
 

 
 
 
 
 
 
Calder, M., and Miller, A. (2008) An automatic abstraction technique for 
verifying featured, parameterised systems. Theoretical Computer Science, 
404 (3). pp. 235-255. ISSN 0304-3975 
 
 
Copyright © 2008 Elsevier B.V. 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge  
 
The content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s)   
When referring to this work, full bibliographic details must be given 
 
 
 
 
 
http://eprints.gla.ac.uk/40516/ 

 
 
 
 
 
 
Deposited on:  23 April 2013 

 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/78466/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


An automati
 abstra
tion te
hnique forverifying featured, parameterised systemsM. Calder a A. Miller a;�,aDepartment of Computing S
ien
e University of Glasgow, Glasgow, S
otland.G12 8QQAbstra
tA general te
hnique 
ombining model 
he
king and abstra
tion is presented thatallows property based analysis of systems 
onsisting of an arbitrary number of fea-tured 
omponents. We show how parameterised systems 
an be spe
i�ed in a guarded
ommand form with 
onstraints pla
ed on the variables whi
h o

ur in guards. Weprove that results that hold for a small number of 
omponents 
an be shown tos
ale up. We then show how featured systems 
an be spe
i�ed in a similar way, byrelaxing the 
onstraints on the guards. The main result is a generalisation theoremfor featured systems whi
h we apply to two well known examples.
1 Introdu
tionModel-
he
king is a popular and e�e
tive te
hnique for reasoning about dis-tributed, 
on
urrent systems, parti
ularly networks of 
ommuni
ating 
om-ponents. But, there is a limitation { only a single, tra
table model 
an be
he
ked. In this paper we 
onsider the problem of how to relate an individualmodel 
he
king result about a system of �xed size and 
on�guration, to thegeneral 
ase. Namely, does a result for a given system s
ale to a system ofany size { 
an we leverage a general result from a spe
i�
 one? This ques-tion 
annot be answered by model-
he
king alone be
ause it is an example ofthe well known parameterised model 
he
king problem (PMCP) whi
h is, ingeneral, unde
idable [3℄. But, for some 
lasses, we 
an �nd a model-
he
kingsolution. This paper introdu
es a model-
he
king solution for systems of 
om-muni
ating 
omponents. The 
onstraint is that the 
omponents ful�ll 
riteria� Corresponding authorEmail address: ali
e�d
s.gla.a
.uk (A. Miller).Preprint submitted to Theoreti
al Computer S
ien
e 8 August 2005



whi
h allow them to be safely abstra
ted. We 
all this safe with respe
t to theabstra
tion.An example is the following. We 
an prove a property �, say, holds for a modelof a system with 3 
on
urrent 
omponents, p0, p1 p2 i.e. M(p0jjp1jjp2) j= �.Now 
onsider the question, given another 
omponent p3, under what 
ondi-tions does M(p0jjp1jjp2jjp3) j= � hold? More generally, given a �nite numberof further 
omponents, under what 
onditions does the property still hold?How 
an we leverage the proof of the property for the system of �xed size(i.e. for 3 
omponents) to the proof of the more general 
ase? Moreover, whenwould the property not hold?To answer these questions, there are a number of aspe
ts to 
onsider� what is the form of �? Can it refer to propositions about any lo
al or globalvariable, or variables indexed by any 
omponent?� what is the 
ommuni
ation topology of the system? Can the 
omponents
ommuni
ate peer to peer, or in �xed topology su
h as a star or hyper
ube?� what is the relationship between 
omponents? Must they be isomorphi
? Ifnot, what are the 
onstraints on the behaviour of the 
omponents?To illustrate all of these points, 
onsider two paradigms: a network of peerto peer User 
omponents and a network of Client 
omponents with a singleServer 
omponent (see �gure 1). Suppose we 
an show that, in the formerparadigm with four User 
omponents, if two User 
omponents have estab-lished ea
h other as partner they will eventually be
ome 
onne
ted. Wouldthe result hold if there were �ve User 
omponents in the network? Would theresult hold if the property referred to spe
i�
 Users, for example it stated thatUser 1 
ould eventually be 
onne
ted to User 5? Clearly the result would nothold for systems of less than six 
omponents. Similarly, suppose we 
an show,in the se
ond paradigm with three Client 
omponents, that a message sent tothe Server will eventually be delivered to its destination. Would the same betrue if there were more Client 
omponents? What if the Clients had di�erentbehaviour? For example, would the property still hold if some of the Clientshad a forwarding 
apability, or some of the Clients had the ability to invoke aforwarding 
apability on the destination Client? We would expe
t the formerto be true, but not ne
essarily the latter.The aim of our approa
h is a te
hnique whi
h makes these aspe
ts expli
it.The approa
h relies on partitioning 
omponents into two distin
t subsets:
on
rete 
omponents and abstra
t 
omponents. The former are the 
omponentsinvolved in the �xed system analysis, i.e. the 
omponents p0, p1, p2 above. Theabstra
t 
omponents are the remaining 
omponents in the systems of larger orarbitrary size. For example, p3, or more generally, p3 : : : ; pn�1 are the abstra
t
omponents. The property � 
an only refer to global variables, or variables2



Fig. 1. Example Networksindexed by the 
on
rete 
omponents. The 
on
rete and abstra
t 
omponentsdo not need to be isomorphi
, but the abstra
t 
omponents must be safewith respe
t to the abstra
tion in the sense that their presen
e or otherwisedoes not a�e
t the underlying behaviour of the overall system, with respe
tto a given property. The topology is assumed to be either stati
 and regular,or dynami
 and peer to peer (fully 
onne
ted). There is one 
ommuni
ation
hannel asso
iated with ea
h 
omponent.The main 
ontribution of this paper is to de�ne an abstra
tion and prove thatbasi
 
omponents and 
omponents with 
ertain 
ategories of features whi
h
onform to synta
ti
 
riteria are safe with respe
t to our abstra
tion.1.1 Overview of paperIn the next se
tion we review ba
kground material, e.g. parameterised systems,features, Kripke stru
tures, temporal logi
s and model 
he
king. In se
tion 3we give an overview of our approa
h to solving PMCP by abstra
tion andintrodu
e the 
on
ept of a safe 
omponent. In se
tion 4 the approa
h is devel-oped in more detail for basi
 parameterised systems. We apply the te
hniquesto two example systems: peer to peer telephony and 
lient-server email anddemonstrate that the 
omponents in these systems are safe with respe
t tothe abstra
tion. In se
tion 5 we extend the abstra
tion approa
h to featuredsystems. We extend the two examples to more 
omplex ones with features. Weshow that when the features 
onform to 
ertain synta
ti
 
riteria, the 
om-ponents are still safe, thus we 
an again solve PMCP. In se
tion 6 we dis
ussthe impli
ations of our approa
h for failed formulae, i.e. what 
an we 
on
ludewhen a property fails to be satis�ed. Automation and experimental results aredis
ussed in se
tion 7, related work is dis
ussed in se
tion 8 and 
on
lusions3



are given in se
tion 9.2 Ba
kground2.1 Parameterised systems and network invariantsThe type of system we are interested in is parameterised, 
on
urrent sys-tems. A parameterised system has the form Sn = p0jjp1jj : : : jjpn�1 or Sn =Cjjp0jjp1jj : : : jjpn�2 where p0; p1; : : : ; pn�1 are instantiations of the same pa-rameterised pro
ess p, and C a distinguished 
ontext pro
ess (sometimes 
alledan environment pro
ess) { for example a hub or server pro
ess. jj is parallel
omposition. The veri�
ation of su
h systems - that is, the proof that proper-ties hold for su
h systems for any value of n greater than some lower bound n0,is both 
hallenging and important. Parameterised systems o

