
Computationally Light “Multi-Speed” Atomic
Memory

Antonio Fernández Anta1, Theophanis Hadjistasi2, and
Nicolas Nicolaou3

1 IMDEA Networks Institute, Madrid, Spain
antonio.fernandez@imdea.org

2 University of Connecticut, Storrs, CT, USA
theophanis.hadjistasi@uconn.edu

3 IMDEA Networks Institute, Madrid, Spain
nicolas.nicolaou@imdea.org

Abstract
Communication demands are usually the leading factor that defines the efficiency of operations
on a read/write shared memory emulation in the message-passing environment. In the quest for
minimizing the communication demands, the algorithms proposed either require restrictions in
the system or incur high computation demands. As a result, such solutions may be not suitable
to be used in practice.

In this paper we focus on the practicality of implementations of atomic read/write shared
memory emulation in the message-passing environment. In particular we investigate implement-
ations that reduce both communication and computation demands. We first examine the short-
comings of the best two (in terms of communication demands) known algorithms that implement
atomic single-writer multiple-reader (SWMR) atomic memory, [3, 6]. The algorithm ccFast
proposed in [3], achieves optimal communication by allowing each operation to complete in one
round trip, with light computation requirements. Unfortunately, it relies on strict limitations on
the number of readers. On the other hand, algorithm OhSam [6], imposes no restrictions on the
system, but provides operations that require one and a half communication rounds. In the light
of these shortcomings, we present two algorithms that implement multi-speed operations with
light computation, and without imposing any restriction on the system. In particular, algorithm
ccHybrid adopts the fast (one-round) writes presented in [3], and makes clients to switch to
a slow (two-round) mode whenever the system is congested. On the other hand, algorithm
OhFast, pushes the responsibility of deciding for the speed switch to the servers. This allows
the algorithm to utilize the fast operations presented in [3], and the slow one-and-a-half-rounds
operations of [6], whenever is necessary. We prove that both new algorithms preserve atomicity.
To evaluate the new algorithms we implement five different atomic memory algorithms in the
NS3 simulator, and we compare their performance in terms of operation latency, and ratio of slow
over fast operations performed. We test the algorithms over different: (i) topologies, and (ii) oper-
ation loads. Our results support that the newly presented algorithms increase the practicality of
atomic read/write atomic shared memory implementations in the message-passing, asynchronous
environment.

1998 ACM Subject Classification C.3.4 Distributed Systems, C.4 Performance of Systems

Keywords and phrases atomicity, read/write objects, shared memory, operation latency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.29

© Antonio Fernández Anta, Theophanis Hadjistasi, and Nicolas Nicolaou;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Computationally Light “Multi-Speed” Atomic Memory

1 Introduction

Emulating atomic [8] (linearizable [7]) read/write objects in message-passing environments
is one of the fundamental problems in distributed computing. The problem becomes more
difficult when participants in the service may fail and the environment is asynchronous, i.e.,
it cannot provide any time guarantees on the delivery of the messages and the computation
speeds. To cope with failures, traditional distributed object implementations like [1, 10], use
redundancy by replicating the object to multiple (possibly geographically dispersed) locations
(replica servers). Replication however raises the challenge of consistency, as multiple object
copies can be accessed concurrently by multiple processes. Atomicity is the most intuitive
consistency semantic, as it provides the illusion of a single-copy object that serializes all
accesses: each read operation returns the value of the latest write operation.

Attiya, Bar-Noy, and Dolev [1] were the first to present an algorithm, known as ABD,
to implement single-writer multi-reader (SWMR) atomic objects in message-passing, crash-
prone, asynchronous environments. The authors associate logical timestamps to the values
written, to impose an order on the write operations. The propagation of the latest timestamp
(and its corresponding value) is based on the assumption that at least a majority of replica
servers do not fail. In this setting, ABD has write operations that terminate with a single
communication round-trip, and read operations that involve two round-trips. Based on basic
value comparisons, ABD incurs almost no computational overhead to the service participants.
Atomicity is guaranteed by the intersecting properties of two majorities and the second
phase of a read operation. Following ABD, a folklore belief persisted that in asynchronous
multi-reader (MR) atomic memory algorithms, “reads must write.”

The work by Dutta et al. [2] refuted this belief, by presenting atomic register algorithms
in which every operation involves only a single round-trip. Such an algorithm is called fast.
They showed that fast reads are possible only in the single-writer (SW) model, and given
that the number of readers R is constrained with respect to the number of replicas S and
the maximum number of failures f ; in particular, R < S

f − 2. A recent work by Fernández
Anta, Nicolaou, and Popa [3], has shown that, although the result in [2] is efficient in
terms of communication, it requires processes to evaluate a computationally hard (NP-hard)
predicate. A new algorithm ccFast, with a new predicate, was proposed in that paper
to allow operations terminate with a linear computation overhead. Despite improving the
practicality of [2], the algorithm in [3] inherited the same system constraint as [2].

The idea of exploring “multi-speed” read operations is not new. An algorithm is said to be
“multi-speed” when different read operations may perform different number of communication
rounds before completing. Works like [4, 5] proposed implementations in the SWMR model
with two-speed operations, in an attempt to relax the constraints proposed in [2], and to allow
unbounded number of readers. In particular, the work in [5] presents algorithm Sf, which
applies a predicate similar to the one introduced in [2], but on virtual nodes (i.e., sets of
readers) instead of individual reader processes. In [4], the authors introduced quorum views,
which are client-side tools that examine the distribution of the latest value among the replicas,
in order to enable fast read operations. Both [4, 5] trade communication for scalability.
Under conditions of low concurrency, both algorithms allow most reads to complete in a
single communication round-trip; otherwise a two round-trip operation (similar to ABD)
is required. To determine the speed of an operation, both algorithms inflicted significant
computational demands: (i) [5] exploited the same predicate as in [2], which is NP-hard [3],
and (ii) [4] needed to examine the distribution of the object value within all the possible
replica subsets. Thus, a trend appeared in the algorithms that aimed for fast operations:

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:3

algorithms with lower communication rounds demanded higher computation overhead at the
processes.

Following the above findings, we say that an operation is fast if it completes in a single
communication round trip, and slow if it completes in two round trips. A recent work by
Hadjistasi, Nicolaou and Schwarzmann [6] redefines slowness, as they present an algorithm
for the SWMR model, called OhSam, where each operation takes one and a half round-trips
to complete. As the number of readers is bounded when all operations are fast [2], the
authors claim the optimality of their approach in terms of communication when no constraint
is imposed. Furthermore their algorithm relies on basic comparisons, inflicting negligible
computation overhead.

