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Abstract. Function estimation on Online Social Networks (OSN) is an
important field of study in complex network analysis. An efficient way to
do function estimation on large networks is to use random walks. We can
then defer to the extensive theory of Markov chains to do error analysis
of these estimators. In this work we compare two existing techniques,
Metropolis-Hastings MCMC and Respondent-Driven Sampling, that use
random walks to do function estimation and compare them with a new
reinforcement learning based technique. We provide both theoretical and
empirical analyses for the estimators we consider.
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1 Introduction

The analysis of many Online Social Networks (OSN) is severely constrained by
a limit on Application Programming Interface (API) request rate. We provide
evidence that random walk based methods can explore complex networks with
very low computational load. One of the basic questions in complex network
analysis is the estimation of averages of network characteristics. For instance,
one would like to know how young a given social network is, or how many
friends an average network member has, or what proportion of a population
supports a given political party. The answers to all the above questions can
be mathematically formulated as the solutions to a problem of estimating an
average of a function defined on the network nodes.

Specifically, we model an OSN as a connected graph G with node set V and
edge set E . Suppose we have a function f : V → R defined on the nodes. If the
graph is not connected, we can mitigate the situation by considering a modified
random walk with jumps as in [2]. Our goal is to propose good estimators for
the average of f(.) over V defined as

µ(G) =
1

|V|
∑
v∈V

f(v). (1)



The above formulation is rather general and can be used to address a range of
questions. For example to estimate the average age of a network we can take
f(v) as an age of node v ∈ V, and to estimate the number of friends an average
network member has we can set f(v) = dv, where dv is the degree of node v.

In this work, we compare in a systematic manner several random walk based
techniques for estimating network averages µ(G) for a deterministic function f. In
addition to familiar techniques in complex network analysis such as Metropolis-
Hastings MCMC [6, 8, 13, 15] and Respondent-Driven Sampling (RDS) [9, 17, 18],
we also consider a new technique based on Reinforcement Learning (RL) [1, 5].
If a theoretic expression for the limiting variance of Metropolis-Hastings MCMC
was already known (see e.g., [6]), the variance and convergence analysis of RDS
and RL can be considered as another contribution of the present work.

Metropolis-Hastings MCMC has being applied previously for network sam-
pling (see e.g., [8, 10] and references therein). Then, RDS method [9, 17, 18] has
been proposed and it was observed that in many cases RDS practically supe-
rior over MH-MCMC. We confirm this observation here using our theoretical
derivations. We demonstrate that with a good choice of cooling schedule, the
performance of RL is similar to that of RDS but the trajectories of RL have less
fluctuations than RDS.

There are also specific methods tailored for certain forms of function f(v).
For example, in [7] the authors developed an efficient estimation technique for
estimating the average degree. In the extended journal version of our work we
plan to perform a more extensive comparison across various methods. Among
those methods are Frontier Sampling [14], Snowball Sampling [11] and Walk-
Estimate [12], just to name a few.

The paper is organized as follows: in Section 3 we describe various random
walk techniques and provide error analysis, then, in Section 4 we compare all
the methods by means of numerical experiments on social networks. Finally, in
Section 5 we present our main conclusions.

2 Background and Notation

First we introduce some notation and background material that will make the
exposition more transparent. A column vector is denoted by bold lower font
e.g., x and its components as xi. The probability vector π is a column vector.
A matrix is represented in bold and its components in normal font (eg: A, Aij .)
In addition, 1 represents the all-one column vector in Rn.

