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Abstract
Byzantine vector consensus requires that non-faulty processes reach agreement on a decision (or
output) that is in the convex hull of the inputs at the non-faulty processes. Recent work has
shown that, for n processes with up to f Byzantine failures, when the inputs are d-dimensional
vectors of reals, n ≥ max (3f + 1, (d+ 1)f + 1) is the tight bound for synchronous systems, and
n ≥ (d+ 2)f + 1 is tight for approximate consensus in asynchronous systems.

Due to the dependence of the lower bound on vector dimension d, the number of processes
necessary becomes large when the vector dimension is large. With the hope of reducing the lower
bound on n, we propose relaxed versions of Byzantine vector consensus: k-relaxed Byzantine
vector consensus and (δ, p)-relaxed Byzantine vector consensus. k-relaxed consensus only requires
consensus for projections of inputs on every subset of k dimensions. (δ, p)-relaxed consensus
requires that the output be within distance δ of the convex hull of the non-faulty inputs, where
distance is defined using the Lp-norm. An input-dependent δ allows the distance from the non-
faulty convex hull to be dependent on the maximum distance between the non-faulty inputs.

We show that for k-relaxed consensus with k > 1, and for (δ, p)-relaxed consensus with
constant δ ≥ 0, the bound on n is identical to the bound stated above for the original vector
consensus problem. On the other hand, when k = 1 or δ depends on the inputs, we show that
the bound on n is smaller when d ≥ 3. Input-dependent δ may be of interest in practice. In
essence, input-dependent δ scales with the spread of the inputs.
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1 Introduction

Byzantine vector consensus requires that non-faulty processes reach agreement on a decision
(or output) that is in the convex hull of the inputs at the non-faulty processes. This paper
considers Byzantine consensus in a complete network consisting of n processes of which up
to f processes may be Byzantine faulty [5]. Recent work has shown that when the inputs
are d-dimensional vectors of reals, n ≥ max(3f + 1, (d+ 1)f + 1) is the tight bound on the
number of processes n to be able to achieve exact Byzantine consensus in a synchronous
system [6, 11, 7].
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(b) (δ, p)-relaxed convex hull.

Figure 1 Illustrations for relaxed convex hull.

Exact Byzantine vector consensus is defined as follows:

I Definition 1 (Exact Byzantine vector consensus (exact BVC)). Exact BVC must satisfy the
following three conditions [11, 7]:
1. Agreement: The decision (or output) vector at all the non-faulty processes must be

identical.
2. Validity: The decision vector at each non-faulty process must be in the convex hull of the

input vectors at the non-faulty processes.
3. Termination: Each non-faulty process must terminate after a finite amount of time.

Due to the dependence of the above bound on vector dimension d, the number of processes
necessary becomes large when the vector dimension is large. With the hope of reducing the
lower bound on n, we consider relaxed versions of Byzantine vector consensus: k-relaxed
Byzantine vector consensus and (δ, p)-relaxed Byzantine vector consensus (we often refer to
these as k-relaxed consensus and (δ, p)-relaxed consensus, respectively). For (δ, p)-relaxed
consensus, we consider two formulations: constant δ and input-dependent δ, respectively.

For brevity, this paper first focuses on exact vector consensus in synchronous systems, and
its relaxations. Analogous results for relaxations of approximate Byzantine vector consensus
in asynchronous systems are summarized in Section 6.

Our relaxed versions of the Byzantine vector consensus problem are defined by replacing
the convex hull in the above Validity condition by a relaxed convex hull, in particular,
k-relaxed convex hull or (δ, p)-relaxed convex hull as defined later in Section 4.1 and 5.1.
Intuitively, a k-relaxed convex hull, illustrated in Figure 1a, consists of points which are
contained in the convex hull of the projections of inputs at non-faulty processes, where the
projections are taken on every subset of k dimensions. (δ, p)-relaxed convex hull, illustrated
in Figure 1b, consists of points within the distance δ of the convex hull of the inputs of
non-faulty processes, where distance is defined using the Lp-norm. Formal definitions of the
two relaxations of a convex hull are presented in Section 4.1 and 5.1.

