS
manager with respect to brokering proposals, the next
question is to analyze whether collaborations between
mechanisms of the system should be structured either in
hierarchical or in flat way via a P2P scheme. During the
last years few hierarchical solutions have been proposed
in industry [6], [7] and academia [11], [12]. Although
they may look easier at first sight than P2P structures,
hierarchical approaches require additional maintenance
costs and complex operations in case of failure. More-
over, mapping and maintaining a relevant tree architec-
ture on top of a network backbone is not meaningful
(static partitioning of resources is usually performed).
Finally, a hierarchical structure means that there is a
global entry point that does not enable to address the
latency issue (every cloud request going through the
global entry point before being served by one DC). As
a consequence, hierarchical approaches do not look to

be satisfactory to operate a massively distributed IaaS
infrastructure such as the one we target. On the other
side, P2P file sharing systems are a good example of
software that works well at large scale in a context where
Computing/Storage resources are geographically spread.
While P2P/decentralized mechanisms have been under-
used for building IaaS system mechanisms, they have
showed potential for handling the intrinsic distribution
of Fog/Edge infrastructures in a scalable manner [9].

C. The Choice of OpenStack
The Internet-scale manager we target should deliver a

set of high level mechanisms whose assembly results in
a system capable of operating an IaaS infrastructure.

Recent studies have showed that state of the art IaaS
managers [23] were constructed over the same concepts
and that a reference architecture for IaaS managers can
be defined [21].

This architecture covers primary services that are
needed for building the LUC OS:

• The virtual machines manager is in charge
of managing VMs’ cycle of life (configuration,
scheduling, deployment, suspend/resume and shut
down).

• The Image manager is in charge of VM’ template
files (a.k.a. VM images).

• The Network manager provides connectivity to
the infrastructure: virtual networks for VMs and
external access for users.

• The Storage manager provides persistent storage
facilities to VMs.

• The Administrative tools provide user interfaces
to operate and use the infrastructure.

• Finally, the Information manager monitors data of
the infrastructure for the auditing/accounting.

Thus the challenge is to guarantee for each of the
aforementioned services, its decentralized functionning
in a fully distributed way. However, as designing and
developing each of those systems from scratch would be
an herculean work, we propose to minimize both design
and implementation efforts by reusing as much as possi-
ble succesful mechanisms, and more concretly by inves-
tigating whether a revised version of the OpenStack [22]
could fulfill requirements to operate a Fog/Edge infras-
tructure. In other words, we propose to determine which
parts of OpenStack can be directly used and which
ones must be revised with P2P approaches. This strategy
enables us to focus the effort on key issues such as the
distributed functioning and the organization of efficient
collaborations between software components composing
of OpenStack.

III. REVISING OPENSTACK

OpenStack [22] is an open-source project that aims to
develop a complete Cloud Computing software stack.

Figures 2 presents the general vision of OpenStack
with the three expected capabilities of IaaS platforms:
Compute Network and Storage. Applications at the top
can request through a high level API compute, network
and storage resources. OpenStack bricks in the middle
communicate through shared services. From the techni-
cal point of view, OpenStack is composed of two kinds
of nodes: on the first side, the compute/storage/network
nodes are dedicated to deliver the XaaS capabilities
such as hosting VMs for the compute; on the other
side the controller nodes are in charge of executing the
OpenStack services.

Fig. 2. OpenStack Overview

Figure 3 shows the core-services of OpenStack. This
architecture is comparable with the reference one de-
scribed in the previous section.

Nova Nova

Compute
 manager

Swift Swift

Glance Glance

Storage
 manager

Neutron Neutron

Network
 manager

KeyStone KeyStone

Horizon Horizon

Administrative tools,
Information manager,
Accounting/Auditing

Fig. 3. Core-Services of OpenStack.

OpenStack services are organized following the
Shared Nothing principle. Each instance of a service (i.e.,
service worker) is exposed through an API accessible
through a Remote Procedure Call (RPC) system imple-
mented on top of a messaging queue or via web services
(REST). This enables a weak coupling between services.
During their life-cycle, services create and manipulate
logical objects that are persisted in shared databases, thus
enabling service workers to easily collaborate. However,
even if this organisation of services respects the Shared
Nothing principle, the message bus and the fact that ob-
jects are persisted in shared databases limit the scalabilty
of the system, as stated in the OpenStack documentation:

OpenStack services support massive horizon-
tal scale. Be aware that this is not the case
for the entire supporting infrastructure. This
is particularly a problem for the database
management systems and message queues that
OpenStack services use for data storage and
remote procedure call communications.

