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Abstract
We present a provably linearizable and lock-free relaxed AVL tree called the non-blocking ravl
tree. At any time, the height of a non-blocking ravl tree is upper bounded by logφ(2m) + c,
where φ is the golden ratio, m is the total number of successful INSERT operations performed so
far and c is the number of active concurrent processes that have inserted new keys and are still
rebalancing the tree at this time. The most significant feature of the non-blocking ravl tree is that
it does not rebalance itself after DELETE operations. Instead, it performs rebalancing only after
INSERT operations. Thus, the non-blocking ravl tree is much simpler to implement than other
self-balancing concurrent binary search trees (BSTs) which typically introduce a large number of
rebalancing cases after DELETE operations, while still providing a provable non-trivial bound on
its height. We further conduct experimental studies to compare our solution with other state-of-
the-art concurrent BSTs using randomly generated data sequences under uniform distributions,
and find that our solution achieves the best performance among concurrent self-balancing BSTs.
As the keys in access sequences are likely to be partially sorted in system software, we also
conduct experiments using data sequences with various degrees of presortedness to better simulate
applications in practice. Our experimental results show that, when there are enough degrees of
presortedness, our solution achieves the best performance among all the concurrent BSTs used
in our studies, including those that perform self-balancing operations and those that do not, and
thus is potentially the best candidate for many real-world applications.
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1 Introduction

Concurrent data structures play an important role in modern multi-core and multi-processor
systems, and extensive research has been done to design data structures that support efficient
concurrent operations. As BSTs are fundamental data structures, many researchers have
studied the problem of designing concurrent BSTs. Lock-based BSTs are the most intuitive
solutions and have been shown to be efficient [23, 1, 18, 3, 9, 7, 8]. There is, however, a
potential issue: if a process holding a lock on an object is halted by the operating system, all
the other processes requiring access to the same object will be prevented from making any
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34:2 Deletion without Rebalancing in Non-Blocking BSTs

further progress. Non-blocking (lock-free) BSTs have thus been proposed in recent years to
overcome this limitation [11, 10, 5, 24, 6, 21, 19].

Despite the extensive work on lock-based and non-blocking BSTs, only a few solutions
support self-balancing [3, 7, 8, 5, 9, 18]. Self-balancing BSTs are important in both theory
and practice: In theory, they have better bounds on query and update time than BSTs
that do not support self-balancing; for real-world applications, studies [22] have shown that
self-balancing BSTs outperform BSTs without self-rebalancing greatly in sequential settings.
However, the current status of the research on concurrent BSTs is that there is much less
work that provides non-trivial bounds on access time than the research on the sequential
counterparts. In addition, almost all existing empirical studies [1, 3, 5, 9, 16, 19, 21, 24, 23]
are performed using randomly generated data under uniform distributions. This approach,
however, has some drawbacks. As mentioned in [22, 5, 1], such experimental settings favor
BSTs without self-balancing greatly: the expected heights of these trees are logarithmic
with high probability under these settings [15], while they avoid the costs of rebalancing.
Studies [22] have also shown that it is common that in real-world applications, the keys in
an access sequence are partially sorted, i.e., have some degree of presortedness, instead of
being completely random. As an example, when entering student grades of a course into
a database, the data are likely to be entered in the order of student IDs or names. Thus,
random data do not simulate these scenarios well. Therefore, much work is needed to provide
more theoretical results on concurrent self-balancing BSTs, and better designed experimental
studies are also needed to evaluate their performance.

While many researchers are designing concurrent BSTs, some significant progress has
also been made recently in the study of self-balancing BSTs in sequential settings. In
particular, Sen and Tarjan [26] proposed a solution to address the issue that self-balancing
BSTs introduce so many cases when performing rebalancing after DELETE operations that
many developers resort to alternative solutions. These alternative solutions, however, may
have inferior performance. To provide developers with a viable self-balancing BST solution
for the fast development required in industry, Sen and Tarjan came up with a relaxed AVL
tree called the ravl tree. A ravl tree only rebalances itself after INSERT operations, while its
height is still bounded by O(logm), where m is the number of INSERT operations performed
so far. The total number of rebalancing cases in the ravl tree is incredibly few, posing a
great advantage in software development.

Based on the state of the art of the research on concurrent and sequential BSTs as
described above, we study the problem of designing a non-blocking self-balancing BST that
only rebalances itself after INSERT operations, while still providing a non-trivial provable
bound on its height in terms of the total number of successful INSERT operations performed so
far and the number of active concurrent processes. As in sequential settings, such a solution
will decrease the development time greatly in practice. Furthermore, it may even potentially
improve throughput in concurrent settings: If threads performing DELETE operations do not
rebalance the tree after removing items, they can terminate sooner so that there are fewer
concurrent threads in the system.

1.1 Our Work
We design a concurrent self-balancing BST called non-blocking ravl tree that only rebalances
itself after INSERT operations for asynchronous systems where shared memory locations can
be accessed by multiple processes. The number of rebalancing cases introduced is much
fewer than other non-blocking self-balancing BSTs such as the non-blocking chromatic tree
proposed by Brown et al. [5]. More precisely, the non-blocking ravl tree only has 5 rebalancing
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cases, while 22 cases have to be considered for the non-blocking chromatic tree. We prove
the linearizability and progress property of a non-blocking ravl tree, and bound its height.
The theoretical results of our research are summarized in the following theorem:

I Theorem 1. The non-blocking ravl tree is linearizable and lock-free, and it only rebalances
itself after INSERT operations. For a non-blocking ravl tree built via a sequence of arbitrarily
intermixed INSERT and DELETE operations from an empty tree, at any time during the
execution, the height of the tree is bounded by logφ(2m) + c, where φ = 1+

√
5

2 is the golden
ratio, m is the number of INSERT operations that have successfully inserted new keys into the
tree so far and c is the number of INSERT operations that have inserted a new item but not
yet terminated at this time.

