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Characterization of L1-norm Statistic for
Anomaly Detection in Erdős Rényi Graphs

Arun Kadavankandy, Laura Cottatellucci, and Konstantin Avrachenkov

Abstract— We describe a test statistic based on the L1-
norm of the eigenvectors of a modularity matrix to detect the
presence of an embedded Erdős Rényi (ER) subgraph inside a
larger ER random graph. An embedded subgraph may model a
hidden community in a large network such as a social network
or a computer network. We make use of the properties of
the asymptotic distribution of eigenvectors of random graphs
to derive the distribution of the test statistic under certain
conditions on the subgraph size and edge probabilities. We show
that the distributions differ sufficiently for well defined ranges
of subgraph sizes and edge probabilities of the background
graph and the subgraph. This method can have applications
where it is sufficient to know whether there is an anomaly in a
given graph without the need to infer its location. The results we
derive on the distribution of the components of the eigenvector
may also be useful to detect the subgraph nodes.

Index Terms— Subgraph detection, Erdos-Renyi, Detection
and Estimation

I. INTRODUCTION AND NOTATION

We study the problem of deciding whether a given re-
alization of a random graph contains an extraneous denser
subgraph embedded within it. This falls within the general
framework of graph anomaly detection, which has been
studied from a signal processing point of view in [1], [2] and
the references therein. Graphs can efficiently capture long-
range correlations among data-objects in many fields such
as physics, social sciences, biology, and information systems.
Anomaly detection on graphs is a branch of data mining that
focuses on the analysis of such data instances to discover
rare occurrences. This fundamental problem has significance
in varied applications in domains such as security, finance,
politics, marketing, and information and communications
technologies. The interested reader is referred to [3] for
a presentation of a wide range of real-world applications
in telecom, auction, account, opinion, social and computer
networks.

Specifically, we consider a special case of the above
problem where the random graph is an ER graph and the
embedded subgraph is also an ER graph with a greater
density of edges. A random ER graph embedded in a large
ER graph has been proposed to model terrorist transactions in
a large network [4]. More generally, an embedded subgraph
may model a hidden community in a larger network such as
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a social network. This model subsumes the clique detection
problem as studied in [5], which is an important problem in
Theoretical Computer Science, and also in cryptography [6].
Here the goal is to understand the size of the smallest clique
that can be detected by polynomial-time algorithms. See [7],
[8] for some work in this direction.

Our goal is different from classifying the subgraph nodes
as done in [8], [9], in that we do not attempt to locate nodes
of the subgraph. Also note the related problem of community
detection where the community sizes usually scale linearly
with respect to the graph size, and the density of edges
in each community is larger than the intercommunity edge
density [10], [11].

Our work is based on the fact that when there is no embed-
ded subgraph, the modularity matrix of the random graph is
a symmetric matrix with independent upper triangular entries
with zero mean. The eigenvectors of such a matrix have
been shown to be approximately Haar distributed [12], [13],
under certain conditions on the moments of the entries. This
means that a typical eigenvector of the modularity matrix
is delocalized, meaning its L1-norm is large. Note that the
L1-norm of a unit vector v satisfies 1 ≤ ‖v‖1 ≤

√
n,

where the upper bound corresponds to the case of complete
delocalization, i.e., all the entries of the vector are of the
same order of magnitude, and the lower bound corresponds to
the completely localized case, i.e., only one entry is non-zero.
On the other hand, when there is a subgraph embedded onto
the random graph, we hypothesize that there will exist an
eigenvector that is “localized”, i.e., a fraction of components
possess most of the mass of the eigenvector. This idea has
been used in the literature to do community detection based
on k-means clustering of the dominant eigenvectors [14],
[15]. Delocalization properties of eigenvectors of random
matrices under a variety of distributions have been studied
recently in a series of works [16]–[18].