Contributions. In this paper, we focus in improving the practicality of SWMR atomic
read/write register algorithms, by achieving low communication and computation costs on
the atomic operations. We trade communication for scalability, by adopting the predicate
presented in [3] and allowing some operations to be slow. Also, we combine ideas presented
in both [3] and [6], to introduce implementations that allow only single and one-and-a-half
round operations. Enumerated, our contributions are the following:

We introduce a new “multi-speed” algorithm, ccHybrid, that allows operations to
terminate in one or two communication round-trips, and does not impose any bounds on
the number of readers. ccHybrid uses the predicate introduced in [3] to determine the
speed of a read operation, and it requires at most one complete slow operation per written
value. This is similar to the semifast algorithm Sf [5]. However, in contrast to Sf, in
which processes have to decide NP-hard predicates, it incurs light (linear) computation.
Next we examine whether we can combine the techniques presented in [3] and [6] to obtain
a “multi-speed” algorithm that allows one and one-and-a-half round-trip operations.
We present algorithm OhFast, that achieves the targeted performance by moving the
decision on whether a slow read operation is necessary to the servers. When servers
determine that a slow read is necessary, they perform a relay phase to inform other servers
before replying to the reader. It is interesting that in OhFast not all the servers need to
perform a relay for a single read operation. Some of the servers may reply directly to
the read whereas some others may perform a relay phase for the same read. Thus a read
operation may terminate before receiving a reply from a relaying server.
We complement our algorithms with experimental results for five algorithms: ABD,
OhSam, ccHybrid, OhFast, and Sf. ABD sets the threshold for the rest of the
algorithms, while OhSam sets the threshold on the operations that use one and a half
rounds. Algorithm Sf is used to demonstrate whether computation has an impact to the
latency of operations. We test our algorithms under different scenarios by changing the
number of participants, the frequency of operations, and using two network topologies:
(i) a topology where servers are distributed evenly over the network, and (ii) a topology that
resembles a datacenter where servers are concentrated in close proximity and communicate
through high bandwidth links. Our results show that the proposed algorithms outperform
the algorithms with “one speed” operations (i.e., ABD and OhSam) in all scenarios,
reducing the latency per operation to less than half in most cases. Compared with the
semifast “multi-speed” algorithm Sf, our algorithms achieve a similar read latency, even
though the scenarios explored were extremely favorable for Sf, since we observed that
practically all its operations were fast and the NP-hard predicate evaluations were not
heavy (mainly due to the good communication conditions). Finally, as expected, we
observed that the topology has a great impact on the algorithms that use one and a half
round operations.

OPODIS 2016

29:4 Computationally Light “Multi-Speed” Atomic Memory

2 Model

We assume a system consisting of three distinct sets of processes: a writer process with
identifier w, a set R of readers, and a set S of replica servers. Let I = {w} ∪ R ∪ S. In
a read/write object implementation, we assume that the object may take a value from a
set V . The writer is the sole process that is allowed to modify the value of the object, the
readers are allowed to obtain the value of the object, and each server maintains a copy of the
object to ensure the availability of the object in case of failures. We assume an asynchronous
environment, where processes communicate by exchanging messages. The writer, any subset
of readers, and up to f < |S|

2 servers may crash without any notice.
An algorithm A is a collection of processes, where process Ap is assigned to processor

p ∈ I. Each processor p has a state which is determined over a set of state variables. The
state of A is a vector that contains the state of each process. Algorithm A performs a step,
when some process p atomically:
(i) receives a message,
(ii) performs local computation,
(iii) sends a message.
Each such step causes the state at p to change from a pre-state σp to a post-state σ′

p. Hence,
the state of A changes from σ to σ′ where σ contains state σp for p and σ′ contains state
σ′
p, while the state of every p′ 6= p is the same in both σ and σ′. An execution fragment is

an alternating sequence of states and actions of A ending in a state. An execution is an
execution fragment that starts with the initial state. An execution fragment ξ′ extends an
execution fragment ξ if the last state of ξ is the first state of ξ′. A process p crashes in an
execution if it stops taking steps; otherwise p is correct. Each process may perform a read
or write operation, and each operation has invocation and response steps. An operation π
is complete in an execution ξ, if ξ contains both the invocation and the matching response
step for π; otherwise π is incomplete. An execution ξ is well formed if any process p that
invokes an operation π in ξ does not invoke any other operation π′ before the matching
response step of π appears in ξ. An operation π precedes an operation π′ in an execution ξ,
denoted by π → π′, if the response step of π appears before the invocation step of π′ in ξ.
Two operations are concurrent if none precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the
atomicity and termination properties. The termination property requires that any operation
invoked by a correct process eventually completes. For atomicity we use the definition of [9,
Lemma 13.16].

Efficiency Metrics. We measure the complexity of an operation π in terms of:
(i) message complexity, i.e. the worst-case number of messages exchanged during π, and
(ii) operation latency, i.e. the computation time and the communication delays incurred by

π. Computation time accounts the computation steps the algorithm performs in each
operation.

Communication delays are measured in communication exchanges, as defined in [6].
In particular, a protocol requires each operation to involve a sequence of sends (or

broadcasts) of typed messages and the corresponding receives. A communication exchange
during an operation π in an execution ξ, is defined as the collection of send and receive
actions for a specific typed message (as required by the protocol) between the invocation and
response of π in ξ. Using this definition, implementations, such as ABD, are structured in
terms of rounds, where each round consists of two message exchanges: a broadcast, initiated

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:5

by the process executing an operation, and a convergecast of responses to the initiator. A
fast operation as in [5, 2] consists of two communication exchanges (or one round), and
a slow operation as used in [1, 4, 5] consists of four communication exchanges (or two
rounds). A read operation as in [6] consists of three communication exchanges (or 1.5
rounds). The number of messages that a process expects during a convergecast depends on
the implementation.

3 State-of-the-Art Performance of Atomic Memory Implementations

The algorithm by Dutta et al. in 2004 [2], we refer to it as Fast, was the first to present
atomic register implementations where all operations take a single communication round
before completing. To allow fast reads, Fast deploys a recording mechanism at each server
and evaluates a predicate at each reader. It was shown that fast reads are possible only
if |R| < |S|

f − 2 readers participate in the service. To avoid the bound on the number of
readers, Georgiou, Nicolaou and Shvartsman [5], grouped the readers under logical sets, they
called virtual groups, and allowed some of the read operations to perform two rounds (or 4
communication exchanges). The predicate of [2] was applied on the virtual groups instead of
individual readers, where each group could have an arbitrary size. As expected, the use of
the predicate imposed a bound on the number of virtual nodes, for atomicity to be preserved;
that is |V| < |S|

f − 1.
Fernández Anta, Nicolaou and Popa [3], showed that the predicate used by both [2]

and [5], is computationally hard. This was due to the fact that the original predicate was
searching among all the subsets of servers to identify if there is some subset of servers that
replied to a “large enough” subset of readers. To avoid this computational overhead, they
investigate whether it is possible to use how many instead of which readers obtained the latest
value, and still be able to preserve atomicity. Thus, the paper introduced a new algorithm,
called ccFast, that was using the following predicate at the readers:

∃α ∈ [1, |R|+ 1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S|−αf .