ur frequently {in distributed algorithms for example.It is not possible to verify su
h systems (for any n) using model 
he
kingalone [3℄. However, one approa
h that has proved su

essful for verifyingsome parameterised systems involves the 
onstru
tion of a network invari-ant [6,29,15℄. The network invariant I represents an arbitrary member of thefamily F = fSn : n � n0g and proof of a given property � for I 
an be shownto imply that any member of the family F satis�es �.Some other te
hniques that have been used to verify parameterised systemsin
lude those based on theorem proving [17℄, on abstra
tion [27℄, or on a
ombination of the two [28℄. A further method is to use expli
it indu
tivete
hniques 
ombined with model 
he
king [23,20,32,35℄.We introdu
e an invariant-based approa
h whi
h 
ombines abstra
tion and in-du
tion to verify parameterised systems. Our invariant pro
ess is 
onstru
tedby modifying a Promela spe
i�
ation for a network of �xed size, and usingSPIN to 
onstru
t the 
orresponding Kripke stru
ture. Our approa
h is an ex-ample of how an invariant pro
esses 
an be 
onstru
ted in pra
ti
e, to extendresults proved for small, �xed sized models, to results whi
h hold for modelsof any size.We show how our approa
h 
an be extended to systems in whi
h 
omponentsare still expressed in a well-de�ned way, but individual 
omponents may bedistinguished by way of features.Like all network invariant approa
hes, this approa
h is limited to systemswith a regular topology, whi
h grow in a regular way as the number of 
ompo-4



nents in
reases. The example networks we 
onsider have either a peer to peertopology (a telephone system) or a 
lient-server topology (email). We 
hooseasyn
hronous 
ommuni
ation to re
e
t realisti
 systems, and allow dynami

ommuni
ation (
hannels are passed on 
hannels).2.2 FeaturesNetwork 
omponents may have di�erent fun
tionality. The me
hanism forstru
turing fun
tionality additional to a basi
 behaviour is 
ommonly 
alleda feature. The 
on
ept originated in telephony where features su
h as 
allforwarding, ring ba
k when free, et
. are added to a basi
 
all behaviour.Features fundamentally a�e
t basi
 behaviour in di�erent ways, and so 
om-ponents with features are not, in general, isomorphi
. Moreover, the featuresasso
iated with one 
omponent 
an a�e
t the behaviour of other (possiblyfeatured) 
omponents.A parameterised 
omponent is said to subs
ribe to a feature f (belonging toa given set of features), and a parameterised system Sn = p0jjp1jj : : : jjpn�1(or Cjjp0jjp1jj : : : jjpn�2) is featured when (at least one of) the 
omponents p0,p1; : : : ; pn�1 (or C, p0, p1; : : : ; pn�2) subs
ribes to at least one feature.2.3 Temporal logi
We provide a des
ription of the syntax and semanti
s of the logi
s CTL� andLTL. We use LTL to de�ne our parti
ular properties of simple telephone andemail systems in se
tion 4.4.The logi
 CTL� is de�ned as a set of state formulas, where the CTL� state andpath formulas are de�ned indu
tively below. The quanti�ers A and E are usedto denote for all paths, and for some path respe
tively (where E� = :A:�).In addition, X, [, hi and [℄ represent the standard nexttime, strong until,eventually and always operators (where hi� = true [ � and [℄� = :hi:�respe
tively). Let AP be a �nite set of propositions. Then� for all p 2 AP , p is a state formula� if � and  are state formulas, then so are :�, � ^  and � _  � if � is a path formula, then A� and E� are state formulas� any state formula � is also a path formula� if � and  are path formulas, then so are :�, � ^  and � _  , X�, � [  ,hi� and [℄f .The logi
 LTL is obtained by restri
ting the set of (CTL�) formulas to those5



of the form A�, where � does not 
ontain A or E. When referring to an LTLformula, one generally omits the A operator and instead interprets the formula� as \for all paths �".For a model M, if the CTL� formula � holds at a state s 2 S then we writeM; s j= � (or simply s j= � when the identity of the model is 
lear from the
ontext). The relation j= is de�ned indu
tively below. Note that for a path� = s0; s1; : : :, starting at s0, �rst(�) = s0 and, for all i � 0, �i is the suÆx of� starting from state si.� s j= p, for p 2 AP if and only if p 2 L(s)� s j= :� if and only if not s j= � s j= � ^  if and only if s j= � and s j=  ,and s j= � _  if and only if s j= � or s j=  � s j= A� if and only if � j= � for every path � starting at s� � j= �, for any state formula �, if and only if �rst(�) j= �� � j= :� if and only if not � j= � � j= �^ if and only if � j= � and � j=  ,and � j= � _  if and only if � j= � or � j=  � � j= �[ if and only if, for some i � 0, �i j=  and � j= � for all 0 � j � i� � j= X� if and only if �1 j= �� � j= hi� if and only if �i j= �, for some i � 0� � j= [℄� if and only if �i j= �, for all i � 0 .2.4 Kripke stru
turesModel 
he
king involves 
he
king Kripke stru
tures [14℄ to verify given tem-poral properties.De�nition 1 Let AP be a set of atomi
 propositions. A Kripke stru
ture overAP is a tuple M = (S; S0; R; L) where S � S is a �nite set of states, S0 isthe set of initial states, R � S � S is a transition relation and L : S ! 2APis a fun
tion that labels ea
h state with the set of atomi
 propositions true inthat state.From here on we will assume that all models have a single initial state s0.That is, we assume that S0 = fs0g. We write M j= � to represent s0 j= �.We also assume that the transition is total, that is, for all s 2 S there is somes0 2 S su
h that (s; s0) 2 R.De�nition 2 Given two Kripke stru
tures M and M0 with AP � AP 0, arelation H � S � S 0 is a simulation relation between M and M0 if and onlyif for all s and s0, if H(s; s0) then(1) L(s) \ AP 0 = L0(s0)(2) For every state s1 su
h that R(s; s1), there is a state s01 with the property6



that R0(s0; s01) and H(s1; s01).If H(s0; s00), we say that M0 simulates M and write M�M0.The following is derived from a well known result [14℄.Lemma 3 Suppose that M � M0. Then for every LTL formula � withatomi
 propositions in AP 0, M0 j= � implies M j= �.2.5 Symmetry GroupsIn this se
tion we summarise some de�nitions from group theory whi
h wewill use to de�ne open symmetri
 
omponents in se
tion 4.De�nition 4 Let G be a non-empty set, and let Æ : G� G ! G be a binaryoperation. We say that (G; Æ) is a group if G is 
losed under Æ; Æ is asso
iative;G has an identity element 1G; and for ea
h element x 2 G there is an inverseelement x�1 2 G su
h that x Æ x�1 = x�1 Æ x = 1G.We 
all the operation Æ multipli
ation in G. When it is 
lear what the binaryoperation is, we simply refer to a group as G rather than (G; Æ), and use
on
atenation to denote multipli
ation.De�nition 5 Let X be a �nite set. A permutation of X is a bije
tion fromX to X. The set of all permutations of X, Sym(X), forms a group under
omposition of mappings. For any x 2 X, and any � 2 Sym(X), we denotethe image of x under � by �(x).2.6 Promela and SPINPromela is an imperative language with 
onstru
ts for 
on
urren
y, nonde-terminism, asyn
hronous and syn
hronous 
ommuni
ation, dynami
 pro
ess
reation, parameterised pro
esses, and mobile 
onne
tions, i.e. 
ommuni
ation
hannels 
an be passed along other 
ommuni
ation 
hannels. SPIN is the be-spoke model-
he
ker for Promela and provides several reasoning me
hanisms:assertion 
he
king, a