Anomaly detection based on norms has been studied em-
pirically in [1], [2]. There the authors look for the presence
of an eigenvector whose L1-norm is much smaller than a
fixed threshold that depends on the mean and variance of
the L1-norms of all the eigenvectors of the modulariy matrix
estimated empirically, and declare a subgraph to be present
if there exists such an eigenvector. In our work we provide
theoretical validation for anomaly detection based on the
L1-norm of only the dominant eigenvector, and show that
it is possible to detect the anomaly in this way. We find
the distributions of the test statistic with and without the
embedded subgraph for a specific setting where both the
subgraph and the background graph are independent ER



random graphs.
Our contribution is threefold. We derive the distribution

of the dominant eigenvector components of the modularity
matrix when there is an embedded subgraph. The modularity
matrix is the adjacency matrix of the graph with the edge
probability of the background graph subtracted. It was intro-
duced in [19] where it is used as a metric to measure the
quality of community partitioning in a general graph. We
use this result to derive the asymptotic distribution of the
L1-norm of this eigenvector. We also look at the case where
there is no subgraph embedded and use the properties of the
eigenvectors of Wigner matrices as explored in [12], [20],
to derive the L1-norm of the eigenvectors when there is no
subgraph embedded. Using these distributions we then devise
a statistical test to detect the presence of the extraneous
subgraph.

Next we present relevant notational conventions followed
throughout the paper.
Notation:
A vector is denoted in bold lower case (x), a matrix in bold
upper case (A), and their components as xi and Aij . Also,
‖x‖ =

√
x2

1 + x2
2 + . . . x2

n, is the L2-norm of x ∈ Rn, and
‖x‖1 = |x1| + |x2| + . . . |xn| is its L1-norm. For a real
symmetric matrix A, ‖A‖ denotes its spectral radius, i.e.,
the maximum eigenvalue in absolute value. We denote the
standard Euclidean basis vectors as ei, a unit vector with all
zero components except the ith component, which is equal to
1, and 1n ∈ Rn denotes an n× 1 vector whose components
are all equal to 1. Also, Jn denotes an n× n matrix whose
entries are all equal to 1, i.e., Jn = 1n1Tn . We do not
distinguish between a random variable and its realization and
this is usually clear from the context.

Also note we use the standard big O,Σ notations. The
abbreviation w.p. denotes “with probability”. Probabilistic
operators such as distributions and expectations are given
subscripts to specify the hypothesis under which they hold;
for example EH1

denotes expectation w.r.t the distribu-
tion under hypothesis H1. We use the common notation
N (µn,Σn) to denote the multivariate normal distribution
in Rn with mean vector µn, and covariance matrix Σn.

In section II we first formulate the general detection
problem, and later in the more specific case studied in
this paper. In section III, we present our anomaly detection
algorithm, which is a hypothesis test problem with the
probability of false alarm fixed. In section III-A, we describe
the spectral properties of the modularity matrix A under H0,
and characterize the distribution of the L1-norm of its eigen-
vectors. Proposition 1 gives the main result on the asymptotic
distribution of χ under H0. In section III-B we analyze the
spectral properties under H1, and in Theorem 2, derive a
Central Limit Theorem (CLT) for the individual components
of the dominant eigenvector of A. Using this distribution we
compute the approximate asymptotic distribution of the L1-
norm statistic under H1 in section III-B.2.In section IV we
present some simulation results and finally in section V we
describe our conclusions and directions for future research.

II. THE ANOMALY DETECTION PROBLEM

In this section we formulate the general problem of
anomalous subgraph detection. Let G = (V,E) denote
the observed graph, where V is the set of vertices, with
cardinality |V | = n, and E ⊂ V × V is the set of edges.
When there is no embedded subgraph, G = Gb, where
Gb = (V,Eb) is the background graph with Eb used to
denote the edge set of the background graph. Let us denote
the subgraph by Gs = (Vs, Es) with Vs ⊂ V, and |Vs| = m.
When there is an embedded subgraph we have E = Eb∪Es.
Based on an observation of the graph G, we decide on
hypothesis H0 or H1 where

H0 : E = Eb (1)
H1 : E = Eb ∪ Es. (2)

In our model, both the background graph and the embedded
subgraph are independently drawn from an ER graph ensem-
ble. For simplicity of mathematics we allow self-loops, but
in general this does not impact the results in the asymptotic
limit when the graph size scales to infinity. We assume Gb =
G(n, pb), and Gs = G(m, ps), where G(l, q) denotes the class
of ER random graphs of size l and edge probability q. Under
H1, the probability of two nodes within Vs being connected
in G is therefore p1 = 1− (1−pb)(1−ps) = pb+ps−pbps
and elsewhere the edge probability is pb. Under H0, the edge
probability is uniformly pb. Without loss of generality we
assume that Vs = {1, 2, . . .m}.

It can be observed under H1 the graph is probabilistically
equivalent to a Stochastic Block Model (SBM) with two
communities of size m and n −m, within community link
probabilities p1 = pb + ps − pbps and p2 = pb; and
outlink probability p0 = pb. Properties of SBM have been
studied extensively in several works in the literature under
assumption of linearly increasing block sizes; see e.g. [21],
[22].

