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Abstract. The notion of classification scheme is a generic model that encompasses the kind of
classification performed in many knowledge representation formalisms. Classification schemes abstract
from the structure of individuals and consider only a sub-categorization relationship. The product of
classification schemes preserves the status of classification scheme and provides various classification
algorithms which rely on the classification defined for each member of the product. Object-based
representation formalisms often use heterogeneous ways of representing knowledge. In the particular case of
the TROPES system, knowledge is expressed by classes, types and constraints. Here is presented the way to
express types and constraints in a type description module which provides them with the simple structure of
classification schemes. This mapping allows the integration into TROPES of new types and constraints
together with their sub-typing relation. Afterwards, taxonomies of classes are themselves considered to be
classification schemes which are products of more primitive ones. Then, this information is sufficient for
classifying TROPES objects.

Keywords: Class — object — type — constraint — classification scheme — sub-type inference.

Classification has been formalized for specific languages such as terminological logics (as subsumption), types
(as sub-typing) or object representation (as classification). However, when used for applications, practical
implementation of such systems are confronted with alien formalisms which do not comply their particular rules.
We designed a formalism, classification schemes (CS), aimed at comparing the way these many systems classify.
For that purpose the specific syntactic features of the above formalisms are hidden focusing only on what is relevant
to classification. Here we present how this can also be used for integrating different notions of classification in the
same system. Types and constraints are shown to be CS, thus, provided with a set of types and constraints, objects
may be constructed through product operations over CS, grounding the classification operation over objects.

First, the classification scheme formalism is briefly outlined (§1); then the introduction and management of types
and constraints into TROPES are presented in order to show that they are classification schemes (§2).

1 Classification schemes

The classification scheme formalism [5] is an attempt to represent, in a very abstract way, the classification
activity of any knowledge representation system (thus not only terminological systems). Instead of considering the
classification activity to be a consequence of the structure of entities, it considers classification to be primitive and
builds on it. CS are first defined. Then, the operations of classification are presented and the way CS can be defined
through the operations of degeneration, restriction and product of other CS is presented.

1.1 Taxonomies and classification schemes

Hereafter, taxonomies and CS are defined with regard to a language of categories LC and a language of individuals
Lj. Individuals have an interpretation as individuals in a modeled domain. Categories are interpreted as sets of
individuals.

DEFINITION (interpretation). There are two interpretations for a category c:

» the abstract interpretation /4(c) is the set of individuals described by the expression c;

e the real interpretation /R(c) is the set of individuals denoted by c in the modeled domain.

The category description must indeed cover its denotation; this is expressed by the constraint of interpretation
inclusion: IR(c)CIA(c).

The interpretation may depend on the considered knowledge model (for instance, Lj=IN and L is the set of integer
intervals). The categories are interpreted as representing sets of objects. However, the language in which they are
expressed could be inadequate for characterizing them exactly. This is the reason for having two interpretations: the
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real interpretation corresponds to the set of individuals the category is meant to represent, while the abstract
interpretation is the set of individuals the description of the category can represent (for instance, in the language of
integer intervals, it is not possible to find a class which describes exactly the set {1, 3}, for that purpose the interval
[1..3] whose abstract interpretation is {1, 2, 3} can be used for denoting, or be really interpreted as {1, 3}).

DEFINITION (taxonomy): A taxonomy (C <) with regard to an interpretation / (abstract or real) is made of a set C of
categories and of a partial order relation named sub-categorization (<) over these categories so that the extension
inclusion property is satisfied: ¢' =c= I(c") C I(c).

A taxonomy reflects the organization of categories in an inclusive structure which enables classification systems
to draw inferences such as transitivity of non membership along the sub-categorization relation. Note that this
definition does not consider sub-categorization and extension inclusion as equivalent (i.e. ¢’ = ¢ <= I(¢") C I(c)): this
allows non-exclusive categories.

DEFINITION (classification scheme): A classification scheme (C < <<) over a couple of languages L¢ and Ly is
given by a set of category (C), a sub-categorization relation (<) and a sub-categorization criterion ( <<), such that:

* (L <) is ataxonomy with regard to the abstract interpretation,
* (C =) is a taxonomy with regard to the real interpretation, and
e Ve ECc=sc'=c<c.