eptan
e and progress states and 
y
le dete
tion, andsatisfa
tion of temporal properties.Given a Promela parameterised system system with form Sn = p0jjp1jj : : : jjpn�1(or or Cjjp0jjp1jj : : : jjpn�2), the asso
iated model, or Kripke stru
ture, is de-noted byMn. In order to perform veri�
ation on a model, SPIN translates ea
hpro
ess template into a �nite automaton and then 
omputes an asyn
hronous7



interleaving produ
t of these automata to obtain the global behaviour of the
on
urrent system. This interleaving produ
t is referred to as the state-spa
e.As well as enabling a sear
h of the state-spa
e to 
he
k for deadlo
k, asser-tion violations et
., SPIN allows the 
he
king of the satisfa
tion of an LTLformula over all exe
ution paths. The me
hanism for doing this is via never
laims { pro
esses whi
h des
ribe undesirable behaviour, and B�u
hi automata{ automata that a

ept a system exe
ution if and only if that exe
ution for
esit to pass through one or more of its a

epting states in�nitely often [26,24℄.Che
king satisfa
tion of a formula involves the depth-�rst sear
h of the syn-
hronous produ
t of the automaton 
orresponding to the 
on
urrent system(model) and the B�u
hi automaton 
orresponding to the never-
laim.Note that in Promela, the symbol `!' is used to denote negation. We use thisform when referring to LTL properties, or propositions in Promela.2.7 Guarded Command formFor reasoning purposes, we require to assume that 
omponents are de�nedin a given, well de�ned way. Namely, we assume the guarded 
ommand, GC,form whi
h 
onsists of one, global loop over a 
hoi
e of statements of theform guard ! 
ommand. Guards will be over-lapping when the system be-haviour is non-deterministi
. The pre
ise de�nition of the form depends uponthe spe
i�
ation language; we have de�ned it for Promela. In fa
t, we assumethat ea
h 
omponent type is de�ned within a pro
ess (spe
i�
ally a pro
-type de
laration) and (modulo initial variable set up) the pro
type de�nitionsthemselves have guarded 
ommand form. In the Promela form, we add addi-tional program 
ounter variables, p 
, to represent lo
al program 
ontrol. Wenote that in some model 
he
king tools (e.g. Mur� [18℄ and SMV [33℄), modelsare spe
i�ed dire
tly in this form.Some examples of programs expressed in this modular guarded 
ommand formare given in se
tion 4.3. Note, the Promela do : : : od 
onstru
t provides away of expressing a loop in whi
h 
ommands are repeatedly sele
ted non-deterministi
ally until a break statement is exe
uted (there are no breakstatements in our examples). Choi
es are denoted :: statement. In addition,Promela allows us to group together statements that should be exe
uted atthe same time (i.e. before another 
omponent exe
utes a transition) using anatomi
 statement. We will hen
eforth therefore assume that statement 
hoi
esare expressed thus: :: atomi
fguard! 
ommandg. 8



Fig. 2. Peer to peer abstra
tionWe assume that atomi
 statements 
an not blo
k (stri
tly, they 
an blo
k onthe �rst statement). This means that if a statement 
hoi
e has a 
ommandwhi
h involves writing to (reading from) a 
hannel (
han say), we must be surethat 
han is not full (empty). Thus the 
orresponding guard must in
lude theproposition nfull(
han) (nempty(
han)).
3 The Abstra
tion approa
h and safe 
omponents3.1 Abstra
tion of parameterised systemsGiven a parameterised system Sn of size n, with asso
iated model Mn, anda �xed m (1 � m � n), we partition the system 
omponents into m 
on
rete
omponents and n-m abstra
t 
omponents. We en
apsulate the observablebehaviour of the abstra
t 
omponents, with respe
t to to a given property,by a new 
omponent 
alled Abs and repla
e all the abstra
t 
omponents byAbs. Sin
e the 
on
rete 
omponents may 
ommuni
ate dire
tly with abstra
t
omponents, we may require to modify the 
ommuni
ation to/from 
on
rete
omponents. The new abstra
t system is p00jj : : : jjp0m�1jjAbs (or, when thereis a 
ontext 
omponent, C 0jjp00jj : : : jjp0m�2jjAbs) where (C 0 and) the p0i denotesuitably altered 
on
rete 
omponents. The asso
iated model is denoted byMmabs.We illustrate the abstra
tion approa
h for a peer to peer network, and a 
lient-server network in Figures 2 and 3 respe
tively.9



Fig. 3. Client-server abstra
tion3.2 Safe 
omponentsBefore we des
ribe our abstra
tion approa
h in detail, we de�ne what is meantby a safe 
omponent with respe
t to our abstra
tion. Assume that the abstra
tmodel is Mmabs.De�nition 6 Given a parameterised system Sn, m (1 � m � n), and formula� indexed by elements of f0; : : : ; m � 1g, the 
omponents of Sn are safe withrespe
t to Mmabs if and only ifMmabs j= �) 8n:Mn j= �:In other words, 
omponents are safe with respe
t to the abstra
tion if abstra
-tion of 
omponents indexed fm; : : : ; n�1g does not alter the behaviour of thesystem, with respe
t to �.Note that the term safe here means the same as abstra
table (i.e. our methodis appli
able). We prefer safe be
ause it 
aptures the notion that, unless stri
tguidelines are followed, abstra
tability (safety) will be violated. In the remain-der of this paper we omit the 
ondition with respe
t to the abstra
tion, whenit is 
lear from the 
ontext.In the next se
tion we des
ribe our assumptions on the way basi
 parame-terised systems are spe
i�ed, and show how abstra
t models are 
onstru
tedfor su
h systems in su
h a way as to preserve given properties. Thus we demon-strate that basi
 
omponents are safe with respe
t to our abstra
tion approa
h.In se
tion 5 we extend the approa
h to featured systems and show that if thefeatures are restri
ted in some way, the 
omponents remain safe.10



4 Abstra
tion of basi
 parameterised systemsWe assume that all models are spe
i�ed in modular GC form (see se
tion 2.7).Model des
riptions 
onsist of either n � 1 instantiations of a single modulede
laration, or a single instantiation of a 
ontext module de
laration togetherwith n� 2 instantiations of a further module de
laration.Lo
al variables asso
iated with ea
h 
omponent are either: p-variables, the val-ues of whi
h are drawn from the set of 
omponent indi
es V = fD; 0; 1; : : : ; mg;
-variables, the values of whi
h are 
hannel names; and standard variables(variables whi
h are not p-variables or 
-variables) of �nite type. The valueD is a default value whi
h is 
hosen to take the value of the smallest positivevalue not equal to any 
omponent index. (In the unabstra
ted 
ase this is n.)We restri
t our attention to indexed 
omponents whose behaviour does notdepend upon a given index value, we refer to this as \open symmetry", seede�nition 7 below. Note that, if  is a statement 
hoi
e, and � 2 Sym(V ) apermutation (see de�nition 5), then �( ) is a statement 
hoi
e obtained from by(1) repla
ing all propositions x == val1, where x is a p variable and val1 2V , 
ontained in the guard of  , with x == �(val1), and(2) repla
ing all assignments of the form y = val2 , where y is a p variableand val2 2 V 
ontained in the 
ommand of  , with y == �(val2).De�nition 7 LetMn be the model asso
iated with a system of n 
omponents,expressed in GC form, and let V denote the set of 
omponent indi
es. A setof parameterised 
omponents is 
alled open symmetri
 if for any statement
hoi
e  
ontained in a 
omponent spe
i�
ation, �( ) is also 
ontained in the
omponent spe
i�
ation, for all � 2 Sym(V ).As an example, the single statement (x == 1)! y = 42, would violate opensymmetry (unless there were also statements (x == 0) ! y = 0, (x ==0) ! y = 1 et
., for every permutation), but the statement (x == y) ! x =partner[z℄ would preserve open symmetry.De�nition 8 Components of a system are said to be basi
 if they are opensymmetri
 and satisfy the following 
onditions:(1) The only global variables present in the system are 
hannels or variablesthat are used for veri�
ation purposes only. All 
hannels are �nite bu�ers,and there is one 
hannel asso
iated with ea
h 
omponent. Variables thatare used for veri�
ation purposes only do not appear in guards.(2) Ea
h 
omponent has, amongst its lo
al variables, the standard variablep 
, denoting its program 
ounter. In addition, all 
omponents (ex
ept11