We further conduct experimental studies to evaluate the performance of our solution by
comparing it against other state-of-the-art concurrent BSTs. We first use randomly generated
data under uniform distributions, and show that non-blocking ravl trees outperform other
concurrent self-balancing BSTs. We then use sequences with different degrees of presortedness.
Experimental results show that our solution achieves the best performance among all
concurrent BSTs with or without self-balancing when the data sequences have enough degree
of presortedness, so that the average heights of BSTs without self-balancing are approximately
4-5 times greater than the average heights of self-balancing BSTs. Considering that previous
studies [22] have shown that, when implemented in system software, it is very common that
BSTs without self-balancing are more than five times taller than self-balancing BSTs, we
believe that our solution is the best candidate for many real-world applications.

When designing the non-blocking ravl tree, our main strategy is to apply the general
approach proposed by Brown et al. [5] for developing lock-free BSTs to design a concurrent
version of Sen and Tarjan’s ravl tree, and thus existing techniques are borrowed. Due to the
special nature of the problem studied, we develop a number of new twists on these ideas:
The three rebalancing cases of the original ravl tree are no longer sufficient to cover all
possibilities in concurrent settings, and thus, we consider five rebalancing cases. Furthermore,
a correctness proof is provided to show that our approach indeed covers all possibilities,
while no similar proofs are needed in Sen and Tarjan’s work where the correctness is obvious.
To bound the tree height, we still use the exponential potential function approach in Sen
and Tarjan’s work which was originally proposed by Haeupler et al. [17], but we develop a
more complex potential function and prove more properties of rebalancing to complete the
analysis. It is interesting to see that the exponential potential function approach can still be
made to work despite the more complex cases in concurrent settings.

We also would like to point out that in sequential settings, ravl trees are one type of
rank-balanced trees [17], in which balancing information called ranks are assigned to tree
nodes, and by maintaining different invariants called rank rules, different results can be
achieved. Certain rank rules can yield the classic AVL trees and red-black trees, and creative
rules can be invented to design data structures with new properties, including the ravl tree
and the weak AVL tree [17] which uses fewer rotations than previous work while ensuring
that its height is never worse than a red-black tree. Our work can provide a general guideline
for those who wish to design and study the concurrent versions of this new class of trees.

2 Related Work

A number of lock-based and non-blocking BSTs have been proposed. In this section, we
introduce some state-of-the-art concurrent BSTs. We say that a BST is unbalanced if it does
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34:4 Deletion without Rebalancing in Non-Blocking BSTs

not support self-balancing, and call a BST external if values are only stored in its leaves,
while an internal BST uses all nodes to store values.

Lock-based search trees. Bronson et al. [3] proposed a lock-based variant of AVL trees
based on hand-over-hand optimistic validation adapted from Software Transactional Memory
(STM). It reduces the complexity of deleting a node with two children by simply setting the
value stored in this node to NULL without physically removing it from the data structure.
This is the only case in which nodes that do not store values may be created, and thus
they call their trees partially external. The speculation-friendly BST proposed by Crain
et al. [7] is an internal tree in which updates are split into transactions that modify the
abstraction state and those that restructure the tree implementation. Drachsler et al. [9]
proposed a partially non-blocking internal BST supporting lock-free GET operations and
lock-based update operations via logic ordering. This technique applies to both unbalanced
BSTs and AVL trees. The CITRUS tree proposed by Arbel and Attiya [1] is an unbalanced
internal BST offering wait-free GET operations and lock-based updates. It allows concurrent
updates on BSTs based on Read Copy Update (RCU) synchronization and fine-grained locking.
Ramachandran and Mittal [23] proposed the CASTLE tree, an unbalanced lock-based internal
BST which locks edges instead of nodes to achieve higher concurrency.

Lock-free search trees. The first non-blocking BST that has been theoretically proven
to be linearizable and non-blocking was proposed by Ellen et al. [11]. It is an unbalanced
external BST which implements Compare-And-Set (CAS) to perform update operations.
In their solution, processes performing update operations help each other so the entire
system is guaranteed to make progress. Ellen et al. [10] also proposed a variant of [11] in
which the amortized cost of an update operation, op, is O(h(op) + ċ(op)), where h(op) is the
height of the tree when op is invoked, and ċ(op) is the maximum number of active processes
during the execution of op. An unbalanced non-blocking internal BST was proposed by
Howley and Jones [19], in which both processes performing GET and processes performing
update operations help other processes. In the unbalanced non-blocking external BST
proposed by Natarajan and Mittal [21], each process performing update operations operates
based on marking edges. Ramachandran and Mittal [24] proposed an internal unbalanced
lock-free BST by combining ideas from [19] and [21]. Brown et al. [5] proposed a general
technique for developing lock-free BSTs using non-blocking primitive operations [4]. They not
only presented a framework for researchers to design new non-blocking BSTs from existing
sequential or lock-based BSTs, but also provided guidelines to prove the correctness and
progress properties of the new solutions.