The sub-categorization criterion differs from =<, which only ranges over C. Often, the sub-categorization relation
is a “natural” order over L (sub-typing or set-inclusion for instance) while < has to be built. Pursuing the example
above, it means that the category c=[2..4] (with IR(c)={2,3,4}) can be added in the taxonomy such that c<[1..4]
because [2.4]C[1.4] (here, << is C). So, constraining the sub-categorization relation to comply with << — which
is defined over Lc — ensures that, during the construction of =, the extension inclusion property is satisfied.

1.2 Classification

CS attempt to formalize the fact that a taxonomy has an interpretation and is carefully framed by a super-structure
whose interpretation can be completely — in the formal meaning of completeness — taken into account by the
implementation. They are sufficient to describe the classification operation.

DEFINITION (classification): From a set of categories C (such that CCL(), the classification operation determines
the set of categories Cl(i,C)={cEC; i€IA(c)} under which the individual i is classified.

An individual i can be classified under a category c. Classification aims at finding categories whose real extension
contains i; however, this is not mechanically accessible. Then, classification returns the set of categories whose
abstract interpretation contains i. However, when abstract and real interpretations coincide, i belongs to the real
interpretation of each of the categories. A particular taxonomy can be obtained by starting with an empty taxonomy
and adding new categories and relationships respecting <<, but also by starting from the largest possible taxonomy
(Lc <<) and simplifying it. This is achieved through restriction and degeneration.

DEFINITION (restriction and degeneration): A partial order relation < over a set S can be defined by the graph whose
nodes are elements of S and edges E are the subset of $xS containing all the couples of related elements. The
restriction of < to a set S’ subset of S (noted <IS”) is the graph (S” E’) with E’ the subset of £ whose elements are
elements of S’xS’. A degeneration of = is a graph (S E’) such that E’CE is closed under transitivity and reflexivity.

PROPERTIES:

1) (Lc <<) is a taxonomy with respect to 14;

2) Any restriction of a taxonomy w.r.t. I is a taxonomy w.r.t. [;
3) Any degeneration of a taxonomy w.r.t. [ is a taxonomy w.r.t. /.

Thus, many taxonomies can be constructed within a scheme and their interpretation is not restricted to be 14.
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1.3 Products

The definitions given so far do not account for the way classification is deduced from the structure of the terms.
Products provide a foundation for such languages with constructors.

DEFINITION (product of classification schemes): Let S7,...Sy, be a set of classification schemes (for j&€[1,n], Sj:(Cj
sj < j) is defined upon the languages L]g and L]I), the product of classification schemes S=x"!_. S j 1s defined by

j=1
<><;?=1 C; s <<) on the languages Lc= Xl LJC and Lj= X?=1 L][ such that: /

Ve= (cl,...cn)€x?=1L]C,Vc’ = (cl’,...c,',)EX?=1LJC,c < c e Vel nlcj < jcj

Ve =(c ,...cn)ExLle,Vc’ =(cf,...Cp) Ex;?:lcj,c =sc' e Vgl n],cj < c}-
The abstract and real interpretations for classes are simply the sets of individuals which are obtained by the product of
the corresponding interpretations of each term of the product. The two constraints define <= and << as the usual
product of partial orders. Note that the languages Lj and L are implicitly defined: they are products of the initial
languages. There is only one way to obtain a CS from the same set of initial CS.

PROPERTY: A product of classification schemes is a classification scheme.

The assertions above are proved in [5] in which several classification algorithms for products of CS can also be
found.

2 Objects, types and constraints

So far, a notion of CS has been presented with a well-defined notion of classification over CS. Nevertheless, the
quality of being a CS is preserved through the operations of product, degeneration and restriction. This must be
related to the object-based knowledge representation system TROPES [9]. In TROPES, objects are simply product of
values and objects, classes are product of type expressions, classes and constraints and concepts are product of
abstract data type (ADT) and concepts. So, if ADT and constraints can be organized in classification schemes (with
their classification operations) then so are TROPES concepts (with an immediate classification operation). The types
and constraints used in TROPES are presented below.