The adjacency matrix A of G is given as below

Aij = Aji ∼

{
B(pa) if i, j ≤ m
B(pb) otherwise

(3)

where B(p) denotes the Bernoulli distribution that is 1 with
probability p;

pa =

{
p1 if H1

pb if H0.

Notice that pb, ps and m in general scale with the graph
size n; the constraints on the actual scaling with respect
to n will be made explicit when the results are given. Let
A = A− pbJn be the modularity matrix. Since we are con-
sidering undirected graphs, A is symmetric with independent
upper diagonal entries and the same holds for A. Being a
symmetric matrix the latter admits a spectral decomposition
such that A = UΛUT, where U =

[
u1 u2 . . . un

]
,

is an orthonormal matrix whose columns are made of the
normalized eigenvectors with respective eigenvalues Λii =
λi, in decreasing order without loss of generality (wlog),
λ1 ≥ λ2 ≥ . . . ≥ λn.



III. ALGORITHM AND ANALYSIS

In what follows we focus on the following algorithm.
It is similar to the algorithm introduced in [2] based on
finding the eigenvector of A with the least L1 norm.

Algorithm: Subgraph Detection

• Input: Adjacency matrix A, background probability
pb, µ(0), the mean of χ under H0 and σ2

(0), its variance
under H0. Fix probability of false alarm pFA.

• Construct the matrix A = A− pbJ
• Compute the eigenvector u1 corresponding to eigen-

value λ1, and find χ = ‖u1‖1.
• Find τ, such that (s.t.) PH0

{χ < τ} = pFA, i.e., τ =
µ(0) + σ(0)Φ

−1(pFA)
• If χ < τ, declare H1, otherwise H0,

where Φ is the Cumulative Density Function (CDF) of
N (0, 1).

In the following sections we present our mathematical
results. We skip the proofs due to space constraints, and the
reader is referred to the research report [23].

We need some technical conditions to prove our results,
which are given below.

Condition 1:

pb �
log6(n)

n
Condition 2:

mp1 ≤ npb
Condition 3:

mδp = Ω((npb log(n))2/3),

where δp ≡ p1 − p0

Condition 4:
mpb = Ω(1)

Notice that Condition 4 also implies that mp1 = Ω(1),
because mp1 > mpb.

Discussion of the Conditions:
We need Condition 1 to make sure that the adjacency matrix
components have light tails, so that the assumption of Haar
distribution of the eigenvectors of the centralized adjacency
matrix in Approximation 1 is valid. Condition 3 is required
so that the gap between the dominant eigenvalue λ1 of A
and the next largest eigenvalue is large enough so that the
dominant eigenvector is localized. We use it to prove the
CLT for the eigenvector components presented in this paper.
We believe that it is possible to relax this condition by more
sophisticated techniques, which we reserve for future work.
Condition 4 is purely technical and is required to show CLT
of the components of the eigenvector corresponding to the
vertices outside the embedded subgraph.

A. Spectral statistics under H0

Under H0, A is a symmetric matrix with independent
centered upper triangular entries as given below

Aij = Aji =

{
1− pb w.p. pb
−pb w.p. 1− pb

i.e., the components of A are independent on and above the
diagonal, with zero mean, and variance pb(1−pb). Thus the
matrix A under H0 belongs to the class of random matrices
called Wigner matrices. It consists of symmetric matrices
with independent upper triangular entries with zero mean
and equal variances [24]. The spectral properties of centered
adjacency matrices such as the empirical spectral distribution
and the spectral radius are well-studied in the literature
under different scaling laws on pb, see e.g., [22], [25]. The
eigenvectors of Wigner matrices have also been studied under
general distributions of matrix entries. For finite n it is
known that the eigenvectors are Haar distributed for Wigner
matrices with Gaussian entries such as the Gaussian Unitary
ensemble and the Gaussian Orthogonal Ensemble [24]. This
means that a typical eigenvector is approximately uniformly
distributed on the hypersphere Sn−1 = {s : ‖s‖ = 1}, in
the L2 (Euclidean) space. A unit vector on the hypersphere
can be modelled as a Gaussian eigenvector with independent
and identically distributed (i.i.d.) components drawn from
N (0, 1), normalized to have unit L2-norm, i.e., x/‖x‖, with
x being a Rn Gaussian vector with covariance matrix I,
i.e., x ∼ N (0, I). In [12], the joint distribution of a subset
of scaled eigenvector components was shown to be i.i.d.
Gaussian under a restriction on the size of the subset. In
[13] and [20] the authors studied spectral functions that
depend on the eigenvectors for general Wigner matrices and
showed them to converge to a Brownian bridge as n scales
to infinity, thus providing evidence that the eigenvectors are
Haar distributed. In [26] the Brownian Bridge property was
extended to Wigner matrices with heavy tailed entries. Based
on these results we make the following approximation for the
centered adjacency matrix of an ER graph.