To conclude, revising OpenStack to make it fully
decentralized should be carried out in two ways: dis-
tributing the messaging queue as well as the shared
relational databases.

A. Distributing the AMPQ Bus

As indicated, services composing OpenStack collab-
orate mainly through a RPC system built on top of
an AMQP bus. The AMQP implementation used by
OpenStack is RabbitMQ. While this solution is generally
articulated around the concept of a centralized master
broker, it also provides a cluster mode that can be
configured to work in a highly available manner. Several
machines, each hosting a RabbitMQ instance, work to-
gether in an Active/Active functioning where each queue
is mirrored on all nodes. While it has the advantage
of being simple, it has the drawback of being very
sensitive to network latency, and thus it is not relevant for
multi-site configurations. This limitation is well known
from the distributed messaging queue community. Few
workarounds have been proposed for systems such as
RabbitMQ and more recently, P2P-like solutions such
as ActiveMQ [26] or ZeroMQ [15] have been released.
Thoses broker-less approaches satisfy our requirements
in terms of scalability. Considering that there is already
an action to use ZeroMQ in place of RabbitMQ in
OpenStack2, we chose to focus our efforts on the DB
challenge.

B. Distributing the Databases

As of today, only a few actors such as Rackspace 3

have been dealing with large-scale challenges. In other
words, most of the OpenStack deployments only involve
a few compute nodes and do not require more than a
single database (DB) node. The use of a second DB
is generally proposed to meet the high availability con-
straint that is mandatory in production infrastructures. In
such a context, the OpenStack community recommends
the use of at least an active/passive replication strategy
(a second DB acts as a failover of the master instance).

When the infrastructure becomes larger or includes
distinct locations, it becomes mandatory to distribute
the existing relational DBs over several servers. Two
approaches are proposed by the OpenStack community.

2https://wiki.openstack.org/wiki/ZeroMQ (valid on Sep 2016)
3http://rack.ly/6010B2xpQ (valid on Sept 2016)

https://wiki.openstack.org/wiki/ZeroMQ
http://rack.ly/6010B2xpQ

The first one consists in partitioning the infrastructure
into groups called cells configured as a tree. The top-
cell is in charge of redistributing requests to the children
cells. Each child cell can be seen as an independent
OpenStack deployment with its own DB server and
message queue broker. In addition to facing hierarchi-
cal approach issues we previously discussed (see Sec-
tion II-A), we highlight that additional mechanisms are
mandatory in order to make collaboration between cells
possible (there is no communications nor interactions
between children cells). Consequently, this approach is
more comparable to a brokering solution than to a native
collaboration between IaaS core-services.

The second approach consists in federating sev-
eral OpenStack deployments throughout an active/active
replication mechanism of DBs [18] through solutions
such as Galera: when an instance of a service processes
a request and performs some actions on one site, changes
in the inner-states stored in the DB are also propagated
to all the other DBs of the infrastructure. From a certain
point of view, it gives the illusion that there is only
one unique DB shared by all OpenStack deployments.
Although the described technique has been used in
production systems, most of them only involve a limited
number of geographical sites. Indeed, active replication
mechanisms imply important overheads that limit the
size of infrastructures. To sum up neither the hierarchical
approach nor the active replication solution are suited to
deal with a massively distributed infrastructure as the
one we target.

While not yet explored for the main OpenStack com-
ponents, NoSQL databases built on top of recent P2P
key/value stores seem to have more suitable properties
for highly distributed contexts, providing better scalabil-
ity and built-in replication mechanisms. The challenge
consists in analyzing how OpenStack internals can be
revised to be able to store service states in a key/value
store instead of a classical SQL system. In the next
section we present how we revised the Nova component
in this direction.

C. The Nova POC: From MySQL to RedisS

Nova is the OpenStack core-service in charge of VM
management. Its software architecture is organized in a
way which ensures that each of its sub-services does
not directly manipulate the DB (see Figure 4). Instead
it calls API functions proposed by a service called
“nova-conductor”. This service forwards API calls to the
“db.api” component that proposes one implementation
per database type. Currently, there is only one implemen-
tation that works on relational DBs. This implementa-
tion relies on the SQLAlchemy object-relational-mapping
(ORM) that enables the manipulation of a relational
database via object oriented code.

Fig. 4. Nova - Software Architecture and DB dependencies.