2.1 Types

TROPES allows to use values which are not objects, but requires the typing of these values. These values are
members of ADT defined into a type system named METEO [4]. Additionally, METEO provides some polymorphic
type constructors such as List or Set.

An ADT T necessarily contains an equality predicate between values of this type (x=7y means that x and y denote
the same value for type T), and a typing predicate (xX€T means that x is a value of the ADT 7). In addition, an ADT
may define other operators on its values: the order predicates on ordered types (x<7y means that x is before y for 7),
the successor operation for countable types, etc. From such information, METEO performs the encoding of the new
ADT and makes it available for TROPES, independently from its implementation.

For instance, a user may want to introduce the new ADT Date whose values are triplets of integers: (year,
month, day).Date can be explicitly declared as a countable set of values:

e The user has to specify the two required predicates =, and EDate.

e Since Date is ordered, the user can specify the order relation =p,.. between two values of Date, so that

METEO can represent domains of Date values as ranges.

* In order to express the fact that Date is countable, the user has to specify some elementary operations and

properties, such as the successor operation.

So far, ADT provide a set of objects but no taxonomy. However, the TROPES description language allows to
restrict a slot type through domain descriptors: domain restrict the possible values to a particular sub-set, range, to a
particular set of intervals, card, to a particular cardinality, and so on [9]. For dealing with these expressions METEO
carries out two main operations:

* normalization (or equality computation) which establishes a unique form from a particular type expression;
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* sub-type computation which establishes wether the extension of the first type expression includes that of a

second one.

The internal representation of type expressions depends on the kind of ADT considered: for instance if Integer is
defined as enumerated, the type expressions will be sets, but if it is defined as ordered, they will be list of closed-
bound intervals. Similarly, normalization and sub-type computation between type expressions of an ADT, depend on
the necessary predicates of the ADT (€7 and =7), and eventually from other predicates such as =7. For instance, sub-
type computation is obtained by checking the inclusion between two lists of closed-bound intervals.

Types constructed with the same constructor from the same primitive type are disposed in a lattice whose partial
order relation is sub-typing and whose greater element is the referred ADT [3]. METEO performs the dynamic
management of the type lattice associated to the primitive type (e.g. insertion and deletion of type, computation of
the greatest lower bound). Furthermore, it provides algorithms in order to manage links of composition established
between different type lattices, thus type modifications are dynamically propagated along these links.

Types introduced in TROPES provide elementary CS from which more complex ones are built. For a primitive
type T, Ly corresponds to the values of the type and L corresponds to the set of equivalence classes of type
expressions for normalization. The set of categories C is the result of the normalization of the type expressions used
in concept expressions augmented in order to be a lattice. The sub-categorization criterion is the sub-typing relation
over the whole L while the sub-categorization relation is its restriction to C. Then types are interpreted as sets
(domains) and sub-typing as set inclusion. The real and abstract interpretation are the same and range over the
normalized type expressions. Thus, METEO is able to associate with a primitive type T the behavior of a CS, i.e. it
provides the computation of the sub-categorization criterion and relation.

For instance, the type Integer determines a CS in which LjisIN and L is the set of sets of intervals
interpreted as its powerset. The sub-categorization criterion is sub-typing and the normalization operation ensures
that the taxonomy is exactly the restriction of (2rN C) to the sets which are necessary to provide it with a lattice
structure (i.e. the theoretical lattice over the powerset of integers restricted to sets relevant to the application).

2.2 Constraints

A constraint is interpreted as in Constraint Satisfaction Problems (CSP) [8]. A CSP considers a set of n
variables v; with associated domains dj and a set of relations r; . A relation r; (v;], vj2, ..., vim) is a sub-set of the
Cartesian product of the domains Djjx...xDj;, (Where Djf is the domain of a variable v;i constrained by r;). A
constraint in a class is a declarative statement which expresses a relation that holds between several fields of this
class.