Essentially, each server records the readers that observed its local timestamp in a set seen,
and whenever requested, it reports the cardinality of that set to the requesting process. A
reader collects the replies from the servers in each read operation, detects the replies that
contain the maximum timestamp (set maxAck), and checks the cardinalities reported in those
replies (m.views). If there are “enough” replies with “sufficiently” large cardinalities, the
predicate holds and the reader returns the value associated with the maximum timestamp;
otherwise the value associated with the previous timestamp is returned. The evaluation of
the predicate can be done in linear time with respect to the number of servers in the system.
Their algorithm inherited the necessary bound presented in [2] on the number of readers
participants, |R| < |S|

f − 2.
Finally, Hadjistasi, Nicolaou and Schwarzmann [6] closed the gap of the communication of

read/write operations by presenting algorithm OhSam, where writes take just one round (or
2 communication exchanges) and reads always take one and a half round (or 3 communication
exchanges) to complete. The main idea of the algorithm is to allow servers to exchange
information about the operations, before replying to the invoking process. OhSam uses
negligible computation at the processors, as each operation performs only basic comparisons.
However, the server communication in every operation makes the algorithm suitable for
environments where server communication is being carried out by high capacity links.

Table 1, summarizes the efficiency of each of the algorithms in different efficiency metrics.
It also presents any bounds that an algorithm may impose on the participation of the service

OPODIS 2016

29:6 Computationally Light “Multi-Speed” Atomic Memory

Table 1 Communication, Computation, Message Complexities and Participation Bounds.
(WE/RE: write/read-communication excanges, WC/RC: write/read-computation, WM/RM:
write/read-number of messages). V is the set of virtual nodes.

Algorithm WE RE WC RC WM RM Bounds
ABD [1] 2 4 O(1) O(|S|) 2|S| 4|S| Unbounded
Fast [2] 2 2 O(1) O(|S|2 · 2|S|) 2|S| 2|S| |R| < |S|

f
− 2

ccFast [3] 2 2 O(1) O(|S|) 2|S| 2|S| |R| < |S|
f
− 2

Sf [5] 2 2 or 4 O(1) O(|S|2 · 2|S|) 2|S| O(4|S|) |V| < |S|
f
− 1

OhSam [6] 2 3 O(1) O(|S|) 2|S| 2|S|+ |S|2 Unbounded

ccHybrid (here) 2 2 or 4 O(1) O(|S|) 2|S| O(4|S|) Unbounded
OhFast (here) 2 2 or 3 O(1) O(|S|) 2|S| O(|S|2) Unbounded

Algorithm 1 Write, Read and Server protocols of algorithm ccHybrid.
1: at the writer w
2: Components:
3: ts ∈ N+; v, vp ∈ V ;wcounter ∈ N+
4: Initialization:
5: ts ← 0; v ← ⊥; vp ← ⊥;wcounter ← 0
6: function write(val)
7: vp ← v; v ← val
8: ts ← ts + 1
9: wcounter ← wcounter + 1

10: send(〈ts, v, vp〉, w, wcounter) to all servers
11: wait until |S| − f servers reply
12: return(OK)
13: end function

14: at each reader ri
15: Components:
16: ts ∈ N+; maxTS ∈ N+; v, vp ∈ V ; rcounter ∈ N+
17: srvAck ⊆ S ×M
18: Initialization:
19: ts ← 0; maxTS ← 0; v ← ⊥; vp ← ⊥, rcounter ← 0
20: function read()
21: rcounter ← rcounter + 1
22: send(〈ts, v, vp〉, ri, rcounter) to all servers
23: wait until |S| − f servers reply

. Collect (sid, 〈〈ts′, v′, vp′〉, views, prop〉) msgs in srvAck
24: maxTS ← max({m.ts′|(s,m) ∈ srvAck})
25: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧m.ts′ = maxTS}
26: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
27: maxV iews ← max({m.views|(s,m) ∈ maxAck})
28: propSet ← {s|(s,m) ∈ maxAck ∧m.prop = True}

29: if maxV iews > |S|
f
− 2 ∨ propSet 6= ∅ then

30: if |propSet| < f + 1 then
. Phase 2

31: send(〈ts, v, vp〉, ri, rcounter) to all servers
32: wait until |S| − f servers reply

33: end if
34: return(v)
35: else
36: if ∃α ∈ [1, |S|

f
− 2] s.t.

37: MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and
38: |MS| ≥ |S| − αf then
39: return(v)
40: else
41: return(vp)
42: end if
43: end if
44: end function

45: at each server si
46: Components:
47: ts ∈ N+; seen ⊆ R∪{w}; v, vp ∈ V ; prop ∈ {True, False}
48: Counter[|R| + 1] ∈ N+
49: Initialization:
50: ts ← 0; seen ← ∅; v, vp ← ⊥; prop ← False
51: Counter[i] ← 0 for i ∈ R ∪ {w}
52: function rcv(〈ts′, v′, vp′〉, q, counter)

. Called upon reception of a message
53: if Counter[q] < counter then
54: if ts′ > ts then
55: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
56: seen ← {q}
57: prop ← False
58: else
59: seen ← seen ∪ {q}
60: end if
61: if ts′ = ts ∧ q ∈ R then
62: prop ← True
63: end if
64: send(〈ts, v, vp〉, |seen|, prop) to q
65: end if
66: end function

in order to be able to provide atomic guarantees. The last two algorithms are the ones we
present in this paper. Notice that the goal is to minimize communication without inflicting
high computation overheads, or participation bounds in the system.

4 Algorithm ccHybrid: Switching from One to Two Rounds

As discussed in Section 3, algorithm ccFast guarantees correctness only when the number
of readers is bounded with respect to the ratio of the number of servers and the number
of failures in the system, i.e. |R| < |S|

f − 1. In this section we propose a modification to
ccFast that removes the bound on the number of readers. To unleash the number of readers,
the new algorithm ccHybrid, allows some read operations to complete in two rounds. In
particular, ccHybrid combines ideas from ccFast and ABD:
(i) it exploits timestamp-value pairs to order the write operations,
(ii) it uses the predicate proposed by ccFast to determine the value returned by a fast

read, and

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:7

(iii) propagates the maximum timestamp-value pair to a majority of servers during a slow
read.

The biggest challenge in ccHybrid is to determine when a second phase is necessary, and
ensure that such a strategy does not violate atomicity. The idea of ccHybrid is to have
the reader examine if the number of processes that observed the latest value is over the
bound |S|

f − 1. If not, then ccHybrid evaluates the predicate proposed in ccFast over the
replies, to determine the value to return. Otherwise, it proceeds to a propagation phase
to send the latest value to a majority of servers. To prevent readers from propagating an
already propagated value, servers maintain a flag that indicates whether a timestamp has
been propagated.

Algorithm 1 provides the formal pseudocode of ccHybrid. The write protocol remains
the same as in both ccFast and ABD: the writer increments its local timestamp (L8) and
propagates the timestamp-value pair to a majority of servers (L10-11). The server protocol is
more involved. In addition to the replica state (timestamp and value), a server s maintains
a set seen to record the processes that requested this replica, and a flag prop that, as we
explain later, optimizes read operations. A server s waits for read and write requests. When
a request is received, s updates its local timestamp-value pair (L51-57) if the timestamp
attached in the received message is greater than its local timestamp. In addition, it initializes
its seen set to contain the sender process, and sets the prop flag to False. In case the
timestamp of the message is not greater than the local timestamp of s, then the server
records the sender in its seen set (L59). The server s sets prop = True when it receives a
message from a reader that contained a timestamp-value pair equal to the one that is locally
stored in s. Notice that a reader propagates a timestamp-value pair in every phase. So, s
may set prop during the first or second phase of a read.