Thanks to this software pattern, we developed ROME,
an ORM library that enables interactions with key/value
stores in the same way SQLAlchemy interacts with rela-
tional DBes. ROME has been developed in a non intru-
sive way by proposing the same API as SQLAlchemy as
well as the same internal mechanisms (such as Queries,
JOIN operations and Sessions —the SQLAlchemy
equivalent of transactions). These implementations have
been achieved in order to take into account key/value
store specifics: First, we developed a distributed lock
system developed on top of Redis as well as a two-phase
commit approach to support sessions, enabling atomic
modifications of the key/value store; second we included
a secondary index in order to speed up complex queries
containing join operations.

The integration of ROME within the OpenStack Nova
code was restricted to the “db.api” file where every
call to SQLAlchemy has been replaced with a call to
ROME. Thanks to this modification, it is now possible to
operate and use a multi-site OpenStack infrastructure by
relying solely on Redis, a P2P key/value store solution.
We chose to use Redis in our prototype because of its
deployment/usage simplicity.

Figure 5 depicts such a deployment where a key/value
store and a global shared AMQP bus enabled all con-
trollers to interact. The number of controller nodes on
each site can vary according to the expected demand
created by end-users: sites with a large number of
compute nodes can have several controllers whereas a
controller node can be be mutualized with a compute
node as illustrated for Site 3.

We highlight that any controller node can provision
VMs by invoking services on the whole infrastructure
and not only on the site where it is deployed. In other
words, because the states and the communications are
managed globally, any service can satisfy any request.

AMQP
bus

AMQP
bus

AMQP
bus

Key/Value Store

Nova
Controller 3

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Controller 2n-sched

n-cond
n-api
n-net
n-cpu
horizon Nova

Compute
Nodes

Nova Compute Nodes

Nova
Controller 1

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Controller 5 n-sched

n-cond
n-api
n-net
n-cpu
horizon

Nova Controller 4
and compute node

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Compute
Node

Site 1

Site 2

Site 3

Site 4

Fig. 5. Nova controllers (in light-red) are connected through a shared
key/value backend and the AMQP bus. Each controller runs all nova
services and can provision VMs on any compute node (in light blue).

IV. EXPERIMENTAL VALIDATION

The validation of our prototype has been done via
three sets of experiments. The first one aimed at mea-
suring the impact of the use of Rome/Redis instead of
SQLAlchemy/MySQL in a single site deployment. The
second set focused on multi-site scenarios by comparing
the impact of the latency on our distributed Nova service
with respect to an active/active Galera deployment. Fi-
nally, the last experiment enabled us to evaluate whether
our low level revisions impact higher level OpenStack
mechanisms such as the host-agregates capability.

All Experiments have been performed on
Grid’5000 [1], a large-scale and versatile experimental
testbed that enables researchers to get access to a
large amount of bare-metal computing resources with
very fine control of the experimental conditions. Our
experiments use the Parasilo and Paravance clusters, that
share a similar configuration4: two 4-core Intel Xeon
E5-2630v3 CPUs @ 2.4 GHz, 128 GB of RAM and
two 10 GB ethernet network interface. We deployed and
configured each node involved in the experiment with a
customized software stack (Ubuntu 14.04, OpenStack
Kilo and Redis v3) using Python scripts and the Execo
toolbox [17]. We underline that we used the legacy
network mechanisms integrated in Nova (i.e., without
Neutron) and deployed other components that were
mandatory to perform our experiment (in particular
Keystone and Glance) on a dedicated node on the first
site (entitled master node on Figure 6).

4https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware

A. Impact of Redis w.r.t MySQL

1) Time penalties: Changes made over Nova’s source
code to support Redis is likely to affect its reactivity.
The first reason is that Redis does not support operations
like joining, and thus the code we developed to provide
such operations implies a computation overhead. The
second reason is related to networking: unlike a single
MySQL node, data is spread over several nodes in a
Redis deployment, leading to several network exchanges
for one request. Finally, Redis provides a replication
strategy to deal with fault tolerant aspects, also leading
to possible overheads.

TABLE I
AVERAGE RESPONSE TIME TO API REQUESTS FOR A MONO-SITE

DEPLOYMENT (IN MS).

Backend configuration Redis MySQL
1 node 83 37
4 nodes 82 -
4 nodes + repl 91 -

TABLE II
TIME USED TO CREATE 500 VMS ON A SINGLE CLUSTER

CONFIGURATION (IN SEC.)