For a sequence of random variables (rvs), Xn
D−→ X, denotes convergence in

distribution to X [3].
A random walk (RW) is simply a time-homogenous first-order Markov Chain

whose state space is V, the set of vertices of the graph and the transition prob-
abilities are given as:

pij = P (Xt+1 = j|Xt = i) =
1

di



if there is a link between i and j, i.e., (i, j) ∈ E, di being the degree of node i.
Therefore we can think of the random walker as a process that traverses the links
of the graph in a random fashion. We can define P the transition probability
matrix (t.p.m) of the Random walk as an |V| × |V| matrix, such that Pij = pij .
Since we consider undirected networks, our random walk is time reversible. When
the graph is connected the transition probability matrix P is irreducible and by
Frobenius Perron Theorem there always exists a unique stationary probability
vector π ∈ R1×|V| which solves πP = π, which is in fact πi = di

2|E| . Since

our state space is finite the Markov chain is also positive recurrent and the
quantities such as hitting times, and cover times are finite and well-defined. An
important application of Random walks is in estimating various graph functions.
The random walk based techniques can be easily implemented via APIs of OSNs
and can also be easily distributed.

Let us define the fundamental matrix of a Markov chain given by Z :=
(I−P + 1πT )−1. For two functions f, g : V → R, we define σ2

ff := 2〈f ,Zf〉π −
〈f, f〉π−〈f,1πT f〉π, and σ2

fg = 〈f ,Zg〉π+〈g,Zf〉π−〈f, g〉π−〈f,1πT g〉π, where

〈x,y〉π =
∑
i xiyiπi, for any two vectors x,y ∈ R|V|, π being the stationary

distribution of the Markov chain. In addition N denotes the number of steps of
the random walk. By the Ergodic Theorem for Markov Chains applied to graphs
the following is true [6], where f is an arbitrary function defined on the vertex
set V.

Theorem 1. [6] For a RW {X0, X1, X2 . . . Xn, . . .} on a connected undirected
graph,

1

N

N∑
t=1

f(Xt)→
∑
x∈V

π(x)f(x), N →∞,

almost surely.

In addition the following central limit theorems also follow for RWs on graphs
from the general theory of recurrent Markov chains [13].

Theorem 2. [13] If f is a function defined on the states of a random walk on
graphs, the following CLT holds

√
N

(
1

N

N∑
i=1

f(Xi)− Eπ(f)

)
D−→ N (0, σ2

ff )

Theorem 3. [13] If f, g are two functions defined on the states of a random

walk, define the vector sequence zt =

[
f(xt)
g(xt)

]
the following CLT holds

√
N

(
1

N

N∑
t=1

zt − Eπ(zt)

)
D−→ N (0,Σ),

where Σ is 2 × 2 matrix such that Σ11 = σ2
ff , Σ22 = σ2

gg and Σ12 = Σ21 = σ2
fg.



In the following section we describe some of the most commonly used RW tech-
niques to estimate functions defined on the vertices of a graph. We also give
theoretical mean squared error (MSE) for each estimator defined as MSE =
E[|µ̂(G)− µ(G)|2].

3 Description of the techniques

In light of the Ergodic theorem of RW, there are several ways to estimate µ(G)
as we describe in the following subsections.

Basic Markov Chain Monte Carlo technique (MCMC-technique)

MCMC is an algorithm that modifies the jump probabilities of a given MC to
achieve a desired stationary distribution. Notice that by the Ergodic Theorem
of MC, if the stationary distribution is uniform, then an estimate formed by
averaging the function values over the visited nodes converges asymptotically
to µ(G) as the number of steps tend to infinity. We use the MCMC algorithm
to achieve π(x) = 1/|V|,∀x ∈ V. Let pij be the transition probabilities of the
original graph. We present here the Metropolis Hastings MCMC (MH-MCMC)
algorithm for our specific purpose. When the chain is in state i it chooses the
next state j according to transition probability pij . It then jumps to this state
with probability aij or remains in the current state i with probability 1 − aij ,
where aij is given as below

aij =

{
min

(
pji
pij
, 1
)

if pij > 0,

1 if pij = 0.
(2)

Therefore the effective jump probability from state i to state j is aijpij , when
i 6= j. It follows that the final chain represents a Markov chain with the following
transition matrix PMH

PMH
ij =

{
1

max(di,dj)
if j 6= i

1−∑k 6=i
1

max(di,dk)
if j = i.

This chain can be easily checked to be reversible with stationary distribution
πi = 1/n ∀i ∈ V. Therefore the following estimate for µ(G) using MH-MCMC is
asymptotically consistent.