The main departure of ccHybrid from ccFast lies in the read protocol. A reader
behaves as in ccFast as long as the maximum number of views reported by the servers
remains below |S|

f − 2. In particular, a reader sends read messages to all the servers and
waits from |S| − f to reply (L22). When those replies are received, the reader discovers the
maximum timestamp (maxTS) among the replies (L24), the set of messages that contained
maxTS (L25), and the maximum views reported in those messages (L27). If the maximum
views are less than |S|

f −2 and no reader propagated maxTS (L29), then the reader evaluates
the predicate as in ccFast to decide which value to return; otherwise the reader returns the
value associated with the maxTS. If at least f + 1 of the messages that contain maxTS,
also contain prop = True, the reader returns without further action. If this is not the case
then the reader performs a second phase propagating the maximum timestamp-value pair
to |S| − f servers (L30–33). Notice that ccHybrid performs equally to ccFast when the
number of readers that return the same value (not necessarily the same readers for each
value) satisfies the bound required by ccFast. In any other case, a single complete, slow
read operation (similar to [5]) is necessary per write operation. The use of the prop flag
allows any read that succeeds a slow read, and returns the same value, to be fast, as:
(i) The slow read propagates the maxTS to |S| − f servers,
(ii) a succeeding read receives replies from |S| − f servers, and
(iii) the read discovers prop = True for maxTS in more than |S| − 2f > f + 1 servers.

4.1 Algorithm Correctness
Our algorithm is correct if it can satisfy Termination (liveness condition) and Atomicity
(safety condition). It is trivial to see that termination is satisfied given that the system
respects our failure model. To proof atomicity we are going to express atomicity in terms of
timestamps written and returned in a SWMR model, as also presented in [3]:

OPODIS 2016

29:8 Computationally Light “Multi-Speed” Atomic Memory

A1. For each process p the ts variable is non-negative and monotonically nondecreasing.
A2. If a read ρ succeeds a write operation ω(ts) and returns a timestamp ts′, then ts′ ≥ ts.
A3. If a read ρ returns ts′, then either a write ω(ts′) precedes ρ, i.e. ω(ts′)→ ρ, or ω(ts′) is

concurrent with ρ.
A4. If ρ1 and ρ2 are two read operations such that ρ1 → ρ2 and ρ1 returns ts1, then ρ2

returns ts2 ≥ ts1.

Due to space limitations and due to the similarity of the writer and server protocols to
the ones used in ccFast, we omit some of the proofs and we refer the reader to specific
lemmas presented in [3]. Properties A1 and A3 can be extracted easily from the algorithm.
Now let us proof an important lemma about the timestamp returned by a server process:

I Lemma 1. In any execution ξ of the algorithm, if a server s receives a timestamp ts at
time T from a process p, then s replies with a timestamp ts′ ≥ ts at any time T ′ > T .

To following lemma shows A2, after which we show that property A4 holds.

I Lemma 2. In any execution ξ of the algorithm, if a read ρ from r1 succeeds a write
operation ω that writes timestamp ts from the writer w , i.e. ω → ρ, and returns a timestamp
ts′, then ts′ ≥ ts.

I Lemma 3. In any execution ξ of ccHybrid, if ρ1 and ρ2 are two read operations such that
ρ1 → ρ2, ρ1 is fast satisfying the predicate for maxTS = ts1, then ρ2 receives a maxTS = ts2
s.t. ts2 ≥ ts1.

I Lemma 4. In any execution ξ of ccHybrid, if ρ1 and ρ2 are two read operations such
that ρ1 → ρ2, and ρ1 returns ts1, then ρ2 returns ts2 ≥ ts1.

Proof. A read operation has two modes: fast and slow. Thus, we need to examine all the
possible combinations of the speeds of ρ1 and ρ2. There are four cases to investigate:
(a) ρ1 is fast, and ρ2 is fast,
(b) ρ1 is fast, and ρ2 is slow,
(c) ρ1 is slow, and ρ2 is slow, and
(d) ρ1 is slow, and ρ2 is fast.
Let maxTSi be the maximum timestamp observed by a read ρi, for i ∈ {1, 2}, during its
first phase.

Case a: In case both operations are fast then, according to ccHybrid, either they observe
maxV iews ≤ |S|

f − 2 and propSet = ∅, or they observe an |propSet| ≥ f + 1. If both
observe maxV iews ≤ |S|

f − 2 and check the predicate, then with the same reasoning as in [3,
Lemma 8], it follows that ts2 ≥ ts1.

If ρ1 observes |propSet| ≥ f + 1 then since ρ2 receives replies from |S2| = |S| − f servers,
then there exists a server s ∈ propSet ∩ S2 such that s replies to both ρ1 and ρ2. Since
ρ1 → ρ2, then s replies to ρ1 before replying to ρ2. Since s replies with maxTS1 to ρ1,
then by Lemma 1, s replies with a timestamp tss ≥ maxTS1 to ρ2. So maxTS2 ≥ tss and
hence maxTS2 ≥ maxTS1. If maxTS2 = maxTS1 then s will reply with tss = maxTS1
and prop = True. In this case ρ2 will return ts2 = maxTS1 = ts1. If maxTS2 > maxTS1
then ρ2 returns either maxTS2 or maxTS2 − 1 and thus ts2 ≥ ts1.

It remains to examine the case where ρ1 observes maxV iews ≤ |S|
f − 2 and propSet = ∅,

and ρ2 observes |propSet| ≥ f+1. If the predicate holds for ρ1 then by Lemma 3, ρ2 observes
maxTS2 ≥ maxTS1. Since ρ2 observes |propSet| ≥ f+1 then it returns ts2 = maxTS2, and

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:9

thus ts2 ≥ ts1. If the predicate does not hold for ρ1 then we know that the write operation
propagating maxTS1 − 1 completed before or during ρ1. Since ρ1 → ρ2 then this write
completed before ρ2 as well. Thus, by A2, ρ2 observes maxTS2 ≥ maxTS1 − 1. Since ρ2
observes |propSet| ≥ f + 1, then it returns ts2 = maxTS2 ⇒ ts2 ≥ maxTS1− 1⇒ ts2 ≥ ts1.

Case b: Since ρ1 in this case is fast then ρ1 returns either: (i) maxTS1−1, or (ii) maxTS1.
In (i), since ρ1 observed maxTS1 and since we have a single writer, it follows that the

write operation that wrote timestamp maxTS1 − 1, say ω1, proceeds or is concurrent to ρ1,
and completes before the response step of ρ1. Since ρ1 → ρ2, then ω1 → ρ2. Since ρ2 is slow,
then it returns the maximum timestamp it observes, i.e. ts2 = maxTS2. Moreover, since
ω1 → ρ2, and since both operations wait for |S| − f replies, then according to our failure
model, there exist at least a single server s that replies to both operations, first to ω1 and
then to ρ2. According to Lemma 1, s sends a timestamp tss ≥ maxTS1 − 1 to ρ2. Thus,
maxTS2 ≥ maxTS1 − 1, and therefore ts2 ≥ ts1.