Backend configuration Redis MySQL
1 node 322 298
4 nodes 327 -
4 nodes + repl 413 -

Table I compares average response times used to
satisfy API requests made during the creation of 500
VMs on an infrastructure deployed over one cluster
(containing 1 controller node and 6 compute nodes),
using either Redis or MySQL under three scenarios: i)
a single-node MySQL database, ii) a 4-node Redis
database with no replication and iii) a 4-node Redis
database with replication. While the distribution of Redis
between several nodes and the use of the replication
feature do not significantly increase the response time
(first column), the difference between the average API
response time of Rome/Redis and SQLAlchemy/MySQL
may look critical at first sight (124% higher). However,
it must be mitigated with Figure 7 and Table II. Fig-
ure 7 depicts the statistical distribution of the response
time of each API call that has been made during the
creation of the 500 VMs. It is noticeable that for a
large part of them (around 80%), Rome/Redis delivers
better performance than SQLAlchemy/MySQL. On the
other side, the 10% of the slowest API calls are above
222 ms with our proposal while they are are around
86 ms when using MySQL. Such a difference explains
the averages recorded in Table I and we need to conduct
deeper investigations to identify the kind of requests
and how they can be handled in a more effective way.

https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware

(a) Single centralized DB (b) Redis Key/Value Store (c) Galera

Fig. 6. Investigated deployments on top of G5K and role of each server node.

Fig. 7. Statistical distribution of Nova API response time (in ms.).

Overall, we can see that even with these slow-requests,
the completion time for the creation of 500 VMs is
competitive with respect to SQLAlchemy/MySQL as
illustrated by Table II. In other words, some API
functions have a more significant impact than others on
the VM creation time.

2) Networking penalties: As we target the deploy-
ment of an OpenStack infrastructure over a large number
of geographical sites linked together through the Internet,
the quantity of data exchanged is an important criterion
for the evalution of our solution. In particular, as data
is stored in the key/value store with an object structure,
it requires a serialization/deserialization phase when ob-
jects are stored/queried. To enable this serialization, the
addition of some metadata is required, which leads to
a larger data footprint and thus a larger amount of data
exchanged between database and OpenStack nodes.

To determine wether the level of network-overhead is
acceptable or not, networking data has been collected
during the previous experiments. Table III compares the
total amount of data exchanged over network depending
of the database configuration that has been used. As

MySQL does not store serialized objects, i.e., objects are
serialized on the client-side by the ORM, only raw data
is exchanged over the network. We, thus, consider the
single node MySQL as the reference solution, which has
been measured at 1794MB. Our solution deployed over a
single Redis node exchanges 2190MB, which means that
the networking overhead related to the combination of
ROME and Redis is estimated around 22%. Doing the
same experiment with a 4-node Redis cluster, without
data replication, leads to a 33% networking overhead
compared to a single MySQL node. Finally, when the
data replication is enabled with one replica, the amount
of data exchanged over the network is 76% higher than
without replication.

TABLE III
AMOUNT OF DATA EXCHANGED OVER THE NETWORK (IN MBYTES)

Backend configuration Redis MySQL
1 node 2190 1794
4 nodes 2382 -
4 nodes + repl (1 replica) 4186 -

Because those values cumulates the network traffic
overall, it is not possible to analyze whether the replace-
ment of SQLAlchemy/MySQL by Rome/Redis leads to
additional traffic between the controller/compute and
the DB nodes. To answer such a question, we used
the iftop 5 tool, and gathered information about the
origin and destination of TCP/IP messages exchanged
during the creation of VMs. Figure 8 depicts the data
exchanges in function of the origin (horizontal axis)
and the destination (vertical bars), with varying database
configurations. For example, on the first bar, the green
area corresponds to the in network of controller nodes
where the source is the master node. Regarding the
exchanges between the different kinds of nodes, we
observe that there is no significant variation between
the three scenarios. The only variation concerns the

5http://www.ex-parrot.com/pdw/iftop/

(a) Single centralized DB (b) 4 nodes Redis cluster without replication (c) 4 nodes Redis cluster with replication (1
replica)

Fig. 8. Amount of data exchanged per type of nodes, varying the DB configuration (Y-axis scales differ).

DB nodes (Figures 8(a) and 8(b)). This confirms that
the networking overhead depicted in Table III comes
from the DB nodes. Finally, Figure 8(c) confirms that
most of the overhead observed when enabling data
replication is also caused by additional data exchanged
between database nodes. This enables us to conclude that
using Rome/Redis in place of SQLAlchemy/MySQL is
acceptable from the network viewpoint.