possibly the 
ontext 
omponent, when one exists) have the p-variable sel�ddenoting the 
omponent index. No operations on this variable are permit-ted. The value of any other p-variables (general p-variables) 
an only be
hanged by reading from a 
hannel, or via non-deterministi
 
hoi
e. Noother operations, apart from resetting to D, are permitted. In addition,lo
al variables may in
lude 
-variables whi
h denote the 
hannel namesasso
iated with the 
omponent itself and the 
omponent with whi
h the
urrent 
omponent is 
ommuni
ating. Operations on these variables arerestri
ted as for sel�d and general p-variables respe
tively.(3) All statement 
hoi
es within the model spe
i�
ation of basi
 parameterisedsystems are assumed to have the form::: atomi
f((lo
alprop)&&(varprop))! 
ommandgwhere lo
alprop and varprop are 
onjun
tions of propositions 
on
ern-ing lo
al variables of a 
omponent, and global variables (
hannels) re-spe
tively. We assume that in all 
ases varprop 
ontains only proposi-tions 
on
erning the 
omponents own 
hannel and/or any other 
hannel.These propositions may only take the form of a 
he
k on the status ofa 
hannel (whether it is full, empty et
.), or a poll, whi
h has the form
han name?[
onst℄ and takes the value true if the next message on the
hannel with name 
han name has value equal to the 
onstant 
onst, andfalse otherwise.4.1 Constru
ting the abstra
t modelIn this se
tion we show how the 
on
rete 
omponents are modi�ed and howthe abstra
t pro
ess Abs is 
onstru
ted. In se
tion 4.2 we show that due tothe nature of our 
onstru
tion of the abstra
t system, basi
 
omponents, asde�ned above, are safe.In all 
ases we have a �xed number of 
on
rete 
omponents (m say). The totalnumber of 
omponents is N = m + 1. The abstra
t 
omponent is assumed tohave index Absid whi
h is set to m, and asso
iated 
hannel abs 
hannel. Thedefault value D is set to Absid + 1. There is one 
hannel for ea
h 
on
rete
omponent.We start with peer to peer networks. In this 
ase, all 
on
rete 
omponentshave the same form and are modi�ed in the same way.Re
all, any statement 
hoi
e in the 
omponent spe
i�
ation has the form:: atomi
f((lo
alprop)&&(varprop))! 
ommandg12



If a statement 
hoi
e 
ontains no propositions 
on
erning global variables (i.e.varprop is empty) and the 
orresponding 
ommand involves updating lo
alstandard variables or resetting p variables to D only, the statement 
hoi
e isun
hanged in the modi�ed 
omponent.Suppose that varprop is empty and 
ommand involves updating (not reset-ting) lo
al p-variables to a value from V n D or updating a 
-variable. Weassume that a given 
ommand updates all p-variables to the same value, andany 
-variables to the same value. If a 
ommand 
ontains updates to bothp-variables and 
-variables then the 
-variables are updated to the 
hannelname asso
iated with the value to whi
h the p-variables are updated. Sin
eour 
omponents are assumed to be open symmetri
, the original 
omponentspe
i�
ation will 
ontain n equivalent statements, one for ea
h 
omponent in-dex. For example, suppose the 
omponent spe
i�
ation 
ontains the statement
hoi
e: :: atomi
f(p 
 == 4)! partnerid = 0; partner = zerogwhere zero is the 
hannel name asso
iated with the 
omponent with index 0.Then the 
omponent spe
i�
ation will also 
ontain the statement 
hoi
es::: atomi
f(p 
 == 4)! partnerid = 1; partner = oneg:: atomi
f(p 
 == 4)! partnerid = 2; partner = twoget
. (Note that p 
 is a standard variable, and so is not permuted.) This listof statements should be repla
ed with a list of m statement 
hoi
es, 
orre-sponding to sele
ting partnerid as 0, 1, up to m � 1 together with a �nalstatement:atomi
f(p 
 == 4)! partnerid = Absid; partner = abs 
hannelgStatement 
hoi
es in whi
h the varprop is non-empty 
ontains a proposition
on
erning the status of a 
hannel (whether it 
ontains a given message, forexample). We 
onsider the 
ase where varprop is non-empty and 
ommanddoes not involve reading or writing from/to 
hannels. Suppose a statement
hoi
e has asso
iated varprop whi
h only 
ontains propositions 
on
erningself . The statement 
hoi
e should be left un
hanged if the value of partnerid(or partner) is 
urrently set to the default value (i.e. a 
ommuni
ation hasyet to be established). However, if 
ommuni
ation has been established, thestatement 
hoi
e should be repla
ed by a set of statement 
hoi
es. The �rst
hoi
e is simply the original 
hoi
e in whi
h the guard is enhan
ed with theproposition (partner! = abs 
hannel) (or (partnerid! = Absid)). In the other
hoi
es the proposition (partner == abs 
hannel) (or (partnerid == Absid))is added to the guard and the proposition querying the status of self is re-13



moved. Ea
h 
hoi
e will have a di�erent 
ommand depending on the assumedstatus of the 
hannel. For example, 
onsider the statement 
hoi
e::: atomi
f((p 
 == 2)&&(self?[eval(partner)℄))!MY STATE = talk; p 
 = 4gwhi
h would blo
k if 
hannel self did not 
ontain the 
urrent value of partner(in Promela, eval(partner) is a 
onstant assigned to the 
hannel name 
ur-rently assigned to the 
-variable partner). This would be repla
ed by thestatement 
hoi
es::: atomi
f((p 
 == 2)&&(partner! = abs 
hannel)&&(self?[eval(partner)℄))!MY STATE = talk; p 
 = 4g:: atomi
f((p 
 == 2)&&(partner == abs 
hannel))!MY STATE = talk; p 
 = 4g:: atomi
f((p 
 == 2)&&(partner == abs 
hannel))! p 
 = 2gAll statement 
hoi
es in whi
h the varprop 
ontains a query of partner and
ommand do not involve a read from, or write to, a 
hannel, are treated inthe same way.If 
ommand involves a read from or write to partner after 
ommuni
ationhas been established then, sin
e we have assumed that (atomi
) statement
hoi
es will not blo
k, varprop will be non-empty. Assume that varprop only
ontains the asso
iated proposition (nempty(partner)), or (nfull(partner)).The statement 
hoi
e should be repla
ed by three 
hoi
es. In the �rst 
hoi
e,as before, the guard is enhan
ed with the proposition (partnerid! = Absid) (orequivalently, (partner! = abs 
hannel)) and the 
ommand un
hanged. In theother 
hoi
es, we add the proposition (partnerid == Absid) (or (partner ==abs 
hannel)) to the guard and remove the asso
iated (nempty(partner)), or(nfull(partner)) proposition from the guard. In the se
ond statement 
hoi
ewe assume that read (from partner) or write (to partner) is enabled, and the
ommand simply has the read or write 
ommand removed (we refer to thisas a virtual read or write.) In the third 
hoi
e we assume that the read orwrite statement is not enabled, and so the 
ommand is repla
ed with a simple
ommand to keep p 
 at its 
urrent value.We have des
ribed how simple statement 
hoi
es are repla
ed in the modi�ed
on
rete 
omponents. Clearly statement 
hoi
es 
an be more 
ompli
ated (theguard may 
ontain a non-empty varprop and 
ommand an assignment ofa value to a p-variable, for example). However, by iteratively applying the14