3 Preliminaries

In this section, we describe the previous results that are used in our solution. Non-blocking
ravl trees use primitive operations Load-Linked Extended (LLX) and Store-Condition Extended
(SCX) proposed by Brown et al. [4] to carry out update steps. LLX and SCX operations
are performed on Data-records consisting of mutable and immutable user-defined fields.
Immutable fields of a Data-record cannot be further changed after initialization. The mutable
fields of a Data-record cannot be further changed after it has been finalized. A successful
LLX operation performed on a Data-record r reads r’s mutable fields and returns a snapshot
of the values of these fields. If an LLX operation on r is concurrent with any SCX operation
that modifies r, it is allowed to return fail. An LLX operation performed on a finalized Data-
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Figure 1 An example of a tree update operation following the template in [5].

record returns finalized. An SCX operation requires the following arguments: a sequence of
Data-records V , a sequence of Data-records R which is a subset of V , a pointer fld pointing
to a mutable field of a Data-record in V , and a new value new. A successful SCX operation
atomically stores new into the mutable field pointed to by fld and finalizes all Data-records
in R. An SCX operation can fail if it is concurrent with any other SCX operation performed
by another process that modifies the Data-records in V .

Non-blocking ravl trees use the template proposed by Brown et al. [5] to perform updates.
This template provides a framework to design a non-blocking down tree, which is a directed
acyclic graph in which there is exactly one special root node with indegree 0 and all other
nodes are of indegree 1. An update operation using this template atomically removes a
subtree from the data structure and replaces it with a newly created subtree using LLX and
SCX operations. More precisely, we define R to be the set of nodes in the removed subtree,
N to be the set of nodes in the newly added subtree, FR = {x|parent of x ∈ R and x /∈ R}
before the update, and FN = {x|parent of x ∈ N and x /∈ N} after the update. Then, the
down tree GR induced by nodes in R ∪ FR before the update is replaced by the down tree
GN induced by nodes in N ∪FN after the update. Let parent be the parent of the root node
of GR in the down tree. Figure 1 gives an example.

An update operation op following the tree update template first performs a top-down
traversal until it reaches parent. It then performs a sequence of LLX operation on parent and
a contiguous set of its descendants related to the desired update. We define σ to be the set
of nodes on which op performs these LLX operations, Fσ = {x|parent of x ∈ σ and x /∈ σ}
before the update, and the down tree Gσ to be the subgraph induced by σ ∪ Fσ. If any of
these LLX operations returns fail or finalized, op returns fail. Otherwise, op constructs the
required arguments for an SCX operation, which are V , R, fld and new, and calls SCX to
perform the desired update. Lemma 2 summarizes their results.

I Lemma 2 ([5]). Consider a down tree on which concurrent update operations are performed
following the tree update template. Suppose that when constructing SCX arguments in this
template, the following conditions are always met: (1) V is a subset of σ; (2) R is a subset
of V ; (3) fld points to a child pointer of parent, and parent is in V ; (4) new is a pointer
pointing to the root of GN , and GN is a non-empty down tree; (5) let old be the value of the
child pointer pointed by fld before the update, then if old = NULL before the update operation,
R = ∅ and FN = ∅; (6) if old 6= NULL and R = ∅, FN only contains the node pointed to by
old; (7) all nodes in N must be newly created; (8) if a set of concurrent update operations
take place entirely during a period of time when no successful SCX operations are performed,
the nodes in the sequence V constructed by each of these operations must be ordered in the
same tree traversal order; (9) if R 6= ∅ and Gσ is a down tree, then GR is a non-empty down
tree whose root is pointed to by old, and FN = FR. Then, successful tree update operations
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are linearized at the linearization points of their SCX steps. If tree update operations are
performed infinitely often, they succeed infinitely often, and are thus non-blocking.

4 Non-Blocking Ravl Trees

We now describe the non-blocking ravl tree, which is based on the sequential ravl tree [26].
We follow the definitions of V , fld, old, new, R, N , FR and FN in Section 3. Due to the page
limit, the pseudocode and more details of some algorithms are omitted, and we only sketch
our proof of Theorem 1. These omitted details be found in the second author’s master’s
thesis [20].

4.1 The Structures and Algorithms of Non-Blocking Ravl Trees
Each node x in a non-blocking ravl tree is represented by a Data-record < x.left, x.right, x.k,
x.v, x.r >, where x.left and x.right are pointers to x’s left child and right child, respectively,
x.k is the key that identifies x, x.v is the value stored in x, and x.r is x’s rank, which is used
for rebalancing. x.left and x.right are mutable fields, and the other fields are immutable. If
either one of x’s children is missing, we conceptually add missing node(s) as its child/children.
If both of x’s children are missing, x is a leaf; otherwise, x is an internal node which is for
routing purposes only, and we define x.v = NULL. If x is a missing node, x.r = −1; otherwise,
x.r is a non-negative integer. Let z be x’s parent. x is called a i-node if z.r − x.r = i. x is
an i,j-node if one of x’s children is an i-node and the other is a j-node. If x is a 0-node,
we call it a violation, and the edge (z, x) is called a violating edge. In this case, we also say
that x is z’s 0-child, and z is a 0-parent. No violation exists in external ravl trees after their
rebalancing processes have terminated.