B. Multi-site Scenarios

The second experiment we performed consisted in
evaluating a single OpenStack deployment spread over
several locations. Our goal was to compare the behavior
of a single MySQL OpenStack with the advised Galera
solution and our Rome/Redis proposal. Figure 6 depicts
how the nodes have been configured for each scenario.
While the deployment of a single MySQL node is a non
sense in a production infrastructure as discussed before,
evaluating this scenario enabled us to get an indication
of the maximum performance we can expect. Indeed,
in this scenario, there is no synchronization mechanism
and consequently no overhead related to communications
with remote DB nodes. Moreover, conducting such an
experiment at large scale enabled us to see the limit of
such a centralized approach.

Regarding the experimental methodology, distinct lo-
cations (i.e., clusters) have been emulated by adding
latency between group of servers thanks to the TC Unix
tool. This enables us to ensure reproducibility between
experiments. Each cluster contains 1 controller node,
6 compute nodes, and one DB node when needed.
Scenarios including 2, 4, 6, and 8 clusters have been
evaluated, leading to infrastructures composed of up to
8 controllers and 48 compute nodes in total. The latency
between each cluster has been set to 10 ms and then
50 ms.

We evaluate the stress induced on the controllers when
provisioning and booting 500 VMs at the same time.

VM provisioning queries are fairly distributed amongst
the controllers.

271	 263	
229	

223	
209	

139	 123	

422	

2199	

2011	

1811	
1988	

723	

427	
341	

302	268	
203	 184	

759	

0	

500	

1000	

1500	

2000	

2500	

2	 4	 6	 8	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	loca>ons	

ROME+Redis	(10ms)	
MySQL	(10ms)	
MySQL+Galera	(10ms)	
ROME+Redis	(50ms)	
MySQL	(50ms)	

Fig. 9. Time to create 500 VMs with a 10ms and 50ms inter-site
latency (due to synchronization issues, MySQL+Galera with 50 ms
delay is absent).

Figure 9 presents the observed times. As expected,
increasing the number of clusters leads to a decrease of
the completion time. This is explained by the fact that
a larger number of clusters means a larger number of
controllers and compute nodes to handle the workload.
The results measured with a 10ms latency show that
our approach takes a rather constant time to create 500
VMs, which stabilizes around 220 seconds whatever the
number of sites involved in the experiments. Although
a single MySQL node scales up to 6 locations, the
performance degrades from 8 locations. In this case, the
single MySQL performs 89% slower than our approach
and the advised Galera solution is 891% slower than
our approach. With a 50ms inter-cluster latency, the
difference between Redis and MySQL is accentuated in
the 8 clusters configuration, as MySQL is 151% slower
than our Redis approach.

Regarding Galera, it is noteworthy that important
issues related to synchronization issues appear with a
50 ms latency, preventing the collection of trustable
results. Such pathological behaviors are due to 1) the
high latency between clusters and 2) the burst mode we
used to create the 500 VMs.

To summarize, in addition to tackling the distribution
issue, the couple Rome/Redis enables OpenStack to be
scalable: the more controllers are taking part to the
deployment, the better performance.

C. Compatibility with Advanced Features

The third experiment aimed at validating the correct
behavior of existing OpenStack mechanisms while using
our Rome/Redis solution. Indeed, in order to minimize
the intrusion in the OpenStack source code, modifi-
cations have been limited to the nova.db.api compo-
nent. This component can be considered as the part of
Nova that has the most direct interaction with the DB.
Limiting the modification to the source code of this
component should enable us to preserve compatibility
with existing mechanisms at higher level of the stack. To
empirically validate such an assumption, we conducted
experiments involving multi-site and the usage of host-
aggregate/availability-zone mechanism (one advanced
mechanism of OpenStack that enables the segregation of
the infrastructure). Similarly to the previous experiments,
our scenario involved the creation of 500 VMs in parallel
on a multi-sites OpenStack infrastructure deployed on
top of Rome/Redis. Two sets of experiments were con-
ducted: a set where each node of a same geographical
site was member of a same host aggregate (that is the
same availability zone) and a second set of experiments
involving flat multi-site OpenStack (i.e., without defining
any availability zone). Being compatible with the host-
aggregate feature is important because as previously
mentioned in our flat approach, any controller can be
involved in any provisioning request.