The original vector consensus problem (Definition 1) is obtained as a special case of the
two relaxed versions, by choosing k = d in k-relaxed consensus, and δ = 0 in (δ, p)-relaxed
consensus. Also note that, when d = 1, the inputs are scalar, and all the Lp norms are
identical. For the case of d = 1, (δ, p)-relaxed consensus with constant δ > 0 is similar to a
consensus problem addressed in prior work [2]. In particular, [2] showed (for scalar inputs)
that even if a valid output is allowed to be outside the range of non-faulty inputs by up to δ,
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the number of processes necessary to achieve consensus cannot be smaller than 3f + 1. Thus,
our work on (δ, p)-relaxed consensus extends the above prior work [2] to higher dimensions.

With the exception of Section 6, the rest of the paper assumes that the system is
synchronous. For synchronous systems, we obtain the following results:

We show that n ≥ max(3f + 1, (d + 1)f + 1) is the tight bound on n for k-relaxed
consensus for 1 < k ≤ d. That is, when k > 1, the relaxation does not reduce the number
of processes necessary. However, when k = 1, n ≥ 3f + 1 is the tight bound for all
dimensions d. Thus, k = 1 significantly reduces the tight bound on n when d is large.
For any constant δ ≥ 0 that is independent of the inputs, we show that n ≥ max(3f +
1, (d+ 1)f + 1) remains the tight bound on n for (δ, p)-relaxed consensus. That is, the
relaxation does not lower the bound.
For values of δ specified as a function of the inputs of the non-faulty processes, we show
that (δ, p)-consensus can be achieved using a smaller number of processes than the above
bound for the case of constant δ. We establish a relationship between n and an achievable
value of δ. For instance, for f = 1 and d ≥ 3, we show that ( emax

n−2 , 2)-consensus and
( emin

2 , 2)-consensus is achievable with 4 ≤ n ≤ d+ 1 processes, where emax (emin) is the
maximum (minimum) distance between the inputs of any two fault-free processes. We
also obtain results for some other values of f , n and p, and propose a conjecture for the
open cases.
Section 6 summarize analogous results for asynchronous systems.

2 Related Work

Lamport, Shostak and Pease [5] developed the initial results on Byzantine fault-tolerant
agreement. As noted above, for the special case of d = 1, our (δ, p)-relaxed consensus is
similar to the so-called “(ε, δ, γ)-agreement” problem addressed in prior work [2]. Byzantine
vector consensus (BVC) (also called multidimensional consensus) was introduced by Mendes
and Herlihy [6] and Vaidya and Garg [11]. Tight bounds on number of processes n for
Byzantine vector consensus have been obtained for synchronous [11] and asynchronous [6, 11]
systems both, when the network is a complete graph. A necessary condition and a sufficient
condition for iterative BVC in incomplete graphs were derived by Vaidya [10], however, there
is a gap between these necessary and sufficient conditions.

A related problem of Convex Hull Consensus was introduced by Tseng and Vaidya [9],
wherein the goal for the non-faulty processes is to try to learn the largest possible subset of
the convex hull of the non-faulty inputs. For this problem, fault-tolerant algorithms have
been proposed for asynchronous systems under crash faults [9] and Byzantine faults [8],
respectively.

Herlihy et al. [3] introduce the (d, ε)-solo approximate agreement problem in the context
of a d-solo execution model, which yields the message-passing model and the traditional
shared memory model as special cases. For (d, ε)-solo approximate agreement, the inputs are
d-dimensional vectors of reals, and the outputs must be in the convex hull of the inputs. Up
to d processes may potentially choose as their outputs any arbitrary points in the convex hull
of all inputs (not necessarily approximately equal to each other), while each remaining process
must choose as its output a point within distance ε of the convex hull of the outputs of these
d processes (all outputs must be within the convex hull of the inputs). Although Herlihy
et al. [3] only consider crash failures, their problem formulation can be easily extended to
the Byzantine fault model. The relaxed consensus formulations considered in our work are
distinct from (d, ε)-solo agreement.