µ̂MH(G) =
1

N

N∑
t=1

f(Xt).

By using the 1D CLT for RW from Theorem 2 we can show the following central
limit theorem for MH.



Proposition 1. (Central Limit Theorem for MH-MCMC) For MCMC with uni-
form target distribution it holds that

√
N (µ̂MH(G)− µ(G))

D−→ N (0, σ2
MH),

as N →∞, where σ2
MH = σ2

ff = 2
n fTZf − 1

n fT f −
(
1
n fT1

)2
Proof : Follows from Theorem 2 above. �

Respondent Driven Sampling technique (RDS-technique)

This estimator uses the unmodified RW on graphs but applies a correction to
the estimator to compensate for the non-uniform stationary distribution.

µ̂
(N)
RDS(G) =

∑N
t=1 f(Xt)/d(Xt)∑N
t=1 1/d(Xt)

:=

∑N
t=1 f

′
(Xt)∑N

t=1 g(Xt)
, (3)

where f
′
(Xt) := f(Xt)/d(Xt), g(Xt) := 1/d(Xt). The following result shows that

the RDS estimator is asymptotically consistent and also gives the asymptotic
mean squared error.

Proposition 2. (Asymptotic Distribution of RDS Estimate) The RDS estimate
µ̂RDS(G) satisfies a central limit theorem given below

√
N(µ̂

(N)
RDS(G)− µ(G))

D−→ N (0, σ2
RDS),

where σ2
RDS is given by

σ2
RDS = d2av

(
σ2
1 + σ2

2µ
2(G)− 2µ(G)σ2

12

)
,

where σ2
1 = 1

|E| f
TZf

′ − 1
2|E|

∑
x
f(x)2

d(x) −
(

1
2|E| f

T1
)2
, σ2

2 = σ2
gg = 1

|E|1
TZg −

1
2|E|g

T1− ( 1
dav

)2 and σ2
12 = 1

2|E| f
TZg + 1

2|E|1
TZf

′ − 1
2|E| f

Tg − 1
dav

1
2|E|1

T f

Proof. Let f
′
(x) := f(x)

d(x) and g(x) := 1
d(x) . Define the vector zt =

[
f

′
(xt)

g(xt)

]
,

and let zN =
√
N
(

1
N

∑
t=1 zt − Eπ(zt)

)
. Then by Theorem 3, zN

D−→ N (0,Σ),
where Σ is defined as in the theorem. Equivalently, by Skorohod representation
theorem [3] in a space (Ω,F ,P) , Ω ⊂ R2, there is an embedding of zN s.t.
zN → z almost surely (a.s.), such that z ∼ N (0,Σ). Hence the distribution of√
N(µ̂

(N)
RDS(G)− µ(G)) is the same as that of∑N

t=1 f
′
(Xt)∑N

t=1 g(Xt)

D
=

1√
N
z
(N)
1 + µf ′

1√
N
z
(N)
2 + µg

=
z
(N)
1 +

√
Nµf ′

z
(N)
2 +

√
Nµg

=
z
(N)
1 +

√
Nµf ′

√
Nµg(1 +

z
(N)
2√
Nµg

)

=
1√
Nµg

(z
(N)
1 − z(N)(1)z

(N)
2√

Nµg
+
√
Nµf ′ −

z
(N)
2 µf ′

µg
+O(

1√
N

))



This gives

√
N

(∑N
t=1 f

′
(Xt)∑N

t=1 g(Xt)
−
µf ′

µg

)
D−→ 1

µg

(
z1 − z2

µf ′

µg

)
,

since the term O( 1√
N

) tend to zero in probability, and using Slutsky’s lemma

[3]. The result then follows from the fact that z ∼ N (0,Σ). ut

Reinforcement Learning technique (RL-technique)

Consider a connected graph G with node set V and edge set E . Let V0 ⊂ V
with |V0| << |V|. Consider a simple random walk {Xn} on G with transition
probabilities p(j|i) = 1/d(i) if (i, j) ∈ E and zero otherwise. Define Yn := Xτn

for τn := successive times to visit V0. Then {(Yn, τn)} is a semi-Markov process
on V0. In particular, {Yn} is a Markov chain on V0 with transition matrix (say)
[[pY (j|i)]]. Let ξ := min{n > 0 : Xn ∈ V0} and for a prescribed f : V 7→ R,
define

Ti := Ei[ξ],

h(i) := Ei

[
ξ∑

m=1

f(Xm)

]
, i ∈ V0.