Experimental results show that the host-
aggregate/availability-zone mechanism behaves correctly
on top of our proposal: VMs are correctly balanced
according to the locations where they have been started
while the flat multi-site deployment led to a non uniform
distribution with respectively 26%, 20%, 22%, 32% of
the created VMs for a 4-location experiment.

V. CHALLENGES AND OPPORTUNITIES OF FOG/EDGE
PLATFORMS MANAGED IN AN UNIFIED WAY

While advantages and opportunities of massively dis-
tributed clouds have been emphasized several years
ago [8], [14], delivering an OpenStack that can natively
be extended to distinct sites will create new opportunities
and challenges. Here we take a first glimpse at what
these challenges are and we attempt to identify which

communities they concern. In the long run, we hope to
gather a community with experts from all the domains
represented in this section around the development of an
ambitious Internet-scale IaaS manager.

A. Locality

Deploying a massively distributed multi-site IaaS in-
frastructure operated by OpenStack is challenging as
communication between nodes of different sites can
be subject to important network latencies. Moreover,
some objects in OpenStack may be manipulated by any
service, and, by extension, should be visible to any
controller. On the contrary, some objects may benefit
from a restrained visibility: for example, when a user
builds an OpenStack project (tenant) based on a few
sites, appart from data-replication there is no need for
storing the related objects on other sites. Restraining
the storage of such objects to certain sites only would
enable to save network bandwidth, to settle policies for
applications such as privacy and to implement efficient
data-replication.

B. Installation and Upgrade Process

OpenStack is a complex and tedious ecosystem com-
posed of tens of services including more than 2 mil-
lions of lines of code released on 6-month cycles.
In a Fog/Edge context where those services will be
distributed amongst all sites –like we did with Nova–
it will become impractical for administrators to deploy
and upgrade the services on-demand and with the cur-
rent System Configuration Tools [10]. Hence models
and mechanisms for deployment and reconfiguration of
services in an autonomous manner will be paramount.
Those systems must be capable of automatically in-
stalling and upgrading any service without impacting
the execution of hosted applications; this process will
require some computations and data to be relocated to
other locations.

C. Peering Agreement

The WAN-wide elastic nature of our revised Open-
Stack would technically allow administrators from dis-
tinct institutions to easily combine two distinct infras-
tructures; then arise economic/administrative questions,
similarly to peering agreements that exists between
network providers. Indeed, the two OpenStack system
would join to form a single infrastructure where every
user on each side would be able to transparently provi-
sion resources from both parties. In this case, specific
security and quota policies should also be addressed.

D. Cloud Storage

Cloud storage services could be revised to mitigate the
overhead of transferring data from their sources to the
different locations where there are needed. Programmers

could for example want to favor a pulling mode, as
opposed to a pushing one. Nowadays, data is mostly
uploaded to remote clouds without considering whether
the induced data movements will be of any use in the
future. A challenge for the storage services (Swift in the
case of OpenStack) is to enable data to stay as close to
their source as possible, and be transferred on longer
distances only when necessary. Similarly, developers
will be able to deliver Hadoop-like strategies where
computations are launched close to data sources. Such
mechanisms will be shortly mandatory to handle the
huge amount of data the Internet of Things will generate.

E. New Cloud APIs

New Application Programming Interfaces should be
delivered to allow users to exploit the unique features of
Fog/Edge platforms. It should be possible for developers
to deploy services according to specific criteria like
locality or strong latency requirements. Similarly, the
storage capabilities discussed in the previous Subsection
will require some sort of declarative language for pro-
grammers to express how the data is expected to be used.

F. Renewable Energies

Finally, the last opportunity and challenge we envision
is related to the use of renewable energies to power the
infrastructure. Similarly to the follow-the-moon/follow-
the sun approach, the use of several sites spread across
a large territory will offer opportunities the use various
energy sources (solar panels, wind turbines, etc.). This
opportunity, already underlined in [2], will be enabled
by the native capability of our revised OpenStack to
federate distinct sites and acomodate entire DCs going
periodically offline. Since the whole infrastructure is
supervised by a single system, providing users with a
transparent infrastructure while implementing advanced
load-balancing strategies will be simplified compared to
a federated approach.

VI. CONCLUSION

Proposing a software solution to manage “in network”
Cloud Computing infrastructures is a key challenge of
our community. In this paper, we presented our view of
how such software stack can be achieved by leveraging
the OpenStack solution and P2P mechanisms. As a
proof-of-concept, we presented a revised version of the
Nova service that uses our ROME library to store states
of the OpenStack services in Redis, a P2P key/value store
system. We discussed several experiments validating the
correct behavior of our prototype and showed promising
performance when operating 8 locations with a single
decentralized OpenStack instance.