Approximation 1: (Haar distribution of Eigenvectors of
a Wigner matrix) A typical eigenvector ui of A under
hypothesis H0 is distributed uniformly on the hypersphere
on S(n−1) when pb � log6(n)

n . The distribution of a typical
eigenvector ui is identical to the distribution of x/‖x‖,
where x ∼ N (0, In).

Let us define g(x) = ‖x‖1/‖x‖. Below we derive a central
limit theorem for g(x), when x a Gaussian random vector
with i.i.d. components.

Lemma 1: (Central Limit Theorem for ‖x‖1/‖x‖) Let
x be a Gaussian random vector with i.i.d. components,
then g(x) satisfies a central limit theorem with the limit
distribution being Gaussian with mean µ0 =

√
n
α2
α1 and

variance σ2
0 = 1

α2

(
C11 + ( α1

2α2
)2C22 − α1

α2
C12

)
, where

α1 = E(|x1|), α2 = E(|x1|2), C11 = Var(|x1|), C22 =
Var(|x1|2), C12 = E((|x1|−E(|x1|))(|x1|2−E(|x1|2))), i.e.,
g(x)

D−→ N (µ0, σ
2
0)).

Proposition 1: Under H0, χ ∼ N (µ(0), σ
2
(0)), asymptoti-

cally in distribution, where µ(0) =
√

2n
π , and σ2

(0) = 1− 3
π .

Proof: The proof uses Approximation 1 and follows from
Lemma 1, where α1 = E(|x1|) =

√
2
π , α2 = E(|x1|2) = 1,

C11 = Var(|x1|) = 1 − 2/π,C22 = Var(|x1|2) = 2, C12 =



E((|x1| − E(|x1|))(|x1|2 − E(|x1|2))) =
√

2
π . �

B. Spectral Statitistics under H1

Under hypothesis H1 the matrix A is given as below

Aij =



{
1− pb w.p. p1

−pb w.p. 1− p1

, if 1 ≤ i, j ≤ m,{
1− pb w.p. pb
−pb w.p. 1− pb

if i > m or j > m,

Thus under H1, the matrix A has a non-zero mean given by

A := EH1
A =

[
(p1 − pb)Jm 0m×n−m

0n−m×m 0n−m×n−m

]
. (4)

Also note that for the components Aij , such that 1 ≤ i, j ≤
m, the upper diagonal components have the variance of
p1(1 − p1), and the other components have a variance of
pb(1− pb). Let δp := p1 − pb.

The matrix A has rank 1, and with a single non-zero

eigenvalue λ̄ = mδp, with eigenvector ū = 1√
m

[
1m

0n−m×1

]
.

In order to show the CLT presented in Theorem 2 we need a
bound on the spectral radius of A−A, which is presented
below.

Theorem 1: Under the condition that pb � log2(n)
n ,

‖A−A‖ <
√

12 log(n) max(σ2
1m+ σ2

0(n−m), σ2
0n)

(5)

=
√

12 log(n)σ2 almost surely (a.s.),

where σ2
1 = p1(1− p1), σ2

0 = p0(1− p0), and define σ2 :=
max(σ2

1m+ σ2
0(n−m), σ2

0n).
For the above result to hold we require that ∃N s.t. ∀n > N
σ2 > (6 log(n))2, which can be easily verified to be satisfied
when npb � log2(n).

Let us define ∆ :=

√
12 log(n)npb
mδp

. Note that under Condi-
tion 3 ∆ = o(1), implying that ‖A −A‖/‖A‖ → 0. This
means that asymptotically the spectral characteristics of A
and A are nearly the same. We use this fact to show that
u1 converges to ū, which is instrumental in the proof of
Theorem 2 (Details in the research report [23]).

1) Eigenvector distribution under H1: We develop a CLT
for the components of the dominant eigenvector of the
“modularity” matrix A. It is similar in vein to the CLT
derived in [27], for the components of the eigenvector of
a single dimensional Random Dot Product Graph(RDPG).
See our technical report for further details. Throughout this
section the distributions of the random variables correspond
to those under H1, and this fact is not explicitly noted from
here onwards.