As mentioned previously, different rank rules can achieve different goals for rank-balanced
trees. For example, in sequential settings, the original AVL tree is a rank-balanced binary
tree in which each internal node is a 1,1-node or a 1,2-node and each leaf is a 1,1-node
of rank 0. Our non-blocking ravl tree has the same rank rule as the sequential one: after
rebalancing has been carried out, the rank of each parent is strictly larger than that of a
child. A sequential ravl tree maintains such an invariant by promoting and demoting nodes
and possibly rotating nodes after an insertion, where a promotion or a demotion respectively
increases or decreases the rank of a node by 1. In concurrent settings, after an insertion is
performed, we use the tree update template [5] to perform rotations and/or replacing some
nodes by newly created nodes whose ranks differ by 1. During such a rebalancing process,
however, more types of nodes may appear in concurrent settings. For example, a 0,0-node
may be created as the result of a concurrent insertion into a non-blocking ravl tree, but it
never appears at any time in the sequential case. Thus we carefully design new twists in the
algorithms and their analysis in the rest of this section.

To avoid special cases, we introduce the entry node, which is the entry point of a non-
blocking ravl tree. An empty tree contains an entry node with a single left child leaf, which
are sentinel nodes. In a non-empty tree, the leftmost grandchild of the entry node is the
actual root of the tree. The sentinel nodes in a non-empty tree are the entry node, its left
child and its left child’s right child. The keys, values and ranks of the sentinel nodes are ∞,
NULL and ∞, respectively. If a node is neither a missing node nor a sentinel node, we call it
an original node. We define the height of a non-blocking ravl tree to be the height of the
subtree consisting of all its original nodes.

We now describe the implementations of operations in non-blocking ravl trees. When
reading the descriptions of these algorithms, readers can refer to Figure 2 for illustration.
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(a) INSERT key (b) DELETE key

(c) Case 1 and Case 2 PROMOTE (d) Case 1 and Case 2 ROTATE

(e) DOUBLEROTATE

Figure 2 Operations in non-blocking ravl trees.

In this figure, only original nodes are shown. The number beside each edge shows the rank
difference between the parent node and the child node.

A SEARCH(key) operation performs a regular BST search starting from the entry node
and returns the last three nodes visited, < n0, n1, n2 >, where n2 is a leaf, n1 is n2’s parent,
and n0 is n2’s grandparent. A GET operation calls SEARCH, and returns n2.v if n2.k = key,
or NULL otherwise.

An INSERT operation described in Algorithm 1 attempts to insert a new item consisting of
key and value. This operation first calls SEARCH(key), which returns a leaf l and its parent p
in line 2. If l.k is equal to key, then the key is already in the tree, and INSERT returns false
without inserting any new item in line 3. Otherwise, it invokes TRYINSERT(p, l, key, value)
(Algorithm 2), which carries out the actual insertion shown in Figure 2(a) by following the
tree update template summarized in Section 3. If TRYINSERT fails to insert this key, the
INSERT operation retries this process from scratch.

When performing the TRYINSERT operation, primitive operations such as LLX and SCX
are called to implement the tree update template. Whenever these operations fail, or
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Alg. 1 INSERT(key, value)
1: repeat
2: < −, p, l >← SEARCH(key)
3: if l.k = key then return false
4: result ← TRYINSERT(p, l, key, value)
5: until result 6= fail
6: if result then CLEANUP(key)
7: return true

Alg. 2 TRYINSERT(p, l, key, value)
8: if LLX(p) ∈ {fail,finalized} then
9: return fail

10: if l = p.left then fld ← &(p.left)
11: else if l = p.right then
12: fld ← &(p.right)
13: else return fail
14: if LLX(l) ∈ {fail,finalized} then
15: return fail
16: new_k ← pointer to a new Data-Record

< missing,missing, key, value, 0 >
17: if l = entry.left then
18: new_l ← pointer to a new Data-

Record < missing,missing, l.k, l.v,∞ >

19: else
20: new_l ← pointer to a new Data-

Record < missing,missing, l.k, l.v, 0 >
21: if key < l.k then

22: new ← pointer to a new Data-Record
< new_k, new_l, l.k, NULL, l.r >

23: else
24: new ← pointer to a new Data-Record

< new_l, new_k, key, NULL, l.r >
25: if SCX({p, l}, {l},fld,new)6= fail then
26: return (new.r = 0)
27: else return fail

Alg. 3 CLEANUP(key)
28: while true do
29: gp ← NULL; p ← entry; l ←

entry.left; ls ← entry.right
30: while true do
31: if l is a leaf then return
32: if key < l.k then
33: gp ← p; p ← l; l ← l.left; ls ←

l.right
34: else
35: gp ← p; p ← l; l ← l.right; ls ←

l.left
36: if p.r = l.r+ 1 and p.r = ls.r then
37: TRYREBALANCE(gp, p, ls)
38: break out of the inner loop
39: if p.r = l.r then
40: TRYREBALANCE(gp, p, l)
41: break out of the inner loop