Then the Poisson equation for the semi-Markov process (Yn, τn) is [16]

V (i) = h(i)− βTi +
∑
j∈V0

pY (j|i)V (j), i ∈ V0. (4)

Here β := the desired stationary average of f . Let {z} be IID uniform on V0.
For each n ≥ 1, generate an independent copy {Xn

m} of {Xm} with Xn
0 = z for

0 ≤ m ≤ ξ(n) := the first return time to V0. A learning algorithm for (4) along
the lines of [1] then is

Vn+1(i) = Vn(i) + a(n)I{z = i}×ξ(n)∑
m=1

f(Xn
m)

− Vn(i0)ξ(n) + Vn(Xn
ξ(n))− Vn(i)

 , (5)

where a(n) > 0 are stepsizes satisfying
∑
n a(n) = ∞, ∑n a(n)2 < ∞. (One

good choice is a(n) = 1/d nN e for N = 50 or 100.) Here I{A} denotes indicator
function for the set A. Also, i0 is a prescribed element of V0. One can use other
normalizations in place of Vn(i0), such as 1

|V0|
∑
j Vn(j) or mini Vn(i), etc. Then

this normalizing term (Vn(i0) in (5)) converges to β as n increases to ∞. This

normalizing term forms our estimator µ̂
(n)
RL(G) in RL based approach.

The relative value iteration algorithm to solve (4) is

Vn+1(i) = h(i)− Vn(i0)Ti +
∑
j

pY (j|i)Vn(j)



and (5) is the stochastic approximation analog of it which replaces conditional
expectation w.r.t. transition probabilities with an actual sample and then makes
an incremental correction based on it, with a slowly decreasing stepwise that
ensures averaging. The latter is a standard aspect of stochastic approximation
theory. The smaller the stepwise the less the fluctuations but slower the speed,
thus there is a trade-off between the two.

RL methods can be thought of as a cross between a pure deterministic it-
eration such as the relative value iteration above and pure MCMC, trading off
variance against per iterate computation. The gain is significant if the number
of neighbours of a node is much smaller than the number of nodes, because we
are essentially replacing averaging over the latter by averaging over neighbours.
The V -dependent terms can be thought of as control variates to reduce variance.

MSE of RL Estimate
For the RL Estimate the following concentration bound is true [4]:

P
{
|µ̂(N)
RL (G)− µ(G)| ≥ ε

}
≤ K exp(−kε2N).

Thus it follows that MSE is O( 1√
N

) because

E|µ̂(N)
RL (G)− µ(G)|2 =

∫ ∞
0

P
{
|µ̂(N)
RL (G)− µ(G)|2 ≥ ε

}
dε

=

∫ ∞
0

P
{
|µ̂(N)
RL (G)− µ(G)| ≥ ε1/2

}
dε

≤
∫ ∞
0

K exp(−kεN) dε = O
(

1

N

)
.

4 Numerical comparison

The algorithms explained in Section 3 are compared in this section using simu-
lations on two real-world networks. For the figures given below, the x-axis repre-
sents the budget B which is the number of allowed samples, and is the same for
all the techniques. We use the normalized root mean squared error (NRMSE)
for comparison for a given B and is defined as

NRMSE :=
√

MSE/µ(G), where MSE = E
[
(µ̂(G)− µ(G))2

]
.

For the RL technique we choose the initial or super-node V0 by uniformly
sampling nodes assuming the size of V0 is given a priori.