simple modi�
ations, the more 
omplex statement 
hoi
es 
an be modi�ed ina natural way.In 
lient-server networks, the 
on
rete 
lient 
omponents require little modi�-
ation, sin
e they 
ommuni
ate only via the server 
omponent. However, whensele
ting a destination for messages, for example, they must now 
hoose fromthe set of 
on
rete 
lient 
omponents together with the abstra
t 
omponent.The server 
omponent however, requires more modi�
ation. Communi
ationwith the 
on
rete 
lients is un
hanged, but 
ommuni
ation with the abstra
t
omponent is modi�ed as for the 
on
rete 
omponents in the peer to peernetworks (see Figure 3).Note that (in either network topology) an alternative solution to de
idingwhether or not a write (say) to an abstra
t partner is blo
ked (other than
hoosing non-deterministi
ally), is to in
lude a global variable blo
ked say,whi
h is non-deterministi
ally set to 0 or 1 by the abstra
t pro
ess. In ourabstra
t email example (see se
tion 4.3) we use this alternative approa
h.Finally we show how the abstra
t pro
ess, Abs is 
onstru
ted.The role of the abstra
t pro
ess is to initiate messages. Therefore, Abs pla
esmessages on the 
hannels of any 
on
rete 
omponent with whi
h it 
an dire
tly
ommuni
ate. In a peer to peer network this in
ludes all 
on
rete 
omponents,and an a 
lient-server network this only in
ludes the server 
omponent (via thenetwork 
hannel). In our telephone example (see se
tion 4.3) there is no morebehaviour asso
iated with Abs. In the email example, the Abs 
omponent alsohas the ability to set the blo
ked variable (see above).4.2 Proving that basi
 
omponents are safeWe show that basi
 
omponents, as de�ned in de�nition 8 are safe.Theorem 9 Given a parameterised systemSn = p0jjp1jj : : : jjpn�1 or Cjjp0jjp1jj : : : jjpn�2with modelMn, m (1 � m � n), abstra
t modelMmabs 
onstru
ted as des
ribedabove, and formula � indexed by elements of f0; : : : ; m�1g, if the 
omponentsof Sn are basi
, then they are safe.Proof (sket
h) The 
omponents are safe if Mn � Mmabs. The simulation fol-lows from the 
onstru
tion of Mmabs as des
ribed above: ea
h statement in theunabstra
ted spe
i�
ation 
an be mat
hed (or repla
ed) by a statement in theabstra
ted spe
i�
ation. At the model level, the mat
hing is best illustrated15



Fig. 4. Data abstra
tion

Fig. 5. Behavioural abstra
tion
Fig. 6. Stutteringby Figures 4, 5 and 6. Figure 4 illustrates data abstra
tion [16℄, where a 
hoi
eover n possibilities is mat
hed by m + 1 possibilities, and when appropriate,N represents the values fm; : : : ; n � 1g. Figure 5 illustrates behavioural ab-stra
tion: a 
hoi
e over (sub) paths of arbitrary length is mat
hed by a loop.Note that when this kind of loop is required, for example in the email systemto represent the possibility of blo
king, then some liveness properties may nothold in the abstra
ted model (see se
tion 6). Figure 6 illustrates another formof behavioural abstra
tion: stuttering. States s1 and s2 are distin
t states, butthey are both mat
hed by t1 be
ause the transition from s1 to s2 results froman update to a variable that does not 
hange in the abstra
t model. For exam-ple, this 
ould 
orrespond to the 
ase of empty 
ommands in the abstra
tedmodel, representing, say, virtual read or writes to 
ommuni
ation 
hannels.We now present some examples in detail.16



Fig. 7. Example telephone and email systems4.3 Some ExamplesWe illustrate our approa
h via a simple telephone system and a simple emailsystem. We �rst des
ribe the systems informally together with a property thatwe wish to verify in ea
h 
ase. We then provide Promela des
riptions of thesystems in modular guarded 
ommand form and show how these des
riptionsare modi�ed to 
reate an abstra
t spe
i�
ation in ea
h 
ase.4.3.1 An informal des
ription of the simple telephone and email systemsThe telephone system 
onsists of four instantiations of a User pro
ess, there isno 
ontext pro
ess. Pro
esses are parameterised via pro
ess identi�er (sel�d)and designated 
hannel name (self ). The email system 
onsists of four in-stantiations of a Client pro
ess whi
h 
ommuni
ate via a server pro
ess (theNetwork Mailer pro
ess). The topologies are illustrated in Figure 7. Note thatarrows indi
ate the dire
tion of 
ommuni
ation, not ownership of 
hannels.In the simple telephone system User 
omponents 
hange state (between idle,
alling and talk) as a result of 
ommuni
ation with other pro
esses (see Figure8). Suppose a User is in the idle state. It will �rst 
he
k to see if their own
hannel is empty, and, if so, 
hoose a partner whose 
hannel is also empty. Itthen pla
es its own 
hannel name self on both its own 
hannel and that oftheir partner, and pro
eed to the 
alling state to wait for a \reply". The Userdete
ts a reply when the 
ontents of its 
hannel have been repla
ed with the
hannel name of partner, and pro
eeds to the talk state. On
e in the talk state,as the initiator of the 
all, the User 
an end the 
all (hang up) by repla
ingthe message on its partner's 
hannel with the partner's 
hannel name, andremoving the 
ontents of self. Alternatively, a User in the idle state that hasa full 
hannel will repla
e the 
ontents of its partners 
hannel with self and17



Fig. 8. State transition diagram for simple telephone system (User 
omponent)pro
eed straight to the talk state. The User then waits for its partner to hangup, removes the 
ontents of self and returns to idle. An example property forthe simple telephone system is:Property 1 If User [0℄ has User [1℄ as its partner, and User [1℄ has User [0℄ asits partner, then User [0℄ and User [1℄ will be 
onne
ted before one of themreturns to the idle state.In the email example, the Client 
omponents move between two states, namelyinitial and end Client (see Figure 9(a)). If a Client 
omponent in the initialstate re
eives a message, it reads the message, re
ords the identity of theintended re
ipient, and moves to the end 
lient state. In end 
lient the valueof this re
ord is reset and the Client returns to the idle state. From the initialstate the Network Mailer pro
ess 
ontinuously loops around a single stateto 
he
k if there are any messages on its asso
iated 
hannel (network), andif so, whether the 
hannel asso
iated with the next message on the 
hannelis not full. If so, the message is passed on a

ordingly. (See Figure 9(b).) Anexample property for the simple email system is:Property 2 All messages re
eived by Client[0℄ are addressed to Client[0℄.4.4 Promela spe
i�
ations for example systemsPromela spe
i�
ations for the simple telephone and email systems (expressedin modular guarded form) are given below. Note that this is not the most nat-ural way to express Promela programs - it prevents us from using goto state-ments and labels for example (thus in pra
ti
e we transform a given Promelaspe
i�
ation into this form). Assuming Kripke stru
tures M4 asso
iated withthese spe
i�
ations, we show how these simple programs are be adapted to
onstru
t abstra
t spe
i�
ations, with asso
iated models M2abs in ea
h 
ase.18