whenever an LLX is performed on a Data-record that has been finalized, TRYINSERT returns
immediately with failure. Otherwise, TRYINSERT successfully inserts a key, and returns a
boolean value to indicate whether a violation has been created. More specifically, TRYINSERT
first performs an LLX operation on p, and then, depending on if l is p’s left child or right
child, we let pointer fld point to the correct child pointer field of p (lines 8–12). If the
structure of the related portion of the tree has been changed since the corresponding SEARCH
operation returns, so that l is not a child of p anymore when we perform the check above,
TRYINSERT returns fail in line 13. Then we perform an LLX operation on l in line 14, and
create a new subtree rooted at the node pointed to by pointer new from line 16 to line 24:
The key of the root of this new subtree is max(l.k, key) and its rank is set to l.r. This root
has two children which are both leaf nodes, and they are pointed to by pointers new_k
and new_l. The leaf node pointed to by new_k stores the key and value of the item to be
inserted, and its rank is set to 0. The other leaf stores node l’s key and value; its rank is set
to ∞ if l was the left child of the entry node (i.e., entry.left) which is a sentinel node, and
0 otherwise. Next we construct the SCX arguments in line 25, where we define V = {p, l}
and R = {l}. The TRYINSERT operation then calls SCX with the constructed arguments and
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attempts to atomically store new in the child field of p pointed to by fld while finalizing
l. If this SCX operation fails, TRYINSERT returns fail. Otherwise, if the rank of the root
of the newly inserted subtree is 0, TRYINSERT returns true to indicate that a new violation
has been created after a successful insertion, and the corresponding INSERT calls CLEANUP

(Algorithm 3) to rebalance the tree. If no new violation has been created, the TRYINSERT
operation returns false. Finally, the corresponding INSERT returns true to indicate that a
new item has been inserted.

A CLEANUP operation resolves the new violation created by the corresponding INSERT
operation, as well as all potential new violations created by the rebalancing steps during the
process. Starting from the entry node (line 29), it performs a BST search for key and keeps
track of the last three consecutive nodes visited, gp, p and l, as well as l’s sibling, ls. If p is a
0,1-node, and ls is p’s 0-child (line 36), the CLEANUP operation calls TRYREBALANCE(gp, p, ls)
to resolve the violation on ls. This step is required to avoid livelocks. Otherwise, if l is
a 0-node (line 39), the CLEANUP operation calls TRYREBALANCE(gp, p, l) to resolve the
violation on l. Once the TRYREBALANCE subroutine returns, the corresponding CLEANUP

operation retries this process in case that a new violation has been created by the previous
TRYREBALANCE call. The CLEANUP operation returns when l reaches a leaf in line 31. At
this point, the violation created by the corresponding INSERT operation has been resolved.

A TRYREBALANCE operation takes three consecutive nodes pz , z and x, which correspond
to the nodes with same names in Figures 2(c)–(e). For Figure 2(c) and Figure 2(d), the
numbers outside of the parenthesis show the rank difference for case 1 PROMOTE and ROTATE,
respectively, while the numbers inside are for case 2 PROMOTE and ROTATE, respectively.
Without loss of generality, assume that x is z’s left child. Let y be x’s right child, and
ys be x’s left child. The TRYREBALANCE operation attempts to resolve the violation on x
following the tree update template. Based on the ranks of pz, z, z’s sibling zs, x and x’s
sibling xs, the TRYREBALANCE operation perform one of the following rebalancing steps:
(1) if z is a 0,0-node or 0,1-node, it performs a case 1 or case 2 PROMOTE on z as illustrated
in Figure 2(c) by replacing z with a newly created node new_z whose rank is z.r + 1; (2) if
z is a 0,i-node, where i ≥ 2, there are three subcases: (2a) if x.r ≥ y.r + 2 or y is a missing
node, it performs a case 1 ROTATE on x as illustrated in Figure 2(d) and replace x and z
with newly created nodes new_x and new_z whose ranks are x.r and z.r − 1, respectively;
(2b) if x.r = y.r + 1 and x.r = ys.r + 1, it performs a case 2 ROTATE on x as illustrated in
Figure 2(d) and replace x and z with newly created nodes new_x and new_z whose ranks
are x.r + 1 and z.r, respectively; (2c) if x.r = y.r + 1 and x.r ≥ ys.r + 2, it performs a
DOUBLEROTATE operation on y as illustrated in Figure 2(e) and replace x, y and z with
newly created nodes new_x , new_y and new_z whose ranks are x.r− 1, y.r+ 1 and z.r− 1,
respectively. If a rebalancing step does not introduce a new violation after resolving the old
one, we say that it is terminating; otherwise, it is non-terminating.

A DELETE operation follows the tree update template to remove a key as shown in
Figure 2(b), and no rebalancing is needed after the tree is updated. It returns false if the
key to be deleted does not exist in the tree, and true otherwise.

4.2 Properties of Non-Blocking Ravl Trees
In this section, we sketch our proof of Theorem 1. We first prove the correctness of our
algorithms by arguing that the rebalancing operations described in Figures 2(c)–(e) cover all
possible violation cases in concurrent settings. The only case that is not explicitly covered by
our algorithm is when the 0-child of a 0,i-node, where i ≥ 2, has a 0-child, and the following
lemma shows that such a case does not occur.
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I Lemma 3. If a 0-node in a non-blocking ravl tree has at least one 0-child, then this node’s
parent is either a 0,0-node or a 0,1-node.

We then prove that a non-blocking ravl tree remains a BST at any time, and thus all
BST operations are performed correctly. For this, we define the search path [5] for a key k at
any time to be the root-to-leaf path formed by the original nodes that a SEARCH operation
for k would visit as if this operation were performed instantaneously at this time. We then
prove that a SEARCH operation in non-blocking ravl trees follows the correct search path at
any time, and thus is performed correctly. We complete the proof by showing that the BST
property of a non-blocking ravl tree is always preserved after update operations.