We need to characterize the distribution of the dominant
eigenvector1 of A, which we denote u := u1, corresponding
to the eigenvalue λ := λ1. Observe that the mean matrix

1By the dominant eigenvalue of a matrix we mean the largest eigenvalue
of the matrix, and the dominant eigenvector is the corresponding eigenvector.

A can be written as x̄x̄T , where x̄ =
√
δp
[
1Tm 0Tn−m

]T
and ū = x̄/‖x̄‖. Let us define x as x = λ1/2u, and so
u = x/‖x‖. Intuitively, when there is a non-diminishing
spectral gap G for large n, a random realization of x would
be close to x̄. Therefore the ith component of x would have
a limiting distribution with mean x̄i. We can then derive
the limiting distribution of the L1-norm statistic from the
distribution of x.

We present below our main theorem on the CLT of the
components of the dominant eigenvectors.

Theorem 2: Under Conditions 2, 3 and 4 the following
CLT holds true for the entries of the scaled dominant eigen-
vector x = λ1/2u, where u is the eigenvector corresponding
to the eigenvalue λ of A under H1.√

mδp
p1(1− p1)

(
xi −

√
δp

)
D−→ N (0, 1), (6)

for 1 ≤ i ≤ m, and√
mδp

pb(1− pb)
xi
D−→ N (0, 1), (7)

for 1 +m ≤ i ≤ n.
Sketch of Proof of Theorem 2:

For the full proof, please see the research report [23]; we
only provide a brief outline here. Define γi =

√
mδp

p1(1−p1)

for 1 ≤ i ≤ m and γi =
√

mδp
pb(1−pb) for m + 1 ≤ i ≤ n.

Notice that xi = 1
λ1/2 [Au]i and x̄i = 1

λ̄1/2

[
Aū
]
i

=
√
δp

for 1 ≤ i ≤ m and x̄i = 0 for m + 1 ≤ i ≤ n. Here [z]i
denotes the ith component of vector z. We can write

γi(xi − x̄i) := T1 + T2 + T3.

We treat each of the above three terms separately as below.
• We show that T1 = γi

(
1

λ1/2 [A(u− ū)]i
)
→ 0 in

probability, using bounds on ‖u − ū‖ derived using
eigenvector perturbation lemmas in [28] derived using
Theorem 1.

• We show T2 = γi
(

1
λ1/2 [Aū−Aū]i

)
satisfies a CLT

and is asymptotically distributed as N (0, 1), under
Condition 4.

• Finally we show that T3 = γi
(
( 1
λ1/2 − 1

λ̄1/2 )[Aū]i
)
→

0, in probability under Condition 3, by showing a
concentration result for the dominant eigenvalue λ.
Notice that T3 = 0 for i > m.

The result thus follows by an application of Slutsky’s
thereom [29].

2) Distribution of χ under H1: We use the CLT derived
in Thereom 2 to derive an approximate CLT for our test
statistic χ = ‖u‖1 under H1. The distribution is approximate
since we make the assumption that the components of x are
independently distributed and have the Gaussian distribution
derived in Theorem 2 for finite n as opposed to the asymp-
totic regime in which Theorem 2 holds. We expect this to
be a good approximation for large n, as our simulations in
Section IV indicate.
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Proposition 2: Under the assumption that the components
of x are independent and Gaussian with the distribution
derived in theorem 2, χ−µ(1)

σ(1)
is asymptotically distributed

as N (0, 1) with µ1 and σ2
(1) given in (8,9) respectively.

Note that Q(x) is the Q-function, i.e., the Complimentary
Cumulative Density Function (CDF) of the an Random
Variable (r.v) distributed as N (0, 1).

To simplify the presentation of the formulae we introduce
the following notation. Let r =

mδ2p
2p1(1−p1) , s =

mδ2p
2pb(1−pb) .