In (ii) it follows that either the predicate holds for ρ1, or ρ1 observes |propSet| ≥ f + 1.
Since ρ2 is slow and returns ts2 = maxTS2, then by Lemma 3 and with similar reasoning as
in Case (a) for when ρ1 observes |propSet| ≥ f + 1, we can show that maxTS2 ≥ maxTS1
and hence ts2 ≥ ts1.

Case c: The case where both reads are slow is simple and resembles the behavior of the
reads in ABD [1]. Here each read ρi, for i ∈ [1, 2], returns maxTSi and before completing
it propagates maxTSi to |S| − f servers. Thus, ρ1 returns ts1 = maxTS1, and before
completing propagates maxTS1 to |P1| = |S| − f servers. Since ρ1 → ρ2, and since ρ2
receives |S2| = |S| − f replies, then it is going to receive a timestamp tss ≥ maxTS1 from at
least a single server s ∈ P1 ∩ S2. Thus, ρ2 returns ts2 = maxTS2 ≥ maxTS1, and ts2 ≥ ts1.

Case d: So it remains to investigate the case where ρ1 is slow and ρ2 is fast. Observe
that this case is possible when a server s is “saturated” by concurrent reads (more than
|S|
f − 2) and s replies to ρ1 but does not reply to ρ2. Now we have two cases to investigate:
either ρ2 observes maxTS2 ≥ maxTS1, or maxTS2 = maxTS1 − 1. If ρ2 observes a
maxTS2 ≥ maxTS1, it may either return ts2 = maxTS2 or ts2 = maxTS2 − 1. In either
case ts2 ≥ maxTS1 − 1⇒ ts2 ≥ ts1.

Let us examine now the case where maxTS2 = maxTS1− 1. Since ρ1 is slow and returns
maxTS1− 1, then before completing it propagates maxTS1− 1 to |S|− f servers. Let P1 be
the set of servers that received the messages and replied to the second phase of ρ1. Moreover,
|S2| = |S|−f are the servers that received messages and replied to ρ2. So by Lemma 1, every
server s ∈ P1 ∩ S2 replies to both ρ1 and then to ρ2, with a timestamp tss ≥ maxTS1 − 1.
In addition s sets prop = True before replying to ρ1. Since maxTS2 = maxTS1 − 1, then
s replies with tss = maxTS1 − 1 to ρ2, and thus the propSet contains at least s in ρ2.
According to the algorithm ρ2 returns ts2 = maxTS2 in this case and hence ts2 ≥ ts1. J

I Theorem 5. Algorithm ccHybrid implements a SWMR atomic read/write register.

5 Algorithm OhFast: Switching from One to One and a Half Rounds

Similar to algorithm ccHybrid, OhFast aims to allow unbounded number of readers to
participate in the service while allowing operations to complete in one round. In contrast to
the classic approach of the two rounds per read operation, OhFast tries to further reduce the
communication required by slow reads. Thus OhFast combines ideas from ccFast and the

OPODIS 2016

29:10 Computationally Light “Multi-Speed” Atomic Memory

Algorithm 2 Read protocol of algorithm OhFast.
1: at each reader ri
2: Components:
3: ts ∈ N+; maxTS ∈ N+; v, vp ∈ V ; rcounter ∈ N+
4: srvAck ⊆ S ×M
5: Initialization:
6: ts ← 0, maxTS ← 0, v ← ⊥, vp ← ⊥; rcounter ← 0
7: function read()
8: rcounter ← rcounter + 1
9: send(〈ts, v, vp〉, ri, rcounter) to all servers

10: wait until |S| − f servers reply
. Collect the (sid, 〈〈ts′, v′, vp′〉, views, secured〉) msgs in
srvAck

11: maxTS ← max{m.ts′|(s,m) ∈ srvAck}

12: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧m.ts′ = maxTS}
13: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
14: maxV iews ← max{m.views|(s,m) ∈ maxAck}
15: if ∃(s,m) ∈ maxAck s.t. m.secured = True then
16: return(v)

17: else if ∃α ∈ [1, |S|
f
− 2] s.t.

18: MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and
19: |MS| ≥ |S| − αf then
20: return(v)
21: else
22: return(vp)
23: end if
24: end function

one and a half round approach suggested by OhSam. With server to server communication,
OhFast is expected to perform better in environments where the servers communicate via
high capacity links, e.g., data centers.

Like in OhSam, servers assume the responsibility of propagating the value of the timesta-
mp instead of the reader. Similarly, in OhFast we move the decision on a slow read to the
servers. In particular, the servers record the processes that requested their timestamp. If
the recording set becomes “large” then a server relays a read to the other servers before
replying to the reader. However, there is a major departure from OhSam: the servers that
receive relay messages do not broadcast relays to all the servers but just to the servers
that send them a relay. So, only a single server may relay for a read operation keeping the
message complexity of the algorithm low in cases of low contention. When a server that
relays a timestamp gets appropriate relays from the other servers, it marks the timestamp
as secured, and sends a reply to the reader. When now the reader receives the replies from
|S| − f servers it collects the messages with the highest timestamp. If there is a server that
declares this timestamp as secured then the read immediately returns the value associated
with this timestamp; otherwise the reader evaluates the predicate of ccFast on the replies
to determine the value to return.

Algorithms 2 and 3 provide the formal pseudocode of OhFast. We omit the write
protocol as it is the same to the one presented for ccHybrid. The read protocol in OhFast
(Algorithm 2) is simpler than the read of ccHybrid. The reader sends messages to all the
servers and waits for |S| − f of them to reply (L9). Once those replies are received the
reader discovers the maximum timestamp maxTS among the replies (L11), and collects
the messages that contain maxTS (L12) 1 in the set maxAck. If some message in maxAck
indicates that maxTS is secured, i.e. it contains secured = True (L15), then the reader
returns maxTS. Otherwise, it evaluates the predicate on the messages in maxAck (L19) to
determine which timestamp to return.

The server protocol (Algorithm 3) is the most involved in OhFast. The server’s state is
composed of the state of the replica, the recording set seen, a flag securedts which indicates
whether a timestamp has been relayed to a majority of servers, and a Relays list storing
the latest timestamp the server relayed for each reader. A server s waits for read/write and
relay requests. When s receives a read/write request it updates its local replica state and
seen set appropriately (L13-14). In case the timestamp in the request is higher than its local
timestamp it also sets securedts flag to False. Then, s decides whether to relay the received
timestamp or not. In particular, s relays a timestamp if (L19):

1 Notice that this is another departure from OhSam as each reader in OhSam returns the smallest
discovered timestamp.

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:11

Algorithm 3 Server protocol of algorithm OhFast.
1: at each server sj
2: Components:
3: ts ∈ N+; seen ⊆ R∪{w}; v, vp ∈ V ;Counter[|R|+ 1] ∈ N+

4: scounter ∈ N+; securedts ∈ {True, False}
5: Relays[|R|] ∈ N+
6: Initialization:
7: ts ← 0; seen ← ∅; v, vp ← ⊥; prop ← False
8: Counter[i] ← 0 for i ∈ R ∪ {w}; scounter ← 0
9: Relays[i] ← 0; securedts ← False