OPODIS 2016



26:4 Relaxed Byzantine Vector Consensus

3 Notations and Terminology

The total number of processes is n, with up to f processes suffering Byzantine failures.
The processes are numbered as 1, 2, · · · , n. Each process can communicate directly with
all the processes (i.e., the network is a complete graph). The input at each process is a
d-dimensional vector of reals, d ≥ 1. We view each input as a column vector. Dimensions (or
coordinates) of a d-dimensional vector are indexed as 1, 2, · · · , d. Transpose of vector u is
denoted uT . We often view a vector as a point in an appropriate space. The i-th element (or
i-th coordinate) of vector v is denoted as v[i]. The set {1, 2, · · · , d} is denoted as [1, d]. For

u, v ∈ Rd, distance ‖u− v‖p using Lp-norm is defined as ‖u− v‖p =
(∑d

i=1 |u[i]− v[i]|p
)1/p

.
By definition, L∞-norm is defined as ‖u− v‖∞ = maxi=1,··· ,d(|u[i]− v[i]|).

A multiset may potentially contain repetitions of an element. Let H(S) denote the convex
hull of a multiset S. For a multiset Y , when we write X ⊆ Y , X is a multiset in which
frequency of each element is no greater than its frequency in multiset Y . The size of the
multiset S, denoted |S|, is the number of elements in S, counting all repetitions. For a
multiset Y with |Y | ≥ f , define Γ(Y ) as

Γ(Y ) =
⋂

X⊆Y,|X|=|Y |−f

H(X) (1)

In Section 4, we consider (δ, p)-relaxed Byzantine vector consensus, and Section 5 focuses
on k-relaxed Byzantine vector consensus.

4 (δ, p)-Relaxed Byzantine Vector Consensus

4.1 Definition
To be able to define (δ, p)-relaxed consensus, we first define a relaxed notion of a convex hull.

I Definition 2. For δ ≥ 0 and p ≥ 1, (δ, p)-relaxed convex hull H(δ,p) of S ⊆ Rd is

H(δ,p)(S) = {u | ‖u− v‖p ≤ δ, v ∈ H(S)} .

As an example, see Figure 1b. In the figure a, b, c are 2-dimensional inputs of three
non-faulty processes. Let p = 2. The red triangle in the figure is the convex hull of a, b, c,
while the area within the blue curve is the (δ, p)-relaxed convex hull of a, b, c, where δ is the
length shown in the figure.

(δ, p)-relaxed consensus must satisfy the Agreement and Termination conditions stated in
Section 1, and the relaxed validity condition below.

(δ, p)-relaxed validity: The decision vector at each non-faulty process must be in the
(δ, p)-relaxed convex hull of the set of input vectors at the non-faulty processes.

We consider two ways to specify δ: (i) δ may be specified as a constant (Section 4.3), or
(ii) δ may be input-dependent, in particular, specified as a function of the distance between
the inputs at the non-faulty processes (Section 4.4).

Consider Figure 1b again, with a, b, c being the inputs of non-faulty processes. Instead
of the δ shown in the figure, suppose that we choose an input-dependent δ. Specifically, let
δ = minimum distance between non-faulty inputs. Then in this example, δ will equal the
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length of segment bc, resulting in a larger relaxed convex hull than that encompassed by
the blue curve in Figure 1b. On the other hand, if we were to have a = b = c, then the
minimum distance would be 0, resulting in δ being 0 as well. In this manner, we can use
input-dependence to scale δ with the “spread” of the non-faulty inputs.

4.2 Preparation
As noted before, for brevity, the following discussion assumes that the systems is synchronous.
Results for asynchronous systems are summarized in Section 6.

The following lemma can be proved easily.