We next prove the linearizability of our solution. It would have been ideal to define the
linearization point of a SEARCH to be the time when it reaches a leaf node that is in the tree
when visited. However, this claim cannot be guaranteed as a SEARCH for a given key, k, in
non-blocking ravl trees does not check the status of visited nodes, and by the time when it is
linearized, this leaf might not be in the tree anymore. Thus, we prove that this leaf was in
the tree and on the search path for k at some time earlier during this SEARCH operation, so
it is the correct node to return. We then define the linearization points of all operations:

I Lemma 4. The linearization points of operations in non-blocking ravl trees are defined
as follows: (1) a SEARCH operation can be linearized when the leaf eventually reached was
on the search path for the query key (such a time exists); (2) a GET operation is linearized
at the linearization point of its SEARCH step; (3) if an INSERT operation returns true, it is
linearized at the linearization point of the SCX step performed by its TRYINSERT step; (4) if
an INSERT operation returns false, it is linearized at the linearization point of its SEARCH

step; (5) if a DELETE operation returns true, it is linearized at the linearization point of the
SCX step by its TRYDELETE step; (6) if a DELETE operation returns false, it is linearized at
the linearization point of its SEARCH step.

Next, we show the progress properties of non-blocking ravl trees. We first show that
if updates are invoked infinitely often, they follow the tree update template infinitely
often. Thus, by Lemma 2, they will succeed infinitely often. We then construct a proof
by contradiction to show that all operations in a non-blocking ravl tree are non-blocking.
Consider a non-blocking ravl tree built via a sequence of arbitrarily intermixed GET, INSERT
and DELETE operations. To derive a contradiction, assume that starting from a certain time
T1, active processes are still executing instructions, but none of them completes any operation.
These active operations must include updates, because otherwise, the tree structure would
remain stable and all GET operations would eventually terminate. We then use the property
that update operations succeed infinitely often when called infinitely often and the fact that
each update operation can succeed at most once, to argue that there exists a certain time T2,
after which the tree can only be modified by TRYREBALANCE operations. We next observe
that m INSERT operations can only create at most 2m violations, and by carefully analyzing
the relationship between different types of terminating and nonterminating rebalancing steps,
we derive contradictions.

Finally, we bound the tree height. Consider a ravl tree T built via a sequence of arbitrarily
intermixed INSERT and DELETE operations from an empty tree. At a time t, let m be the
number of INSERT operations that have successfully inserted new keys into T . Let T ′ be
the balanced ravl tree rooted at rt′ that can be constructed by completing all rebalancing
operations to eliminate all the violations in T . We first bound the height of T ′ by augmenting
the potential functions defined in [26] to include 0,0-nodes in our analysis. Here Fi denotes
the ith Fibonacci number, i.e., F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 where i ≥ 2. We also
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use the inequality Fi+2 ≥ φi . We define the potential of an original node x in an external
ravl tree, whose rank is k, as follows: (1) if x is a 0,0-node, its potential is Fk+3; (2) if x
is a 0,1-node, its potential is Fk+2; (3) if x is a 0,i-node, where i ≥ 2, its potential is Fk+1;
(4) if x is a 1,1-node, its potential is Fk; 5) otherwise, its potential is 0. We also define the
potential of an external ravl tree to be the sum of the potentials of all its original nodes.

The keys steps of our analysis involves showing that each rebalancing step either does not
change the potential of the tree, or decreases it by a certain amount. However, the analysis
would not go through if a rebalancing step could also create a new 0,0-node. To ensure that
this case never happens, we add additional checks in our rebalancing steps and prove the
following lemma for non-terminating operations:

I Lemma 5. A non-terminating operation that is either a PROMOTE operation or a case 2
ROTATE operation cannot create a new 0,0-node.

From Figure 2(e), the node y on which a DOUBLEROTATE is performed is allowed to have
two 0-children. If this could indeed happen, our analysis would not work again. Thus we
prove the next lemma which shows that y can have at most one 0-child in such a case:

I Lemma 6. Consider a DOUBLEROTATE operation as shown in Figure 2(e). The node y
on which this operation is performed on can have at most one 0-child.

We then perform case analysis to show that an INSERT increase the potential of the tree
by at most 2, while a DELETE does not increase the tree potential. We also show that any
non-terminating case 1 PROMOTE/case 2 PROMOTE/case 2 ROTATE does not change the tree
potential, while a case 1 ROTATE or a DOUBLEROTATE does not increase the tree potential.
For a terminating case 1 PROMOTE/case 2 PROMOTE/case 2 ROTATE, let k be the rank of
the node that is promoted/rotated. Then such an operation decreases the potential of the
tree by at most Fk+2. The potential decrease is exactly Fk+2 if this terminating case 1 and 2
PROMOTE operations is performed on the root, rt′, of T ′, or if this case 2 ROTATE operations
is performed on one of rt′’s children. Here we analyze the case 1 PROMOTE as an example:

Let z be the 0,0-node on which a case 1 PROMOTE operation is performed, and let k be
its rank. The potential of z before the promotion was Fk+3. Let new_z be the newly added
node that replaces z. Then, new_z is a 1,1-node, its rank is k + 1, and its potential is Fk+1.
Thus, replacing z by new_z decreases the potential of the tree by Fk+2. Let p(z) be z’s
parent before the promotion. In the non-terminating case, by Lemma 5, p(z) could not be
a 1,0-node before this operation. If p(z) was a 1,1-node, whose rank was k + 1 before the
promotion, it becomes a 0,1-node after the promotion, and its potential changes from Fk+1
to Fk+3. If p(z) was a 1,i-node, where i ≥ 2, whose rank was k + 1 before the promotion, it
becomes a 0,i-node after the promotion, and its potential changes from 0 to Fk+2. In either
case, the potential of p(z) is increased by Fk+2, and the potential of the tree is not changed.
In the terminating case, if p(z) was a 1,2-node, whose rank was k + 2 before the promotion,
it becomes a 1,1-node after the promotion, and its potential changes from 0 to Fk+2. If p(z)
was a 0,2-node with rank k + 2 before the promotion, where z was its 2-child, p(z) becomes
a 0,1-node after the promotion, and its potential changes from Fk+3 to Fk+4. In either case,
the potential of p(z) is increased by Fk+2, and the potential of the tree is not changed if z is
not the root of the tree, i.e., p(z) is an original node. If p(z) was not a 1,2-node or 0,2-node,
this promotion does not change its potential, and the tree potential is decreased by Fk+2. If
z is the root of the tree, then p(z) is a sentinel node. Since the potential of the tree is the
sum of the potentials of its original nodes only, the tree potential is decreased by Fk+2.

We now make use of the above claims to bound the tree height. Initially, the potential
of an empty tree is 0. Based on the analysis above, the potential of the tree can only be
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increased by at most 2 after each INSERT operation. The first INSERT operation, where we
insert the root of T ′, rt′, into the empty tree, does not change the potential of the tree.
Thus, after m INSERT operations, the potential of the tree is at most 2(m − 1). Since the
initial rank of rt′ is 0, the number of operations that increases the rank of rt′ by 1, i.e.,
terminating case 1 and 2 PROMOTE operations performed on rt′ plus the number of case 2
ROTATE operations performed on one of rt′’s children, is equal to rt′.r. As analyzed above,
each time one of these operations changes the rank of rt′ from k to k + 1, the potential
of the tree is decreased by Fk+2. Therefore, these operations decrease the potential of the
tree by

∑rt′.r−1
i=0 Fi+2 =

∑rt′.r+1
i=2 Fi = Frt′.r+3 − 2. Since the potential of the tree is always

non-negative, 2(m − 1) ≥ Frt′.r+3 − 2, and 2m ≥ Frt′.r+3 > Frt′.r+2 ≥ φrt′.r. Therefore,
rt′.r < logφ 2m. We then show that the height of T ′ is no greater than rt′.r, which is bounded
by logφ(2m) from the analysis above. Next, we borrow ideas from [5] to prove that the
number of violating edges on each search path in T is bounded by the number, c, of active
INSERT operations that are in the rebalancing phase. Using these two claims, we bound the
height of T by logφ(2m) + c.

5 Experimental Evaluation

We compared the non-blocking ravl tree, lf-ravl, against the following concurrent BSTs:
(1) lf-chrm, the non-blocking chromatic tree proposed by Brown et al. [5] which uses the
tree update template summarized in Section 3; (2) lf-chrm6, a variant of lf-chrm in which
the rebalancing process is only invoked by an update operation if the number of violations
on the corresponding search path exceeds 6 [5]. Compared to lf-chrm, this variant achieves
superior performance since it reduces the total number of rebalancing steps; (3) lc-davl,
the concurrent AVL tree proposed by Drachsler et al. [9] which supports wait-free GET

and lock-based updates; (4) lf-nbst, the unbalanced external non-blocking BST proposed
by Natarajan and Mittal [21]; (5) lf-ebst, the unbalanced external non-blocking BST
proposed by Ellen et al. [11]; (6) lf-ibst, the unbalanced internal non-blocking BST proposed
by Ramachandran and Mittal [24]; (7) lc-cast, the unbalanced internal lock-based BST
proposed by Ramachandran and Mittal [23]; (8) lc-citr, the unbalanced internal lock-based
BST proposed by Arbel and Attiya [1]. We also implemented a variant of the non-blocking
ravl tree called lf-ravl3 in which CLEANUP is only invoked by INSERT if the number of
violations on the search path exceeds 3. We allow at most three violations on a search path
since experiments showed that this is when the tree achieved the best performance in most
experimental settings.

The original source code for lf-chrm [5], lf-ebst [11] and lc-davl [9] was written in Java,
and we re-implemented them in C. We used the source code for other concurrent BSTs
developed by their original authors [21, 24, 23], and followed the framework in [16] to test the
performance. CAS operations are performed using the APIs provided by libatomic_ops [2].
We also used jemalloc [14] for memory allocations to achieve optimal results. For lock-based
data structures, we used mutex locks and the APIs provided by pthread. All experiments
were conducted on a computer with two Intel® Xeon® E5-2650 v2 processors (20M Cache,
2.60 GHz) supporting 32 hardware threads in total. It operates on CentOS 6.7. All
implementations were compiled using gcc-4.4.7 with -O3 optimization.

We first conduct experiments using random numbers as operation keys. All keys are
positive integers within a user-specified range generated under uniform distributions. We also
used different operation mixes. An operation mix xr-yi-zd represents x% GET operations, y%
INSERT operations and z% DELETE operations. As in [9], we used operation mixes 90r-9i-1d

libatomic_ops
jemalloc
pthread
gcc-4.4.7
-O3
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Figure 3 Experimental results comparing lf-ravl and lf-ravl3 against other self-balancing concur-
rent BSTs using randomly generated sequences under uniform distributions.

(read-dominant), 70r-20i-10d (mixed) and 50r-25i-25d (write-dominant). For each concurrent
BST, under each key range and using each operation mix, we ran its program with 1, 2, 4,
8, 16 and 32 threads for 5 seconds as one trial. The performance of the data structures is
measured using their average throughput (the number of operations finished per second).
We prefilled each data structure using randomly generated keys until 50% of the keys in the
key range are inserted into the tree.