Fig. 9. State transition diagram for simple email systemThe Promela spe
i�
ation for the simple four User telephone system is givenin Figure 10; property 1 is given by:[℄((s ^ t)!!((!r) [ (v _ w)))Here r is (
onne
ted[0℄:to[1℄ == 1), s is (partner[0℄ == one), t is(partner[1℄ == zero), v is MY STATE[0℄ == idle and w is(MY STATE[1℄ == idle).Here 
onne
ted:to is an array, the elements of whi
h are variables used forreasoning purposes only (and so do not appear in guards). When a 
onne
tionhas been established between i and j, 
onne
ted[i℄:[j℄ is set to 1 and is (re)setto 0 otherwise. The partner variables are global here. This is to allow theirvalues to be \visible" to the never-
laim. In all other ways they are treated thesame as the lo
al 
hannel names partner des
ribed in se
tion 4. The globalvariable array MY STATE is also used for veri�
ation purposes only.The Promela spe
i�
ation for the simple email system 
onsisting of threeClient 
omponents and the Network Mailer 
omponent is given in Figure11; property 2 is given by: [℄(p _ q)where p is (last del to to[1 ℄ == 1 ), and q is (last del to to[1 ℄ == M ). Here,last del to to is for veri�
ation purposes only and re
ords the identity of theintended re
ipient; M is a default value.19



Fig. 10. Promela spe
i�
ation for telephone example with four User 
omponents4.4.1 The example abstra
t modelsThe abstra
t Promela spe
i�
ations are given in full in Figures 12 and 13. Notethat in the email example, no abstra
t 
hannel is required be
ause 
hannel20



Fig. 11. Promela spe
i�
ation for email example with four Client 
omponents anda Network Mailer 
omponentnames are not passed between 
omponents, and all messages delivered to theabstra
t pro
ess are virtual (see se
tion 4.1).5 Adding FeaturesFeatures are a me
hanism for stru
turing fun
tionality additional to a basi
behaviour (see se
tion 2.2). 21



Fig. 12. Promela spe
i�
ation for telephone example with abstra
tion22



Fig. 13. Promela spe
i�
ation for email example with abstra
tionWe have added features to a basi
 telephone system and email system [8,10℄.Note that these spe
i�
ations are far more 
omplex than those given in se
tion4.3, whi
h were provided merely to illustrate the basi
 approa
h. We thereforegive only an overview here of the relevant aspe
ts and assumptions. Lists offeatures for ea
h of these systems are given in tables 1 and 2; D is a defaultvalue and we assume i 6= j.We add features to 
omponents, via feature arrays whi
h determine whi
h fea-tures are subs
ribed to by whi
h 
omponents. Thus additional global variables23



Feature Des
riptionCall forwarding un
onditionally (CFU) If CFU [i℄ == j, all 
alls for User [i℄are forwarded to User [j℄Call forwarding on busy (CFB) If CFB[i℄ == j, ifUser [i℄ is busy thenall 
alls for User [i℄ are forwarded toUser [j℄Outgoing dial s
reening (ODS) If ODS[i℄ == j, then User [i℄ may notdial User [j℄'s numberOutgoing 
all s
reening (OCS) If OCS[i℄ == j, then a 
all fromUser [i℄ to User [j℄ is not possibleTerminating 
all s
reening (TCS) If TCS[i℄ == j, then a 
all fromUser [j℄ to User [i℄ is not possibleRing ba
k when free (RBWF) If RBWF [i℄! = D, and User [i℄ re-quests a ringba
k to User [j℄ thena ringba
k (from User [i℄) will ensuewhen User [j℄ be
omes freeOutgoing 
alls only (OCO) If OCO[i℄! = D then User [i℄ may notre
eive any 
allsTerminating 
alls only (TCO) If TCO[i℄! = D then User [i℄ may notinitiate any 
allsReturn when free (RWF) If RBW [i℄! = D, and User [j℄ requestsa ringba
k to User [i℄ then a ringba
k(from User [i℄) will ensue when User [i℄be
omes freeTable 1Features (telephone system)are now allowed to appear in guards. This is the major di�eren
e between basi

omponents and featured 
omponents.Suppose then that all global variables are 
hannels or have the form glob var[i℄,for some i 2 V . For any global variable glob var[i℄ we assume that thereexist global variables glob var[j℄ for all j 2 V . We assume that all globalvariables glob var are feature related (either 
on
erning the elements of afeature array, or a feature-
ag array, see se
tion 5.1 below) or are used forveri�
ation purposes only (and so do not appear in guards, as before).Now we assume that all statement 
hoi
es have the form::: atomi
f((feature prop)&&(lo
alprop)&&(varprop))! 
ommandgwhere feature prop is either empty, or refers to feature related global variables.If feature prop is not empty, we refer to the statement 
hoi
e as a featurestatement 
hoi
e, otherwise it is a basi
 statement 
hoi
e.No 
omponent with index i 
an 
arry out any operation on a global variableglob var[j℄, for any j 2 V; j 6= i, unless glob var is a feature-
ag array and theoperation o

urs within a feature statement 
hoi
e.24



Feature Des
riptionEn
ryption (ENC) If ENC[i℄! = D then all messages sent by Client[i℄ willbe en
ryptedDe
ryption (DEC) If DEC[i℄! = D then Client[i℄ 
an de
rypt all messagesdelivered to Client[i℄Filtering (FT) If FT [i℄ == j then all messages sent to Client[i℄ byClient[j℄ will not be deliveredForwarding (FW) If FW [i℄ == j then all messages sent to Client[i℄ will beforwarded to Client[j℄Autorespond (AR) If AR[i℄! = D then the �rst time Client[j℄ sends a mes-sage to Client[i℄, an autoresponse message will be sent toClient[j℄Mailhost (MH) If Client[i℄ is not on the mailhost list, it 
an not re
eivemessagesRemail (RM) If RM [i℄! = D then all messages sent by Client[i℄ will bedelivered under Client[i℄'s pseudonym, and all messagesaddressed to Client[i℄'s pseudonym will be delivered toClient[i℄Table 2Features (email system)De�nition 10 Components are said to be safely featured if they satisfy theassumptions detailed above.5.1 Categorising featuresRe
all feature statement 
hoi
es have the form:: atomi
f(feature prop)&&(lo
alprop)&&(varprop)! 
ommandgDepending on the form of feature prop it is possible to develop a feature
ategorisation. We will subsequently use our 
ategorisation to determine whi
hfeatures 
an be 
onsidered safe with respe
t to our abstra
tion te
hnique.Let us �rst 
onsider feature prop. This has one of the following forms:feature name[myvar1℄ ==myvar2 orfeature name[myvar1℄ ! = Dwhere feature name is a feature array, myvar1 and myvar2 are p-variables,and either:(1) myvar1 is one of the p-variables sel�d or partnerid, and myvar2 ispartnerid if myvar1 is sel�d , and sel�d if myvar1 is partnerid, or(2) neither myvar1 or myvar2 belong to fsel�d ; partneridg.25