I Lemma 3. Solving (δ, p)-Relaxed BVC implies solving (δ′, p)-Relaxed BVC where δ ≤ δ′.
That is, a necessary condition for (δ′, p)-Relaxed BVC is also necessary for (δ, p)-Relaxed
BVC, and a sufficient condition for (δ, p)-Relaxed BVC is also sufficient for (δ′, p)-Relaxed
BVC.

The proof of Lemma 3 is provided in our full version [12].

We make some simple observations about two special cases of (δ, p)-relaxed BVC.
When δ = 0, the problem formulation become identical to the original exact BVC problem
(Definition 1). Thus, n ≥ max(3f+1, (d+1)f+1) is the necessary and sufficient condition
in this special case.
When δ =∞, the validity condition for (∞, p)-relaxed consensus is vacuous, allowing the
processes to choose any fixed vector in Rd as the output (e.g., the processes may always
choose the all-0 vector as their output and still satisfy the validity condition with δ =∞).

4.3 Results for constant δ
I Theorem 4. n ≥ max(3f + 1, (d+ 1)f + 1) is necessary and sufficient for (δ, p)-Relaxed
Exact BVC in a synchronous system, where 0 < δ <∞ and 1 ≤ p.

Proof. When d = 1, the inputs are scalar, and all the Lp norms are identical. For the case
of d = 1, (δ, p)-relaxed consensus is similar to a problem that was addressed in prior work [2].
For this case, it can be shown similarly that n ≥ 3f + 1 is necessary and sufficient. Therefore,
in the rest of the proof, we assume d ≥ 2.

Sufficiency: Due to the equivalence of the original Exact BVC and (0, p)-Relaxed Exact
BVC, for d ≥ 2 and 1 ≤ p, n ≥ (d+ 1)f + 1 is sufficient for (0, p)-Relaxed Exact BVC. Then
by Lemma 3, this condition is also sufficient for (δ, p)-Relaxed BVC where 0 < δ <∞.

Necessity: We first prove that n ≥ d+ 2 is necessary for f = 1 and p =∞. The proof is
by contradiction. Suppose that n = d+ 1 and (δ,∞)-Relaxed Exact BVC is achievable using
a certain algorithm.

Let us suppose that exactly one process is Byzantine faulty, but the faulty process
correctly follows any specified algorithm. Due to this restricted behavior, it is possible for
all the processes to correctly learn the input of all the other processes. If we can show that
d+ 1 processes are insufficient despite the above constraint on the faulty process, then d+ 1
are insufficient when arbitrary behaviors are allowed for the faulty process. Hereafter, we
assume that all the processes follow the specified algorithm.

OPODIS 2016
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Let the ith column of the following d × (d + 1) matrix S be an input vector of the ith
process, where x > 2dδ.

S =


x 0 · · · · · · 0 0
0 x 0 · · · 0 0
...

. . . . . . . . .
...

...
0 · · · 0 x 0 0
0 · · · · · · 0 x 0


For 1 ≤ i ≤ d, the i-th coordinate of the i-th input is x, and the rest of the coordinates are 0.
The d+ 1-th input is all-0. Let Y denote the set of all inputs specified in matrix S. If N is
the set of non-faulty processes, then the output must be in H(δ,∞)(N). However, since the
identity of any faulty process is unknown, the decision vector must be in⋂

T⊆Y,|T |=|Y |−f

H(δ,∞)(T )

where f = 1.

Now we consider different choices of T :
Observation 1: Consider T as the set of all inputs except the input of process i, 1 ≤ i ≤ d.
Then the ith element of each of the d inputs in T is 0. Therefore the ith element of all
the vectors in H(δ,∞)(T ) – and consequently in the output – must be less than or equal
to δ due to the definition of (δ,∞)-relaxed validity.
Observation 2: Consider T as the set of all inputs except the input of process (d+ 1).
The vectors in H(δ,∞)(T ) are within distance δ (where the distance is measured using the
L∞ norm) of the convex hull H(T ). In each convex combination of elements in T used to
obtain the convex hull H(T ), at least one of the weights must be ≥ 1

d . Hence at least one
element of each vector in H(T ) must be ≥ x

d . Thus, at least one element of each vector in
H(δ,∞)(T ) – and consequently the output – must be ≥ x

d − δ > δ (recall that x > 2dδ).