Figure 3 shows the experimental results comparing lf-ravl and lf-ravl3 against other
self-balancing concurrent BSTs. To test how different levels of contention can influence the
performance, we test the algorithms on the following key ranges: (0, 2× 104], (0, 2× 105],
and (0, 2 × 106]. We group studies under the same key range by row, and studies using
the same operation mix by column. The x-axis of each study shows the number of threads,
and the y-axis shows the average throughput. For example, the studies in the first row
shows results for studies under key range (0, 2× 104]. For this key range, lf-ravl outperforms
lf-ravl3 slightly in case 90r-9i-1d. Since lf-ravl3 has a larger average search path length than
lf-ravl, GET operations in lf-ravl are faster than in lf-ravl3. In other cases, lf-ravl3 achieves
superior performance. This is because lf-ravl3 reduces the total number of rebalancing steps
and introduces less overhead. lf-ravl outperforms lf-chrm in every case. Though lf-chrm6
outperforms lf-ravl in case 50r-25i-25d, lf-ravl3 still outperforms lf-chrm6. This shows that
lf-ravl and lf-ravl3 improve performance by avoiding rebalancing after DELETE operations.
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Figure 4 Experimental results comparing lf-ravl and lf-ravl3 against other self-balancing concur-
rent BSTs using sequences of size 226 with different degrees of presortedness (32 threads).
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Figure 5 Experimental results comparing lf-ravl and lf-ravl3 against unbalanced concurrent BSTs
using sequences of size 226 with different degrees of presortedness (32 threads).

lf-ravl3 and lf-chrm6 both outperform lc-davl in every case. Results are similar for other key
ranges, showing that lf-ravl and lf-ravl3 outperform other data structures in most cases. This
performance difference is more noticeable with smaller key ranges (higher contention levels),
which shows that our solution is more contention-friendly compared to other concurrent
self-balancing BSTs.

Data generated from uniform distributions favor unbalanced BSTs, as they are balanced
with high probability and do not have the overheads of rebalancing. Nevertheless, lf-ravl and
lf-ravl3 still outperform some of the unbalanced BSTs in our studies. For example, they scale
much better for operation sequences with a higher update ratio (70r-20i-10d and 50r-25i-25d)
compared to lc-citr. The detailed experimental results are reported in [20].

We further test the performance using synthetic sequences in which keys are partially
sorted, i.e., with a certain degree of presortedness. Presortedness has been extensively studied
in adaptive sorting algorithms [12, 25, 13], and we apply this concept to the context of
studying concurrent binary search trees. The presortedness of a sequence is measured by the
number of inversions, which is the number of pairs of elements of the sequence in which the
first item is larger than the second. We generate the inversions in a data sequence using the
algorithm in [13, 25], which is expected to generate mn/2 inversions on average, where n
is the size of the data sequence and m is a user-specified parameter to control the degree
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of presortedness. We constructed data sequences with presortedness in the following way:
starting from a sorted sequence of distinct positive integers of size n = 226 , we generated
sequences with different levels of presortedness by creating inversions using the algorithm
in [12, 25, 13] with the values of m in range [29, 225]. For each data structure, using each
data sequence and under each operation mix, we ran the program with 32 threads (which
is the maximum number of hardware threads available in our setup) as one trial. Before
each trial, we prefilled the data structure using the first half of each data sequence to ensure
stable performance. During each trial, we insert items in the order of the data sequences.
We also randomly selected keys within range (0, 226] to perform GET and DELETE operations.
Each trial terminated after all numbers in the data sequence had been inserted.

Figure 4 and Figure 5 give the experimental results comparing lf-ravl and lf-ravl3 against
concurrent self-balancing BSTs and unbalanced BSTs, respectively, in which the x-axis
shows the value of logm and the y-axis shows the throughput. lf-ravl3 outperforms other
self-balancing BSTs in most cases. lf-chrm outperforms lf-ravl slightly. We believe that this is
because the expected success rate of INSERT operations in the current experimental settings
(100%) is higher than the previous studies (at most 50%), as lf-ravl rebalances the tree
more often. lf-ravl3 outperforms lc-davl, while lf-davl achieves slightly better performance
compared to lf-ravl.

We also consider how the value of m affect the heights of the BSTs when comparing the
performance of our solution against other unbalanced concurrent BSTs. The average heights
of our solution are not affected by the value of m significantly; the tree height is always
between 30 and 34. Whenm is no greater than 29, the heights of unbalanced BSTs are notably
larger than the heights of self-balancing trees, and lf-ravl and lf-ravl3 outperform unbalanced
BSTs significantly. The average tree heights of unbalanced BSTs decrease from 41445 to
177 when m changes from 29 to 215, which explains their rapid performance improvement.
When m is approximately 215, where unbalanced BSTs are approximately 5 times as tall
as our solution, unbalanced BSTs start to have better performance. When m is larger than
217, unbalanced BSTs outperform our solution. Previous studies [22] have shown that, in
real-world applications, it is very common for data to be accessed in some sorted order, and
unbalanced BSTs are likely to be more than five times taller than self-balancing BSTs when
implemented in system software products. In addition, if the comparisons between keys
require more time (e.g., the keys are strings), the smaller heights of self-balancing BSTs will
potentially be even more attractive. From the results and analysis above, we believe that
our solution is the best candidate for many real-world applications.
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