10: function rcv(〈ts′, v′, vp′〉, q, counter)
. Called upon reception of a READ/WRITE message

11: if Counter[q] < counter then
12: if ts′ > ts then
13: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉; seen ← {q}
14: securedts ← False
15: else
16: seen ← seen ∪ {q}
17: end if
18: if q ∈ R and |seen| > |S|

f
− 2 and

19: securedts = False and Relays[q] < ts then
20: scounter ← scounter + 1
21: sendRelay(〈ts, v, vp〉, q, sj , counter, scounter)
22: to all the servers
23: Relays[q] ← ts; srvRelay ← ∅
24: else
25: send(〈ts, v, vp〉, |seen|, counter, securedts) to q

26: end if
27: end if
28: end function
29: function rcvRelay(〈ts′, v′, vp′〉, q, s, c1, c2)

. Called upon reception of a RELAY message
30: if Counter[s] < c2 then
31: if ts′ > ts then
32: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
33: seen ← {q}
34: else if ts = ts′ then
35: seen ← seen ∪ {q}
36: end if
37: if Relays[q] = ts′ then
38: srvRelay ← srvRelay ∪ {s}
39: if |srvRelay| = |S| − f then
40: if ts = ts′ then
41: securedts ← True
42: end if
43: send(〈ts′, v′, vp′〉, 0, c1, True) to q
44: end if
45: else

. reply back to the sender
46: scounter ← scounter + 1
47: sendRelay(〈ts′, v′, vp′〉, q, sj , scounter) to s
48: end if
49: end if
50: end function

(i) the sender is a reader,
(ii) it sent this timestamp to more than |S|

f − 2 processes,
(iii) the timestamp has not already being relayed (i.e. securedts = False) and
(iv) the server has not yet relayed this timestamp for the same reader.
If some of these conditions does not hold then s just replies to the sender with its local
timestamp (L25). Notice here that servers only relay for the readers and do not relay for the
writer, as the sole writer always has the latest timestamp. In a relay message s includes its
local replica state, the id of the reader that initiated the relay, and its own id. When a server
s′ receives a relay message from s, it first updates its local replica and seen set appropriately
(L32-33, L35). Then s′ checks if it also sent a relay with the same timestamp for the same
reader (L37). If not then s′ bounces the relay to s and completes (L47); otherwise s′ adds s
in the servers that received its relay 38). When it receives |S| − f relays, s′ replies to the
reader that initiated the relay along with the timestamp that it initially relayed (not its local
timestamp) (L43). Finally, if its local timestamp is the same as the relayed timestamp, then
s′ also sets securedts = True (L41).

5.1 Algorithm Correctness
In order to show that OhFast is correct we have to prove that it satisfies both termination
(liveness) and atomicity (safety) properties. Termination of the write operation is easy to see
as according to our failure model |S| − f servers do not fail and can receive and reply to the
write request. However, termination of the read protocol is not straightforward: a server
may communicate with other servers before responding to a reader. The next lemma shows
that all the read operations terminate.

I Lemma 6. In any execution ξ of OhFast, every read operation ρ invoked by a correct
process r eventually terminates.

Next it remains to show that atomicity is preserved. To prove atomicity we are going to
use the four properties that express atomicity in terms of timestamps written and returned,
as presented in Section 4.1. It is easy to see from the algorithm, that every process updates
its local replica only when a value with a higher timestamp is received. Thus, it can be
easily seen that the algorithm satisfies properties A1 and A3. Notice also that when a server

OPODIS 2016

29:12 Computationally Light “Multi-Speed” Atomic Memory

receives a timestamp ts then it attaches a timestamp tss ≥ ts to any message it sends from
that point onward. This can be shown with similar statements as in Lemma 1. We need
to show that when a server receives a relay that contains a timestamp ts then it sends a
timestamp tss ≥ ts from that point onward.

I Lemma 7. In any execution ξ of OhFast, if a server s receives a relay with a timestamp
ts at time T from a server s′, then s attaches a timestamp ts′ ≥ ts to any message it sends
at any time T ′ > T .

Now we can show that if a read operation succeeds a write operation, then it returns a
value at least as recent as the one written. This shows the validity of property A2.

I Lemma 8. In any execution ξ of the algorithm, if a read ρ from r succeeds a write operation
ω that writes timestamp tsω from the writer w, i.e. ω → ρ, and returns a timestamp tsρ,
then tsρ ≥ tsω.

Finally, it remains to investigate if property A4 holds. Before we do so, we prove a lemma
showing that if a timestamp ts is secured from a server s, then at least |S| − f servers have
a timestamp ts′ > ts.

I Lemma 9. In any execution ξ of OhFast, if a server s sets securedts = True for a
timestamp ts at time T then ∃S ′ ⊆ S at T , s.t. |S ′| ≥ |S| − f and ∀s′ ∈ S ′, the local
timestamp of s′ is ts′ ≥ ts.

I Lemma 10. In any execution ξ of OhFast, if ρ1 and ρ2 are two read operations such that
ρ1 → ρ2, and ρ1 returns tsρ1 , then ρ2 returns tsρ2 ≥ tsρ1 .

Proof. A read operation may decide on the value to return in two ways in OhFast: (i) it
receives a secured timestamp, or (ii) it evaluates the predicate. Let us first examine what
happens when the two reads are invoked by the same reader (i.e. r1 = r2). During ρ2, r1
includes a timestamp tsr1 ≥ tsρ1 in every message it sends to servers. According to Lemma 1
every server s replies with a timestamp tss ≥ tsρ1 . Thus, maxTS2 ≥ tsρ1 . If maxTS2 > tsρ1

then since tsρ2 = maxTS2 or tsρ2 = maxTS2 − 1 it follows that tsρ2 ≥ tsρ1 in either case.
If maxTS2 = tsρ1 then every server adds r1 in their seen set before replying to ρ2. So the
predicate is valid for |MS| ≥ |S| − f and α = 1. Hence, ρ2 returns tsρ2 = maxTS2 = tsρ1 in
any case (i) or (ii).

So we need now to examine all the possible combinations for the two reads ρ1 and ρ2
when r1 6= r2. If both read operations examine the predicate to decide on the value to return
(i.e., they do not receive a secured timestamp), then with same reasoning as in [3, Lemma 8]
we can show that atomicity is preserved. So it remains to examine the following three cases:
1. ρ1 evaluates the predicate, and ρ2 receives a secured maxTS2,
2. ρ1 receives a secured maxTS1, and ρ2 evaluates the predicate, and
3. ρ1 receives a secured maxTS1, and ρ2 receives a secured maxTS2.

Case 1: In this case, ρ1 evaluates the predicate, and ρ2 returns tsρ2 = maxTS2 as it
received a reply with maxTS2 and secured = True. There are two subcases to examine:
(a) ρ1 returns maxTS1, and (b) ρ1 returns maxTS1 − 1.

Case 1a: If ρ1 returns maxTS1 it follows that the predicate is valid for ρ1. Hence:

∃α ∈ [1, |S|
f
− 2] and

MS ⊆ S s.t. MS = {s : s.ts = maxTS1 ∧ s.views ≥ α} ∧ |MS | ≥ |S| − αf .