Thus, Observation 1 and 2 contradict each other, proving that n = d+ 1 is not sufficient
for f = 1.

For f > 1, we can use the well-known simulation approach to show n = (d+ 1)f is not
sufficient [5]. Therefore, n ≥ (d+ 1)f + 1 is necessary for (δ,∞)-Relaxed Exact BVC with
f > 1, completing the proof.

Now, for any vector x, ‖x‖∞ ≤ ‖x‖p, for 1 ≤ p <∞ [4]. Therefore, we have

H(δ,p) ⊆ H(δ,∞) .

Then, the argument above for (δ,∞)-consensus would imply that n ≥ (d+ 1)f + 1 is also
necessary for (δ, p)-Relaxed Exact BVC. J

Theorem 4 shows a disappointing result. Specifically, when δ is a constant, the relaxed
validity condition of (δ, p)-relaxed consensus does not yield a reduction in the number of
processes necessary to solve the problem.

On the other hand, as shown in Section 4.4 below, the tight bound on n can be lower
when δ is input-dependent. In general, the results for input-dependent δ are more challenging
to prove than the results presented above.
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4.4 Results for input-dependent δ
In contrast to constant δ, if the relaxation parameter δ depends on the non-faulty inputs
themselves, then the (δ, p)-Relaxed Exact BVC problem may be solvable when 3f + 1 ≤ n ≤
(d+ 1)f . Interpreting a d-dimensional vector as a point in the d-dimensional Euclidean space,
define E+ as the set of edges between the inputs at the non-faulty processes in any given
execution. The input-dependent δ will be defined below using the edge set E+. In particular,
we prove the following results for p = 2. An extension to general Lp-norm is provided in our
full version [12].

I Theorem 5. Let E+ denote the set of edges between the inputs at non-faulty processes.
When (i) f = 1 and 4 ≤ n ≤ d+ 1, or (ii) f ≥ 2 and 3f + 1 ≤ n = (d+ 1)f , (δ̂, 2)-relaxed
consensus is achievable where

δ̂ =
maxe∈E+ ‖e‖2

bnf c − 2 .

Observe that δ̂ depends on the inputs of non-faulty processes – however, for brevity, our
notation δ̂ does not make that dependence explicit. If inputs of all non-faulty processes
happen to be identical, then δ̂ would be 0. On the other hand, if the non-faulty inputs are
far apart, then δ̂ would be accordingly larger (larger δ̂ allows the output to be farther away
from the convex hull of the non-faulty inputs).

The cases considered in Theorem 5 satisfy the constraint 3f + 1 ≤ n ≤ (d+ 1)f . It is
well-known that at least 3f + 1 processes are necessary for scalar Byzantine consensus. A
similar argument, as presented in our full version [12], shows that n ≥ 3f + 1 is also necessary
for (δ, p)-relaxed consensus with input-dependent δ for all d. Secondly, if n > (d + 1)f ,
then δ = 0 is achievable (i.e., the “unrelaxed” problem is solvable). Hence the constraint
3f + 1 ≤ n ≤ (d+ 1)f is meaningful. Note that this constraint can only be met when d ≥ 3.

The above theorem considers two special cases. When f = 1, the above expression
becomes δ̂ = maxe∈E+ ‖e‖2

n−2 , and when n = (d+ 1)f , it becomes δ̂ = maxe∈E+ ‖e‖2

d−1 . The above
theorem does not make any claims about the case when f ≥ 2 and 3f + 1 ≤ n < (d+ 1)f .
We conjecture that δ̂ specified in the theorem is achievable even in these cases. For the case
of f = 1, we are able to strengthen the above result, as stated next.