In TROPES, both unary constraints and n-ary (where n > 1) constraints can be defined and set up among the fields
of one or several objects. A unary constraint consists of a predicate which extends the field type description. A n-ary
constraint corresponds to a relation which must hold between n fields of a class. These two kinds of constraints are
necessary conditions that every member of the class must satisfy. Constraints of different kinds are expressed in
intension and correspond to basic constraint functions. These basic constraint functions are combined to form more
complex constraint expressions. Besides classical constraints, i.e. numerical constraints based on a comparison (=, <,
>, <, =, =) of arithmetic expressions built with the operators (+, -, *, /, A, log, exp, sin, cos, etc.), more specific
ones are available like constraints on sets or lists of values of any types, or like conditional constraints.

A constraint programming module, called MICRO [7], has been designed for TROPES. It handles CSP whose
domains are enumerated sets or intervals. Thus, domains may be finite or infinite. MICRO takes advantage of the
presence of METEO to propose generic constraints (constraints whose predicate depends on the type of the variables).
It includes a constraint propagation algorithm (which achieves arc-consistency [8] for monotonous operators used in
constraint expressions).

In order to guarantee sub-typing of constrained fields between a class and its sub-classes, constraints must be
inherited from one class to its sub-classes. Then, the final set of constraints of a class results from the union of the
proper set of constraints of this class and of the set of constraints of its super-classes. However, this constraint
inheritance should not be systematic, particularly when redundant constraints of class are defined. A constraint to be
added to a class is said to be redundant with regard to the current set of constraints when, either it can be obtained
after simplification or derivation from the current set of constraints, or its predicate is implied by a conjunction of
predicates stemming from the current set of constraints. Indeed, redundancy can be expressed as a set-inclusion
between relation extensions. If two n-ary predicates P and QO defined on the same Cartesian product of primitive
domains D=D jx...xDy, are so that the set of n-uples satisfying P is a sub-set of those satisfying Q, then, a sub-
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typing relation <p between P and Q (such that P<pQ) can be considered on D. This sub-typing relation allows to
organize the structures representing constraints in a taxonomy.

Since TROPES cannot compare extensions of predicates (simply because they might be infinite) nor their
intension, it has to be provided with information concerning sub-categorization of constraints. The user does it by
declaring the taxonomy of constraints. TROPES does not automatically maintain the sub-categorization between these
constraints. The system is only able to check these constraints for satisfaction. The user is free to organize the
constraints with a sub-categorization relation.

This constitutes the classification schemes tied to constraints: a particular constraint 7 over the variables vy,...vy
with domains D1,...Dy, is easily included in a CS whose Ly is the Cartesian product of domains D=Djx...Dy and
Lc is a set of predicate which recognize sub-sets of D (thus sub-sets of Ly ). C is simply the set of expressed
predicates (thus containing c). As for types, the abstract and real interpretations coincide and range over D. The sub-
categorization criterion is interpreted as the inclusion of the predicate extension (note that this is not accessible by
the program) and the sub-categorization relation its restriction to C expressed by <p. Thus, it is possible to use this
CS in the classification operation and even if the constraints use classic constraint satisfaction algorithms for
deciding if c is satisfied of a tuple of variable (resp. if that individual belongs to the abstract interpretation of the ¢
category), the external behavior of the CS remains.

3 Conclusion

The extension facilities of the TROPES knowledge representation system have been presented. Type definitions
through ADT are very straightforward with regard to the kind of type expressions and inference they allow. So,
TROPES can manipulate external expressions in a minimal fashion without having to access the semantics of these
expressions. Types and constraints have been characterized as classification schemes. More elaborate CS such as
TROPES concepts are justified only because they result from the combination (product, restriction, weakening) of
these more simple CS which always produces new CS. Thus, thanks to the CS formalism, TROPES is able to
perform classification (but also class classification which has not been presented here).

The problem has been addressed by others in the framework of terminological logics [1,2,6]. But, the
extendibility mechanisms are not as general as CS. For instance, organizing constraints into a taxonomy as
presented here requires the possibility of having non complete relationship between constraints: this is not possible
with definitional categories. Implementing the CS principles allow both easy extension and simple classification
algorithms. This could affect performances, however the algorithm relies, finally, on the algorithms provided for
each type and constraint satisfaction. It is expected that this has better performances than the complete expression of
the basic types in the representation formalism.
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