Many features 
an be divided into three broad 
ategories a

ording to whetherthey are managed by the feature host, the partner of the feature host, or bya third party. They are therefore des
ribed as: host owned, partner owned orthird party owned. These 
lasses dire
tly 
orrespond to whether, in all featurestatement 
hoi
es, within all feature prop guards,myvar1 is sel�d , partnerid,or some other p-variable. Examples of the �rst 
ategory are ODS (telephone)and ENC (email). An example of a partner owned feature is CFU. In our emailmodel, many of the features are handled by the Network Mailer pro
ess,and so none of our email features are partner owned. Examples of third partyowned features in
lude FT and FW whi
h are owned by a Client pro
ess, butmanaged by the Network Mailer pro
ess.Note that the only one of our example features that 
an not be des
ribed inthese terms is RWF. This feature sometimes triggers a 
hange in behaviourbe
ause the host 
omponent has the feature (if the 
omponent has the featureand another 
omponent has requested a ringba
k by setting a feature-
agarray element asso
iated with the host 
omponent), and sometimes be
ausethe partner 
omponent has the feature (when a request is made by the host
omponent for a ringba
k by the partner 
omponent by setting a feature-
agarray element asso
iated with the partner element). As su
h, we des
ribe RWFas multi-owned.De�nition 11 A feature is said to be multi-owned if it is not host, partneror third party owned.5.2 Constru
ting the abstra
t model for featured systemsIn this se
tion we provide a sket
h of our abstra
tion approa
h in the pres-en
e of features. We extend the modi�
ations of statement 
hoi
es in 
on
rete
omponents (see se
tion 4.1) to feature statement 
hoi
es. We then show forwhi
h features our abstra
tion approa
h is still safe. Figures 14 and 15 illus-trate the approa
h, the di�erent shapes indi
ate that 
omponents may not beisomorphi
 (be
ause of the presen
e of features).In earlier work [34℄ we have shown how feature statement 
hoi
es should betreated for host owned, partner owned and third party features. We do notprovide full details here, but give an overview.In all 
ases, the statement 
hoi
e must be split (in the same way as the treat-ment of basi
 statement 
hoi
es des
ribed in se
tion 4.1) a

ording to whetherthe 
urrent partner is abstra
t or not. In the former 
ase, if the feature is part-ner owned, two possibilities must be 
onsidered: whether the partner has thefeature or not. If so, the di�erent possible results of applying the feature mustbe 
onsidered. 26



Fig. 14. Featured peer to peer abstra
tion

Fig. 15. Featured 
lient server abstra
tionFor example, the following statement 
hoi
e is for CFU ::: atomi
f( (state == st diall)&&(CFU [partnerid℄! = default1)&&(position prop))!partnerid = CFU [partnerid℄;partner[sel�d ℄ = 
han name[partnerid℄gNote that state is a lo
al variable, and position prop a lo
al variable 
ontaininga disjun
tion of propositions regarding the 
urrent value of p 
 (asso
iatedwith points in the spe
i�
ation at whi
h features are implemented). Whenposition prop is true but all guards of feature statement 
hoi
es are false, p 
is in
remented (via another statement 
hoi
e, not given here).Assuming two 
on
rete 
omponents, this 
hoi
e is repla
ed in the modi�ed
omponent spe
i�
ation with the following 
hoi
es:27



:: atomi
f( (state == st diall)&&(partnerid! = Absid)&&(CFU [partnerid℄! = default1 )&&(position prop))!partnerid = CFU [partnerid℄;partner[sel�d ℄ = 
han name[partnerid℄g:: atomi
f( (state == st diall)&&(partnerid == Absid)&&(forwarding feature == on)&&(position prop))!partnerid = 0; partner[sel�d ℄ = zero;forwarding feature = o� g:: atomi
f( (state == st diall)&&(partnerid == Absid)&&(forwarding feature == on)&&(position prop))!partnerid = 1; partner[sel�d ℄ = one;forwarding feature = o� g:: atomi
f( (state == st diall)&&(partnerid == Absid)&&(forwarding feature == on)&&(position prop))!forwarding feature = o� gHere forwarding feature is a lo
al variable that is non-deterministi
ally set toon or o� in the pre
eding statement (when the partner is abstra
t). The �rst
hoi
e 
orresponds to the 
ase when the 
urrent partner is not and subs
ribesto CFU. The remaining 
hoi
es 
orrespond to the 
ase when the 
urrent part-ner is abstra
t and forwards to a 
on
rete 
omponent or to another abstra
t
omponent. The forwarding feature variable is reset after the feature has beenapplied. One reason for this is that a 
hain of forwarding within abstra
t 
om-ponents is observably equivalent to a single forward, so the feature need notbe repeatedly applied.5.3 Proving that featured 
omponents are safeOur main result is a theorem whi
h shows that the abstra
tion approa
h issound for safely featured 
omponents (see de�nition 10) that are not multi-owned (see de�nition 11).Theorem 12 Given a featured, parameterised systemSn = p0jjp1jj : : : jjpn�1 or Cjjp0jjp1jj : : : jjpn�228



with modelMn, m (1 � m � n), abstra
t modelMmabs 
onstru
ted as des
ribedabove, and formula � indexed by elements of f0; : : : ; m�1g, if the 
omponentsof Sn are safely featured and none of the features are multi-owned, then the
omponents are safe.Proof The proof is similar to that for basi
 
omponents (see se
tion 4.2). Forall feature statement 
hoi
es that are not multi-owned, transitions arising fromexe
uting the asso
iated statement 
an be mat
hed by transitions arising fromthe modi�ed statement 
hoi
es in the abstra
t model. However, this is not truefor feature statement 
hoi
es pertaining to features that are multi-owned.Multi-owned features sometimes trigger a 
hange in behaviour be
ause thehost 
omponent has the feature, and sometimes be
ause the partner 
om-ponent has the feature. The feature is implemented when either the host orpartner 
omponent has set a feature 
ag . As the feature 
ag 
ould have beenreset by an abstra
t 
omponent, we 
an not simulate the possibility of anabstra
t 
omponent resetting this variable at any time. We 
an not simplyuse non-deterministi
 
hoi
e to de
ide whether the feature 
ag has been set(presumably to Absid) be
ause to do so would assume that at some point anexisting, non-default value of the 
ag may have been overridden. This wouldimply an earlier transition whi
h would not have been re
e
ted in our simu-lated model.6 Interpreting resultsFrom Theorem 12 we 
an see that if a formula � indexed by elements off0; 1; : : : ; m � 1g holds for abstra
t model Mmabs (with 
on
rete 
omponentsp0; p1; : : : ; pm�1), then � holds for any model Mn, (1 � m � n), 
onsisting of
omponents p0; p1; : : : ; pm�1 and n�m other 
omponents, subs
ribing only tosafe features.However, what 
an we 
on
lude if, for some �, Mmabs 6j= �?If we 
an show that for the small �nite model Mm = M(p0jjp1jj : : : jjpm�1),Mm 6j= �, then the 
ounterexample generated for Mm will extend to Mn, forall 1 � m � n. So we 
an 
on
lude that Mn 6j= �.However, it is possible that Mm j= � but Mmabs 6j= � (possibly due to addi-tional non-determinism introdu
ed via the abstra
tion pro
ess. This is likelyto be the 
ase if � is a liveness property). In some instan
es it might be pos-sible to improve our abstra
tion via a method of re�nement [13,30,5℄. Thiswould involve making the abstra
t model more 
on
rete, thereby allowing �to be
ome true. This is the subje
t of future work.29