I Theorem 6. When f = 1 and 4 ≤ n ≤ d+ 1, (δ̂, 2)-relaxed consensus is achievable where

δ̂ = min
(mine∈E+ ‖e‖2

2 ,
maxe∈E+ ‖e‖2

n− 2

)
Our proof of Theorems 5 and 6 is constructive. We show that the Relaxed BVC (R-BVC)

algorithm presented below satisfies the claims in these theorems. While algorithm R-BVC
is quite straightforward, our key contribution here is to show that the algorithm achieves
(δ̂, 2)-relaxed consensus, as claimed in Theorems 5 and 6.

Algorithm R-BVC

Let vi denote the d-dimensional input at process i, 1 ≤ i ≤ n.

Step 1: Each process i performs a Byzantine broadcast of its input vi. Byzantine broadcast
of each element of the vector vi can be performed separately by using any Byzantine
broadcast algorithm, such as [5]. n ≥ 3f + 1 suffices for the correctness of Byzantine
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Figure 2 Impact of δ on Γ(δ,2)({a, b, c}).

broadcast in a completely connected network. At the completion of Step 1, each process
will receive a multiset S = {ai | 1 ≤ i ≤ n}, where for a non-faulty process i, ai = vi,
the input of process i, and for a faulty process j, aj may be any arbitrary point in the
d-dimensional space. Importantly, all non-faulty processes obtain identical multiset S.
The points in S received from non-faulty processes are said to non-faulty inputs, and the
remaining points are said to be faulty inputs.
Step 2: Each process determines the smallest value δ such that

Γ(δ,2)(S) =
⋂

T⊆S,|T |=|S|−f

H(δ,2)(T )

is non-empty, and for this value of δ, the process deterministically chooses a point in
Γ(δ,2)(S) as its output. All processes use the same deterministic function to choose the
output from Γ(δ,2)(S).

Let δ∗(S) denote the smallest value of δ for which Γ(δ,2)(S) is non-empty. When the set
S is clear from context, we will abbreviate δ∗(S) simply as δ∗. δ∗ is well-defined, because
by choosing δ sufficiently large, it is always possible to ensure that Γ(δ,2)(S) is non-empty.
This is illustrated in Figures 2a and 2b for the case when d = 2, S = {a, b, c}, and f = 1.
Note that the cylinder around each red edge is the (δ, 2)-relaxed convex hull of the endpoints
of that edge. With the smaller value of δ used in Figure 2a, Γ(δ,2)(S) is empty, but it is
non-empty in Figure 2b with a larger value of δ.

Recall that, for (δ̂, 2)-relaxed consensus, the validity condition requires the output to
be in the relaxed convex hull H(δ̂,2) of the non-faulty inputs. However, since a non-faulty
process does not know which processes are faulty, and let δ∗(S) denote the smallest value
of δ for which Γ(δ,2)(S) is non-empty. δ̂ depends on inputs of non-faulty processes, it is not
possible for the non-faulty processes to compute δ̂ explicitly. Instead, the above algorithm
chooses an output in Γ(δ∗,2)(S) (where δ∗(S) is defined above). We will show that δ∗(S) ≤ δ̂.
By Lemma 3, this implies that (δ̂, 2)-relaxed consensus is achieved.

4.5 Proof of Theorem 6
We now prove Theorem 6 stated previously.

Proof. Note that the discussion below makes frequent references to set S of inputs collected
in Step 1 of algorithm R-BVC. Recall that E+ is the set of edges between non-faulty inputs
in S. Let E denote the set of edges between all points in S.
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Consider set S = {a1, · · · , an} obtained in Step 1 of algorithm R-BVC. If the n points in
S are not affinely independent, then the n− 1 vectors in the set {ai − an | i 6= n, 1 ≤ i ≤ n}
are not linearly independent. In this case, it is easy to show that δ∗(S) = 0. The proof of
this claim is presented in our full version [12]. Thus, in this case, (0, 2)-relaxed consensus
(i.e., “unrelaxed” version) is achievable.