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:13

Moreover, since ρ1 examines the predicate, then none of the servers that replied with maxTS1
sends secured = True. Therefore, ∀s ∈ MS, it must be true that s.views ≤ S

f − 2 before
replying to ρ1 (L16), otherwise s would proceed to relay and secure maxTS1. Since every
s.views ≤ S

f − 2, then it must be the case that α ≤ S
f − 2 as well. Thus substituting:

|MS| ≥ |S| − αf ⇒ |MS| ≥ |S| − (S
f
− 2)f ⇒ |MS| > f .

Since ρ2 receives replies from |S2| = |S| − f servers then S2 ∩MS 6= ∅. Also notice that
since ρ1 → ρ2, then a server s ∈ S2 ∩MS replies to ρ1 with maxTS1 before replying to ρ2.
By Lemma 1, s replies to ρ2 with a timestamp tss ≥ maxTS1. Thus, maxTS2 ≥ tss ⇒
maxTS2 ≥ maxTS1 and ρ2 returns tsρ2 ≥ maxTS1 ⇒ tsρ2 ≥ tsρ1 .

Case 1b: Assume now the case where ρ1 returns maxTS1− 1. Since ρ1 received maxTS1,
and since the sole writer invokes one operation at a time, then it follows that the write
operation that wrote maxTS1 − 1, say ω, completed during or before ρ1. Since though
ρ1 → ρ2, then it follows that ω → ρ2. Since ω communicates with |S| − f servers before
completing, and since ρ2 waits for |S| − f replies, then there is a server s that replies to ω
before replying to ρ2. By Lemma 1, s replies with a timestamp tss ≥ maxTS1 − 1 to ρ2.
Thus ρ2 observes a maxTS2 ≥ maxTS1 − 1, and hence tsρ2 ≥ maxTS1 − 1 ⇒ tsρ2 ≥ tsρ1

in this case as well.

Case 2: Here, ρ1 returns tsρ1 = maxTS1 as it received a message that contained maxTS1
and secured = True. Read ρ2 evaluates the predicate to decide on the value to return. We
have two subcases to examine again: (a) ρ2 returns maxTS2, or (b) ρ2 returns maxTS2 − 1.
Since ρ1 returned a secured timestamp, then it received maxTS1 and secured = True from
some server s. By Lemma 9, a set |S ′| ≥ |S| − f of servers have a timestamp ts′ ≥ maxTS1
before s replies to ρ1. Since ρ2 receives replies from |S2| = |S| − f servers, then S ′ ∩ S2 6= ∅.
Then by Lemmas 1 and 7, any server in s′ ∈ S ′ ∩ S2 replies to ρ2 with a timestamp
tss′ ≥ maxTS1. Thus, ρ2 observes a maxTS2 ≥ maxTS1. If maxTS2 > maxTS1 and since
ρ2 returns either maxTS2 or maxTS2 − 1, then in either case tsρ2 ≥ tsρ1 .

So it remains to examine what happens when maxTS2 = maxTS1. If ρ2 returns
tsρ2 = maxTS2 then tsρ2 ≥ tsρ1 . Let us examine now if ρ2 may return maxTS2 − 1. As we
said before every server s′ in S ′ ∩ S2 replies with tss′ ≥ maxTS1 to ρ2. Since |S ′| ≥ |S| − f
and |S2| ≥ |S| − f then |S ′ ∩ S2| ≥ |S| − 2f . Also by the algorithm, every server in S ′ adds
r1 in its seen set before replying to the relay message from s (L39). Furthermore, every
server in S2 adds r2 in its seen set before replying to ρ2. So every server s′ ∈ S ′ ∩ S2 replies
with a s.views ≥ 2. Thus, the predicate holds for at least |MS| = |S ′ ∩ S2| ≥ |S| − 2f and
α = 2. Hence ρ2 will return maxTS2 contradicting our assumption that returns maxTS2− 1.
So returning maxTS2 − 1 is not possible.

Case 3: In this case both ρ1 and ρ2 return a secured timestamp. Let s1 be the server that
send maxTS1 and secured = True to ρ1, and s2 (not necessarily different than s1) be the
server that sent maxTS2 and secured = True to ρ2. By Lemma 9, there exists a set S ′ s.t.
every server s ∈ S ′ has a timestamp tss ≥ maxTS1 before s1 replies to ρ1. As explained
in Case 2, S ′ ∩ S2 6= ∅. Hence there exists a server that replied both to the relay message
of s1 and to ρ2. By Lemma 7, each server s′ ∈ S ′ ∩ S2 replies to ρ2 with a timestamp
tss′ ≥ maxTS1. Hence, maxTS2 ≥ maxTS1. Since ρ2 returns a secured timestamp, then it
returns maxTS2. Therefore, tsρ2 = maxTS2 ⇒ tsρ2 ≥ maxTS1 ⇒ tsρ2 ≥ tsρ1 . J

I Theorem 11. Algorithm OhFast implements a SWMR atomic read/write register.

OPODIS 2016

29:14 Computationally Light “Multi-Speed” Atomic Memory

Figure 1 Simulated topologies.

6 Empirical Results

In this section, we present empirical results that we obtained by implementing algorithms
ABD [1], OhSam [6], Sf [5], ccHybrid, and OhFast, using the NS3 discrete event simulator
[11]. NS3 is a highly customizable and extensible simulator that allows us to gain full control
over the event scheduler and the deployment environment. Thus, it allows us to investigate
the exact parameters that may affect the performance of our algorithms.

Experimentation Platform. The general testbed of our experiments consists of a single
writer, a set of readers, and a set servers. We assume that f = 1 servers may fail. This
assumption was chosen so as every operation would wait for all but one servers to reply,
inflicting that way high concurrency and potentially inconsistency in our system. Communic-
ation between the nodes is established via point to point bidirectional links implemented with
a DropTail queue. For the purpose of the experimental evaluation, we developed simulations
representing two different topologies, Sparse and Condensed, which mainly differ on the
deployment of server nodes.

Figure 1 presents the two topologies. In both topologies the clients are divided evenly
and are connected on a series of router nodes. Clients are connected to the routers with
5Mbps links and 2ms delay, and routers are connected with 10Mpbs links and 4ms delay.
In the Sparse topology (Figure 1(a)), a server is connected to each router with 10Mbps
bandwidth and 2ms delay. This topology demonstrates a network where servers are separated
and appear to be in different networks. In the Condensed topology (Figure 1(b)) all the
servers are connected to a single router with 50Mbps links and 2ms delay, simulating a
network where servers are connected in close proximity and with high bandwidth links (e.g.,
a datacenter).

We ran NS3 on a Macintosh machine running OS X El Capitan, with 2.5Ghz Intel Core
i7 processor and 16GB of RAM. The average of 5 samples per scenario provided the stated
operation latencies.