7 Applying the approa
hIn this se
tion we 
onsider how models are 
onstru
ted automati
ally, and wealso give some experimental results.7.1 Constru
ting an abstra
t modelGiven a Promela spe
i�
ation of a parameterised 
omponent (and a 
on-text 
omponent, as required), and a �xed m, the abstra
t spe
i�
ation is
onstru
ted as follows. First, transform the parameterised 
omponent(s) intomodular GC form. Se
ond, modify the 
omponent(s) to be
ome the (param-eterised) 
on
rete 
omponent (or modify the 
ontext 
omponent), and 
on-stru
t the 
omponent Abs, as des
ribed in Se
tions 4.1 and 5.2. Third, de�nea pro
ess whi
h runs m instantiations of the 
on
rete 
omponent, along withAbs. Finally, model 
he
k the resulting spe
i�
ation.Ea
h of these steps 
an be automated, for example, we have implementedthem via Perl s
ripts.Note that, if Promela 
omponents are expressed in GC form it is possible toperform a synta
ti
 
he
k to ensure that they are indeed safe with respe
tto the abstra
tion approa
h. For example, a tool similar to SymmExtra
tor[19℄ 
an be used to 
he
k that lo
al variables sel�d and partnerid are usedappropriately and that 
omponents are open symmetri
. We have not usedsu
h a tool here (the 
omponent des
riptions were 
onstru
ted in su
h a wayas to ensure safety). However, we intend to exploit this method in future workto investigate the appli
ability of our abstra
tion approa
h to pre-existingPromela spe
i�
ations of other parameterised systems.7.2 Experimental resultsOur approa
h holds for arbitrary veri�
ation, but primarily we are interestedin feature intera
tion analysis: For a given pair of features f1 and f2 
he
kwhether a property � de�ning feature f1 is violated in the presen
e of featuref2.Below we give experimental results for feature intera
tion analysis using ourapproa
h. All of our experiments were performed on a PC with a 2.4GHz IntelXenon pro
essor, 3Gb of available main memory, running Linux (2.4.18), withSPIN version 4.2.3. 30



In tables 3 and 4 we give results for analysing example pairs of telephonefeatures, f1 and f2, using SPIN. The examples 
hosen are ones whi
h do notintera
t (that is, the property being 
he
ked is true in all 
ases) and therefore
an not be fully analysed ex
ept for small, �nite sized systems, without usingour abstra
tion approa
h. The �rst feature, f1, in all 
ases is TCS[0℄ = 1 (seetable 1) and � is [℄(
onne
ted [1℄:to[0℄ == 0) (no 
onne
tion from User [1℄ toUser [0℄ is possible).In table 3, all of the feature pairs are subs
ribed to by the same User (User [0℄in this 
ase) and are therefore referred to single user (SU) pairs. The indi
esof the se
ond feature are 
hosen so that the size of the set indexed by � andthe pair of features (i.e. m) is 3. For example, when f2 is CFU , the pair offeatures under 
onsideration is TCS[0℄ = 1 and CFU [0℄ = 2. The index set isf0; 1; 2g and m = 3.In table 4 the feature pairs are subs
ribed to by di�erent Users (known asmulti user (MU) pairs); indi
es are 
hosen so that m = 4.In all 
ases we 
he
k � for a model with m 
omponents, a model with m + 1
omponents and an abstra
t model representing n 
omponents, where n is atleast m + 1. Note that in some 
ases we were unable to 
he
k the MU modelfor m + 1 
omponents, due to insuÆ
ient memory.States is the number of states (�103) stored during sear
h, mem the memory(in Mb) required for state storage and time the the total (user + system) time(in se
onds) taken for 
omplete veri�
ation. All measurements are given toone de
imal pla
e. We use SPIN's inbuilt 
ompression algorithm to minimisethe memory requirements.m m+ 1 nf2 states mem time states mem time states mem timeCFU 3.2 0.4 0.1 198.1 8.5 5.8 12.7 0.8 0.4CFB 5.3 0.5 0.1 409.0 17.1 11.9 17.3 1.0 0.5ODS 4.4 0.4 0.2 359.7 15.2 10.0 15.1 0.9 0.5OCS 4.7 0.5 0.9 376.2 15.9 10.7 15.8 0.9 0.5Table 3SU results, telephone (m = 3)In all 
ases the 
ost of model 
he
king the abstra
t spe
i�
ation (in terms ofnumber of states, memory and time) is less than that for 
he
king a system of�xed size m + 1 (and greater than that for a system of �xed size m). Similarresults hold for the email example. 31



m m+ 1 nf2 states mem time states mem time states mem timeCFU 162.9 7.2 4.7 15185.6 689.0 1297.7 720.0 32.9 33.3CFB 400.7 16.6 15.3 - - - 1363.2 59.5 60.7ODS 376.9 16.0 15.1 - - - 1278.8 56.6 58.5OCS 396.2 16.9 15.6 - - - 1303.6 57.9 58.2Table 4MU results, telephone (m = 4)8 Related workOur indu
tion approa
h involves 
onstru
ting a pro
ess Mmabs, whi
h en
ap-sulates the behaviour of any number of pro
esses. As su
h, our approa
h issimilar to other indu
tion approa
hes whi
h involve the 
onstru
tion of aninvariant pro
ess. Kurshan et al [29℄ prove a stru
tural indu
tion theoremfor pro
esses using the simulation pre-order (see se
tion 2) to generate an in-variant when there is no 
ontext pro
ess. Similar results are a
hieved [7,38℄by establishing a bisimulation equivalen
e between global state graphs of sys-tems of di�erent sizes. Extensions to these early results, when a (non-trivial)
ontext pro
ess is involved, in
lude [25,4,29,1℄. In some 
ases [36,15℄ networkgrammars are used to generate both suitable families and an invariant.A fully automated approa
h for verifying parameterized networks with syn-
hronous 
ommuni
ation is proposed in [21,22℄, and a tool based on the net-work grammar approa
h [31℄ is designed to help in the 
onstru
tion of invari-ants.In [9℄ we introdu
ed our generalisation te
hnique for feature intera
tion analy-sis of a telephone system with any number of 
omponents. In [10,11℄ we applieda similar approa
h to an email system, allowing limited sets of features in ab-stra
t 
omponents. In [12℄ we began to investigate a more systemati
 way torelax the 
onstraint on features in abstra
t 
omponents and to formalise ourapproa
h. We introdu
ed the GC (guarded 
ommand) form as a uniform wayof expressing basi
 
omponents and features. In [34℄ we introdu
ed the 
on
eptof safe feature and developed a 
ategorisation of safe features. We applied ourabstra
tion approa
h in the 
ontext of feature intera
tion analysis, giving adetailed analysis of a realisti
, featured telephony network.Here we bring together all results in one 
omprehensive treatment and illus-trate our approa
h via a set of simple and 
omplex examples.32



9 Con
lusionsA general te
hnique 
ombining model 
he
king and abstra
tion is presentedthat allows property based analysis of 
ommuni
ating, 
on
urrent systems
onsisting of an arbitrary number of 
omponents. The te
hnique is based onthe leverage of a model 
he
king result about a system of �xed size, to resultsabout systems of arbitrary size. The 
omponents do not need to be isomorphi
,but their individual behaviour must ful�ll 
riteria whi
h we 
all safe. We give atheorem that expresses how 
omponent safety 
an be ensured by inspe
tion ofthe form of guards, when 
omponents are expressed in guarded 
ommand form.The approa
h is further extended to allow featured 
omponents, where featuresde�ne additional fun
tionality. We extend the notion of safe 
omponent toin
lude features, and give a theorem that expresses how 
omponent safety 
anbe ensured by inspe
tion of the form of the feature guards, when features areexpressed in guarded 
ommand form.The main 
ontribution of this paper is to de�ne safe 
omponents, whi
h ensurethat the parameterised model 
he
king problem is solvable, and to prove thatbasi
 
omponents and 
omponents with 
ertain 
ategories of features whi
h
onform to synta
ti
 
riteria are safe.A
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