Hereafter, we assume that the n points in S are affinely independent, thus, the n − 1
vectors in {ai − an | i 6= n, 1 ≤ i ≤ n} are linearly independent.

Recall that Theorem 6 assumes f = 1. We consider two cases separately: (I) n = d+ 1
and (II) 4 ≤ n < d+ 1.

4.5.1 Case I: n = d+ 1
We begin with a useful lemma.

I Lemma 7. Let d ≥ 2. When the points in S = {a1, · · · , ad+1} are affinely independent,
let r be the radius of the inscribed sphere of the simplex(contained within the simplex and
tangent to each of the simplex’s faces) formed by the points in S. Let E denote the set of
edges between every pair of vertices of this simplex, and let πk denote the facet of the simplex
that contains {ai | i 6= k, 1 ≤ i ≤ d + 1} (i.e., all vertices except ak), k = 1, · · · , d + 1.
Then πk itself is a simplex in a (d − 1)-dimensional subspace. Let rk be the radius of the
(d− 1)-dimensional inscribed sphere of πk in this (d− 1)-dimensional subspace. Then,

r = δ∗(S), (2)
r < min

1≤k≤d+1
rk, and (3)

r <
maxe∈E ‖e‖2

d
(4)

The proof of the three claims in the above lemma are presented in our full version [12].

Proof that δ∗(S) <
mine∈E+ ‖e‖2

2

This claim will be proved here by induction for any simplex in dimensions ≥ 2. Consider a
simplex in 2 dimensions. Then the simplex is simply a triangle, and it can be easily shown
that the radius of its inscribed sphere is < half the length of the shortest edge in the triangle.
Our full version [12] presents the proof of this claim.

Now, suppose that, for every simplex of dimension k ≥ 2, the radius of its inscribed
sphere is < half the length of its shortest edge, and consider a simplex A of dimension k + 1.
Equation (3) in Lemma 7 then implies that the radius of the inscribed sphere of A is also
< half the length of the shortest edge in A. Inductively, for the simplex formed by S, this
proves that r < mine∈E ‖e‖2

2 . Since E+ ⊆ E, it then follows that r < mine∈E+ ‖e‖2

2 . Then by
equation (2) of Lemma 7, we have that

δ∗(S) <
mine∈E+ ‖e‖2

2 . (5)

Proof that δ∗(S) <
maxe∈E+ ‖e‖2

d−1

Without loss of generality, assume that process 1 is faulty, and thus a1 ∈ S is the only
faulty input in S. Let π1 be the facet of the simplex formed by the points in S − {a1},
and r1 be the radius of (d − 1)-dimensional inscribed sphere of π1. Observe that π1 is

OPODIS 2016
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isomorphic to a simplex in d− 1 dimensions. By equation (4) of Lemma 7 (when applied to
d− 1 dimensional points), we have r1 <

maxe∈E′ ‖e‖2
d−1 , where E′ is the set of edges between

the input corresponding to π1 (i.e., inputs in S − {p1}). Now, since p1 is the input of the
only faulty process, it follows that E′ equals E+ (i.e., the set of edges between non-faulty
inputs). Thus, r1 <

maxe∈E+ ‖e‖2

d−1 . By equations (2) and (3) of Lemma 7, we then have
δ∗(S) = r < r1 <

maxe∈E+ ‖e‖2

d−1 .
This result, in conjunction with (5) proves that

δ∗(S) < min
(mine∈E+ ‖e‖2

2 ,
maxe∈E+ ‖e‖2

d− 1

)
. (6)

Note that, since n = d+ 1, d− 1 equals n− 2, thus (6) proved Theorem 6 when n = d+ 1
and f = 1.