4.1 Les Misérables network

In Les Misérables network, nodes are the characters of the novel and edges are
formed if two characters appear in the same chapter in the novel. The number
of nodes is 77 and number of edges is 254. We have chosen this rather small



network in order to compare all the three methods in terms of theoretical limiting
variance. Here we consider four demonstrative functions: a) f(v) = I{d(v) > 10}
b) f(v) = I{d(v) < 4} c) f(v) = d(v), where I{A} is the indicator function for
set A and d) for calculating µ(G) as the average clustering coefficient

C :=
1

|V|
∑
v∈V

c(v), where c(v) =

{
t(v)/

(
dv
2

)
if d(v) ≥ 2

0 otherwise,
(6)

with t(v) as the number of triangles that contain node v. Then f(v) is taken as
c(v) itself.

The average in MSE is calculated from multiple runs of the simulations. The
simulations on Les Misérables network is shown in Figure 1 with a(n) = 1/d n10e
and the super-node size as 25.
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(a) f(v) = I{d(v) > 10}
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(b) f(v) = I{d(v) < 4}
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(c) f(v) = d(v)
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(d) f(v) = c(v), c(v) defined in(6)

Fig. 1: Les Misérables network: NRMSE comparisons

Study of asymptotic MSE: In order to show the asymptotic MSE expressions
derived in Propositions 1 and 2, we plot the sample MSE as MSE×B in Figures
2a, 2b and 2c. These figures correspond to the three different functions we have



considered. It can be seen that asymptotic MSE expressions match well with the
estimated ones.

4.2 Friendster network

We consider a larger graph here, a connected subgraph of an online social net-
work called Friendster with 64,600 nodes and 1,246,479 edges. The nodes in
Friendster are individuals and edges indicate friendship. We consider the func-
tions a). f(v) = I{d(v) > 50} and b). f(v) = c(v) (see (6)) used to estimate
the average clustering coefficient. The plot in Figure 3b shows the results for
Friendster graph with super-node size 1000. Here the sequence a(n) is taken as
1/d n25e.

Now we concentrate on single sample path properties of the algorithms.
Hence the numerator of NRMSE becomes absolute error. Figure 3c shows the
effect of increasing super-node size while fixing step size a(n) and Figure 3d
shows the effect of changing a(n) when super-node is fixed. In both the cases,
the green curve of RL technique shows much stability compared to the other
techniques.

4.3 Observations

Some observations from the numerical experiments are as follows:

1. With respect to the limiting variance, RDS always outperforms the other two
methods tested. However, with a good choice of parameters the performance
of RL is not far from RDS;

2. In the RL technique, we find that the normalizing term 1/|V0|
∑
j Vn(j)

converges much faster than the other two options, Vt(i0) and mini Vt(i);
3. When the size of the super-node decreases, the RL technique requires smaller

step size a(n). For instance in case of Les Misérables network, if the super-
node size is less than 10, RL technique does not converge with a(n) =
1/(d n50e+ 1) and requires a(n) = 1/(dn5 e);

4. If step size a(n) decreases or the super node size increases, RL fluctuates
less but with slower convergence. In general, RL has less fluctuations than
MH-MCMC or RDS.

5 Conclusion and discussion

In this work we studied and compared the performances of various random walk-
based techniques for function estimation on OSNs and provide both empirical
and theoretical analyses of their performance. We found that in terms of asymp-
totic mean squared error (MSE), RDS technique outperforms the other methods
considered. However, RL technique with small step size displays a more stable
sample path in terms of MSE. In the extended version of the paper we plan to
test the methods on larger graphs and involve more methods for comparison.



0 2000 4000 6000 8000 10000

Budget B

0

1

2

3

4

5

M
S

E
×
B

MH-MCMC

Asymp. variance of MH-MCMC

RDS

Asymp. variance of RDS

RL technique
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Fig. 2: Les Misérables network: asymptotic MSE comparisons
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(a) f(v) = I{d(v) > 50}
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(b) f(v) = c(v), c(v) defined in(6)
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