Our ongoing activities focus on two aspects. First, we
are integrating similar changes in other OpenStack core

services such as Glance and Neutron. Second, we study
how it can be possible to restrain the visibility of some
objects manipulated by the different controllers. We
are in particular investigating whether network pooling
strategies such as the ones proposed in Cassandra [19]
may be more appropriate to the geo-distribution of the
infrastructure.

Although delivering an efficient distributed version
of an IaaS manager is a challenging task, we believe
that addressing it is the key to favor the massive adop-
tion of Fog/Edge computing infrastructures. Choosing
OpenStack is a key element as it should enable the
scientific community to attract key industrial actors. As
examples, Orange Labs, British Telecom as well as major
European NRENs already expressed their interest in our
action. Moreover, we believe that it is time for the
scientific community to get involved and contribute to
the OpenStack software in the same way it has been
done for the Linux ecosystem. We hope this initial work
will have a decisive impact in both the scientific and
the open-source community to gather experts around
the same goal. We emphasize this work enabled us
to exchange with the OpenStack foundation and to
take part to different discussions/working groups. For
instance, we are conducting performance evaluations in
order to identify major bottlenecks in the OpenStack
Vanilla code. Finally, we promoted the creation of a new
working group dedicated to the massively distributed
use-case. Being involved in such actions is important
as it allows the community to identify complementary
actions and move forward faster. As an example, IBM
will soon present an evaluation of the use of Redis for
addressing the scheduler scalability issue during the next
OpenStack Summit6.

ACKNOWLEDGMENTS

Most of the materials presented in this article such
as our prototype are available on the Discovery initia-
tive website. Supported by the Inria Project Lab pro-
gram, Discovery is an Open-Science Initiative aiming
at implementing a fully decentralized IaaS manager:
http://beyondtheclouds.github.io.

REFERENCES

[1] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez,
E. Jeannot, E. Jeanvoine, A. Lebre, D. Margery, N. Niclausse,
L. Nussbaum, O. Richard, C. Pérez, F. Quesnel, C. Rohr, and
L. Sarzyniec. Adding Virtualization Capabilities to the Grid’5000
Testbed. In I. Ivanov, M. Sinderen, F. Leymann, and T. Shan,
editors, Cloud Computing and Services Science, volume 367 of
Communications in Computer and Information Science, pages
3–20. Springer International Publishing, 2013.

6https://www.openstack.org/summit/
barcelona-2016/summit-schedule/events/15424/
a-nova-scheduler-for-public-cloud-scale

http://beyondtheclouds.github.io
https://www.openstack.org/summit/barcelona-2016/summit-schedule/events/15424/a-nova-scheduler-for-public-cloud-scale
https://www.openstack.org/summit/barcelona-2016/summit-schedule/events/15424/a-nova-scheduler-for-public-cloud-scale
https://www.openstack.org/summit/barcelona-2016/summit-schedule/events/15424/a-nova-scheduler-for-public-cloud-scale

[2] J. L. Berral, I. n. Goiri, T. D. Nguyen, R. Gavaldá, J. Torres,
and R. Bianchini. Building green cloud services at low cost.
In Proceedings of the 2014 IEEE 34th International Conference
on Distributed Computing Systems, ICDCS ’14, pages 449–460,
Washington, DC, USA, 2014. IEEE Computer Society.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[4] R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud: Utility-
oriented Federation of Cloud Computing Environments for Scal-
ing of Application Services. In 10th Int. Conf. on Algorithms and
Architectures for Parallel Processing - Vol. Part I, ICA3PP’10,
pages 13–31, 2010.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud: Utility-
Oriented Federation of Cloud Computing Environments for Scal-
ing of Application Services. In Algorithms and architectures for
parallel processing, pages 13–31. Springer, 2010.

[6] Cascading OpenStack. https://wiki.openstack.org/wiki/
OpenStack_cascading_solution.

[7] Scaling solutions for OpenStack. http://docs.openstack.org/
openstack-ops/content/scaling.html.

[8] K. Church, A. G. Greenberg, and J. R. Hamilton. On delivering
embarrassingly distributed cloud services. In HotNets, Usenix,
pages 55–60. Citeseer, 2008.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value Store. In ACM
SIGOPS Operating Systems Review, volume 41, pages 205–220.
ACM, 2007.