Also, β1 =
√

δp
πr e
−r +

√
δp
(
1− 2Q(

√
2r)
)
, and β2 =√

δp
πs . In addition we also define

E1 =
1√
π

(
δp
r

)3/2

M(−3

2
,

1

2
,−r)

E2 =
3

4

(
δp
r

)2

M(−2, 1/2,−r)

where M(a, b, z) is the confluent hypergeometric gamma
function [30]. Then

µ(1) =
Nα1√
Nα2

(8)

and

σ2
(1) =

1

Nα2

(
C11 +

(
Nα1

2Nα2

)2

C22 −
Nα1

Nα2

C12

)
, (9)

where Nα1
= mβ1 + (n − m)β2, and Nα2

=

m
(
δp(1 + 1

2r )
)

+ (1− 2
π )

δp(n−m)
2s . Finally,

C11 = m

(
δp(1 +

1

2r
)− β2

1

)
+ (1− 2

π
)
δp(n−m)

2s

C12 = m

(
E1 − β1δp(1 +

1

2r
)

)
+
n−m√

4π

(
δp
s

)3/2

C22 = m

(
E2 − δ2

p(1 +
1

2r
)2

)
+

3(n−m)

4

(
δp
s

)2

The CLT result stated in Proposition 2 is approximate, since
in deriving the result we assumed that the components of
the scaled dominant eigenvector are Gaussian for finite n,
whereas in truth the distribution is only Gaussian in the
asymptotic limit. On the other hand, from simulations we
see that the distribution indeed matches our prediction. We
provide approximate expressions of µ(1) and σ2

(1) in (8) and
(9), using the fact that r = Ω(1), and s = Ω(1). For the
parameter values we choose satisfying Conditions 1,3 and 4,
and using asymptotic approximations for the Q-function and
M(a, b, x), [30] we can show that for large n,

µ(1) ≈
√
m

(
1− 1

4r
− ρ

4s

)(
1 +

ρ√
πs

)
,

where ρ := n−m
m . For large n, the fractions in the braces are

o(1) implying that the expected value of χ is close to
√
m�

µ(0). This agrees with our intuition that asymptotically the
eigenvector u is localized to the nodes belonging to the
subgraph. Similarly using the asymptotic approximation for
M(a, b, x) for large x [30], one can show that for large n,
and m, δp satisfying Condition 3,

σ2
(1) ≈

1

2
(1− 2

π
)
ρ

s
(1− 1

2r
− ρ

2s
)

Thus we see that σ2
(1) ∼

ρ
s = 2(n−m)pb(1−pb)

(mδp)2 ∼ (n−m)pb
(mδp)2 .

This is interesting because it says that the variance of χ
under H1 is inversely proportional to the strength of the
signal mδp and in addition it is inversely proportional to
∆, the spectral gap ratio, indicating that smaller the spectral
gap, the harder it is to detect the presence of the subgraph.
In addition σ2

(1) is several orders of magnitude less than µ(1)

and so the concentration is quite sharp.



IV. SIMULATIONS

We present simulations to validate the distributions of the
statistic under H0 and H1. We choose values of m,n, δp and
pb so that Conditions 1, 2, 3 and 4 are satisfied. First we
generate an ER graph of size n = 1500 and edge probability
pb = 0.15, and calculate the dominant eigenvector of its
modularity matrix. We compute its L1-norm and repeat
the experiment 104 times and compute the empirical CDF
Fχ(χ), which is the solid blue line with “x” marker in
figure 1. In the same figure we plot the CDF of a Gaussian
r.v with mean µ(0) and variance σ2

(0) (red solid line with
“o” marker). This verifies that χ indeed has a distribution
close to a Gaussian with the predicted mean and variance.
Next we embed a subgraph in this ER graph with m = 450
and δp = 0.25, and compute the L1-norm of the dominant
eigenvector and repeat the experiment 1e4 times to obtain
the empirical CDF. The results are plotted in figure 2. We
indeed can observe that the empirical CDF (blue solid line
with “x” marker), matches quite well with the Gaussian CDF
(red solid line with “o” marker whose mean and variance are
µ(1) and σ2

(1) respectively, thus corroborating our theoretical
findings. Notice that because the distributions are far apart
in the parameter regime under consideration, we obtain
practically error free detection.

V. CONCLUSIONS AND FUTURE WORK

In this work we study a test statistic χ which is the L1-
norm of the dominant eigenvector of the modularity matrix
of the random graph and analyse its distribution in the
presence and absence of the anomalous subgraph. We show
that the distributions are sufficiently far apart so that error
free detection is possible. In the future we would like to
improve the scaling of mδp with respect to n. As shown
in a few works, detecting subgraph nodes is not possible
if this quantity scales slower than θ(

√
npb) [9]. We would

like to investigate the possibility of detecting the presence of
the anomaly under a much more stringent regime, where it
might not be information-theoretically possible to detect the
subgraph nodes.
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