Performance. The performance of the algorithms is measured in terms of the ratio of the
number of fast over slow R/W operations – communication burden; and the total time it
takes for an operation to complete – operation latency. Operation latency is affected by both

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2 Experimental Results from NS3 Simulation.

communication and computation latencies. As NS3 only provides simulated time events
and omits any computation, we combined two clocks: (a) the simulation clock, and (b) a
real time clock. The simulation clock was able to estimate the communication time, while
the real clock allowed us obtain the time taken by the computation at each operation. The
latency is calculated adding both times.

Scenarios. Measurements of the performance involves multiple execution scenarios. The
scenarios were designed to test
(i) the scalability of the algorithms as the number of readers and servers increases;
(ii) the contention effect on efficiency, by running different concurrency scenarios; and
(iii) the relation of the efficiency with the topology of the network that we use.
To test scalability we range the number of readers |R| ∈ [10, 20, 40, 80, 100] and the number of
servers |S| ∈ [10, 15, 20, 25, 30]. To test contention we specify the frequency of read operation
and we run our algorithm for different read intervals (rInt ∈ [2.3, 4.6, 6.9] seconds). We issue
write operations every 4 seconds. In addition, we define two read invocation schemes: (i) fix
and (ii) stochastic. In the fix scheme all the read operations are scheduled periodically at
the read interval. In the stochastic scheme each operation is scheduled at random between
1s and rInt seconds in each read interval. Finally, to test topological effects we run our
algorithms using both the Sparse and Condensed topologies.

OPODIS 2016

29:16 Computationally Light “Multi-Speed” Atomic Memory

Results

As a general observation, the new algorithms outperform all the other algorithms in most
scenarios. In particular, it is clear that ccHybrid and OhFast outperform algorithms
ABD and OhSam. In addition, the two algorithms appear to achieve similar operation
latencies as Sf. A closer examination reveals that in many scenarios Sf does not perform
any slow reads, whereas in the same executions both ccHybrid and OhFast require some
slow reads. The fact that the two algorithms perform the same as Sf, despite the slow reads,
demonstrates that the computation overhead of the two presented algorithms is much less
than the computation needed by Sf. Thus, in executions where Sf will perform more slow
operations, clearly this will result in even worse operation latencies. More in detail, taking
our tests one by one we conclude to the following observations:

Scalability: As can be seen in Figures 2(b) and (c), the increasing number of readers and
the servers have a negative impact on all the algorithms. The impact is higher on ABD and
OhSam, and lower for the rest of the algorithms.

Contention: Contention is generated by:
(i) operation frequencies, and
(ii) concurrency schemes.
We observe that operation frequency affects the latency of the operations in the fix scheme.
This can be seen in Figure 2(a) and (b). Algorithms ABD and OhSam are not affected (as
all of their reads are slow), but the multi-speed algorithms Sf, ccHybrid and OhFast, are
affected negatively. This behaviour is due to the fact that these algorithms perform a slow
read operation per write operation. When the read interval is close to the write interval,
e.g., rInt = 4.6, most of the reads are concurrent to the write and thus more reads are slow
(Figure 2(h)). This is not the case when rInt = 2.3 (Figure 2(g)). Notice that the same
behavior is not being observed when a stochastic scheme is used, as radomness prevents the
operations to be invoked at exactly the same time (Figure 2(d) and (e)). Hence, a slow read
operation may complete before any read operations that return the same value are invoked.
Therefore, according to the multi-speed algorithms, once a slow read is completed, any read
operation that succeeds such a read will be fast. This results in a low percentage of slow
reads, as shown in Figure 2(i).

Finally, when the operation frequency is constant, it appears that in the stochastic
scheme each operation completes almost two times faster than in the fix scheme (Figure 2(b)
and 2(e)). Algorithms, ABD and OhSam, can be used as points of reference as they have
the same computation and communication requirements in both fix and stochastic scenarios.
The difference can be explained due to the congestion that the fix scheme introduces in the
network. On the contrary, a stochastic scheme distributes the invocation time intervals of
the read operations uniformly, reducing the network congestion, and hence operation latency.

Topology: Plots 2(e) and 2(f) show that topology has an impact on the performance and
the efficiency of all the algorithms. Most importantly, we can observe that OhSam and
OhFast are the two algorithms that are affected the most. In particular, while in (e) OhSam
performs better than ABD and OhFast performs similar to ccHybrid and Sf we notice
that in (f) OhSam performs worse than ABD and OhFast worse than the 2 others. This
behaviour is expected as both OhSam and OhFast need to exchange messages between
the servers during a relay phase. However, notice that OhFast performs much better since
operation relays are not performed for every read operation.

A. Fernández Anta, T. Hadjistasi, and N. Nicolaou 29:17

7 Conclusions

In this paper we present two new algorithms ccHybrid and OhFast that implement atomic
SWMR register in a message-passing, asynchronous environment. Both algorithms use the
predicate introduced in [3], to achieve single round reads with small computational footprint.
However, to avoid constraints in reader participation both algorithms allow some reads to
be slow. In ccHybrid the reader decides on the speed of its read operation, reasulting in
operations that perform 1 or 2 rounds. OhFast moves the decision of slow operations to
the servers, enabling 1 or 1.5 round operations. Simulation results show that our algorithms
outperform all slow operation algorithms, as well as “multi-speed” implementations that
have high computation demands. We claim that our developments take us closer to practical
implementations of atomic read/write objects in the message-passing environment.

References
1 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message

passing systems. Journal of the ACM, 42(1):124–142, 1996.
2 P. Dutta, R. Guerraoui, R.R. Levy, and A. Chakraborty. How fast can a distributed

atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Distributed
Computing (PODC04), pages 236–245, 2004.

3 A. Fernández Anta, N. Nicolaou, and A. Popa. Making “fast” atomic operations computa-
tionally tractable. In Proceedings 19th International Conference On Principle Of DIstrib-
uted Systems (OPODIS 15), 2015.

4 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory. In DISC’08: Pro-
ceedings of the 22nd international symposium on Distributed Computing, pages 289–304,
Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-87779-0_20.

5 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of Parallel and Distributed
Computing, 69(1):62–79, 2009. doi:10.1016/j.jpdc.2008.05.004.

6 T. Hadjistasi, N. Nicolaou, and A.A. Schwarzmann. Brief announcement: Oh-ram! one
and a half round read/write atomic memory. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, PODC’16, pages 353–355, New York, NY, USA,
2016. ACM. doi:10.1145/2933057.2933073.

7 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990. doi:10.1145/78969.78972.

8 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess progranm. IEEE Transactions on Computers, 28(9):690–691, 1979. doi:10.1109/TC.
1979.1675439.

9 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
10 Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using

dynamic quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant
Computing, pages 272–281, 1997.

11 NS3 network simulator. URL: https://www.nsnam.org/.

OPODIS 2016

http://dx.doi.org/10.1007/978-3-540-87779-0_20
http://dx.doi.org/10.1016/j.jpdc.2008.05.004
http://dx.doi.org/10.1145/2933057.2933073
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://www.nsnam.org/

	Introduction
	Model
	State-of-the-Art Performance of Atomic Memory Implementations
	Algorithm ccHybrid: Switching from One to Two Rounds
	Algorithm Correctness

	Algorithm OhFast: Switching from One to One and a Half Rounds
	Algorithm Correctness

	Empirical Results
	Conclusions