[10] T. Delaet, W. Joosen, and B. Van Brabant. A survey of system
configuration tools. In LISA, volume 10, pages 1–8, 2010.

[11] F. Farahnakian, P. Liljeberg, T. Pahikkala, J. Plosila, and H. Ten-
hunen. Hierarchical VM Management Architecture for Cloud
Data Centers. In 6th International Conf. on Cloud Computing
Technology and Science (CloudCom), pages 306–311, Dec 2014.

[12] E. Feller, L. Rilling, and C. Morin. Snooze: A Scalable and
Autonomic Virtual Machine Management Framework for Private
Clouds. In 12th IEEE/ACM Int. Symp. on Cluster, Cloud and
Grid Computing (Ccgrid 2012), pages 482–489, 2012.

[13] J. V. H. Gary Cook. How Dirty is Your Data ? Greenpeace
International Report, 2013.

[14] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center Networks.
ACM SIGCOMM Computer Communication Review, 39(1):68–
73, 2008.

[15] P. Hintjens. ZeroMQ: Messaging for Many Applications. "
O’Reilly Media, Inc.", 2013.

[16] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache. Cloud
Service Delivery Across Multiple Cloud Platforms. In Services
Computing (SCC), 2011 IEEE International Conference on,
pages 741–742. IEEE, 2011.

[17] M. Imbert, L. Pouilloux, J. Rouzaud-Cornabas, A. Lèbre, and
T. Hirofuchi. Using the EXECO Toolbox to Perform Automatic
and Reproducible Cloud Experiments. In 1st Int. Workshop on
UsiNg and building ClOud Testbeds (UNICO, collocated with
IEEE CloudCom, Dec. 2013.

[18] B. Kemme and G. Alonso. Database Replication: A Tale of
Research Across Communities. Proc. VLDB Endow., 3(1-2):5–
12, Sept. 2010.

[19] A. Lakshman and P. Malik. Cassandra: A Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[20] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and
K. Tarabanis. Towards a Reference Architecture for Semantically
Interoperable Clouds. In Cloud Computing Technology and Sci-
ence (CloudCom), 2010 IEEE Second International Conference
on, pages 143–150. IEEE, 2010.

[21] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. IaaS
Cloud Architecture: From Virtualized Datacenters to Federated
Cloud Infrastructures. Computer, 45(12):65–72, 2012.

[22] The Open Source, Open Standards Cloud. http://www.openstack.
org.

[23] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li.
Comparison of Several Cloud Computing Platforms. In 2nd Int.
Symp. on Information Science and Engineering (ISISE), pages
23–27, 2009.

[24] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case
for vm-based cloudlets in mobile computing. IEEE pervasive
Computing, 8(4):14–23, 2009.

[25] A. Simonet, A. Lebre, and A. C. Orgerie. Deploying distributed
cloud infrastructures: Who and at what cost? In Proceedings of
the Intercloud Workshop 2016 (co-located with IEEE Interna-
tional Conference on Cloud Engineering), pages 178–183, April
2016.

[26] B. Snyder, D. Bosnanac, and R. Davies. ActiveMQ in Action.
Manning, 2011.

[27] R. Want, B. N. Schilit, and S. Jenson. Enabling the internet of
things. IEEE Computer, 48(1):28–35, 2015.

[28] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz. The cloud is not
enough: Saving iot from the cloud. In 7th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 15), Santa Clara,
CA, July 2015. USENIX Association.

https://wiki.openstack.org/wiki/OpenStack_cascading_solution
https://wiki.openstack.org/wiki/OpenStack_cascading_solution
http://docs.openstack.org/openstack-ops/content/scaling.html
http://docs.openstack.org/openstack-ops/content/scaling.html
http://www.openstack.org
http://www.openstack.org

	Introduction
	Design Considerations
	Broker vs Cooperative Systems
	From Centralized to Distributed
	The Choice of OpenStack

	Revising OpenStack
	Distributing the AMPQ Bus
	Distributing the Databases
	The Nova POC: From MySQL to RedisS

	Experimental Validation
	Impact of Redis w.r.t MySQL
	Time penalties
	Networking penalties

	Multi-site Scenarios
	Compatibility with Advanced Features

	Challenges and Opportunities of Fog/Edge Platforms Managed in an Unified Way
	Locality
	Installation and Upgrade Process
	Peering Agreement
	Cloud Storage
	New Cloud APIs
	Renewable Energies

	Conclusion
	References