4.5.2 Case II: 4 ≤ n < d+ 1
Since the vectors in {ai − an | 1 ≤ i < n} are linearly independent, these vectors form a
n− 1 dimensional subspace W (where n− 1 < d). Then we can find a projection matrix P
that projects these d-dimensional vectors into a (n− 1)-dimensional space, while preserving
the distances between the points in S = {a1, · · · , an}. Then the n points Pa1, · · · , Pan form
a simplex in a (n− 1)-dimensional subspace. By the results in Case I, and substituting d by
n− 1, the claim follows in Case II.

Thus, we have proved that algorithm R-BVC achieves (δ∗(S), 2)-relaxed consensus, where
δ∗(S) < δ̂ = min

(mine∈E+ ‖e‖2

2 ,
maxe∈E+ ‖e‖2

n−2

)
. Then, by Lemma 3, R-BVC also achieves

(δ̂, 2)-relaxed consensus, proving Theorem 6. J

4.6 Proof of Theorem 5
We presented Theorem 5 earlier. The proof of Theorem 5 is significantly more complex than
Theorem 6. For lack of space, we only sketch the proof here. A complete proof is presented
in our full version [12].

Proof Sketch. Theorem 5 considers the case when 3f + 1 ≤ n = (d+ 1)f . Since the case of
f = 1 is provided by Theorem 6, here we focus on case (ii) where n = (d+ 1)f and f ≥ 2.

For brevity below, we often refer to δ∗(S) simply as δ∗. Let Pi be the subsets of S
of size (n − f) = df , i = 1, · · · ,

(
n
f

)
. Recall that δ∗ denotes the smallest value of δ for

which Γ(δ,2)(S) is non-empty. Equivalently, there exists a point in Γ(δ,2)(S), whose largest
distance to any H(Pi) is minimized compared to any other points, and this largest distance
is exactly δ∗. Hence, it is easy to see that δ∗ = minp∈Rd

(
maxi=1,··· ,(n

f) dist(p,H(Pi))
)
.

Let p0 ∈ arg minp∈Rd

(
maxi=1,··· ,(n

f) dist(p,H(Pi))
)
. Also, suppose that m of the Pi’s are

distance exactly δ∗ from p0; let Qj , j = 1 · · · ,m, denote these m subsets (Pi’s). The rest of
the subsets are at distance > δ∗. Now we consider the following two cases.

Case 1: 1 ≤ m ≤ d:
In this case, we can show that δ∗ = 0 by contradiction. Suppose δ∗ > 0. We can then
move p0 towards a suitable direction to find a new point p′ which is closer to all H(Pi) for
all i, when compared to p0, contradicting the definition of p0. Thus, δ∗ = 0. Therefore,
(0, 2)-relaxed consensus is achievable, and the theorem is true in Case 1.
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Figure 3 Illustration of the proof.

Case 2: m ≥ d+ 1:
In this case, we can first show that there exist d+ 1 distinct sets Q′1, · · · , Q′d+1 in {Qj},
such that

⋂d+1
i=1 H(Q′i) = ∅. Let F ′i = S −Q′i, i = 1, · · · , d+ 1. We can show that these

F ′i ’s are disjoint, and form a partition of S.
Then, we can show the following three claims to prove that p0 is contained in the simplex
A formed by W = {wi | 1 ≤ i ≤ d+ 1}, with each wi ∈ F ′i , as illustrated in the Figure 3
(here d = 2 as an simple example).

I Claim 8. Consider a set Z of size d+ 1 consisting of one point each in F ′i . Then the
d+ 1 points in Z are affinely independent, and A = H(Z) is a simplex in d-dimensions.
I Claim 9. H(S)−

⋃d+1
i=1 H(Q′i) ⊆ A.

I Claim 10. p0 is contained in the simplex A formed by W = {wi | 1 ≤ i ≤ d+ 1}, i.e.,
p0 ∈ H(W ).

In Figure 3, A = H(Z) is the triangle (which is a simplex in dimension 2) formed by
w1, w2, w3 (Claim 8). H(S)−

⋃d+1
i=1 H(Q′i) is the dotted triangle in the center, which is

contained in the triangle A (Claim 9). It is clear from the figure that p0 is contained in
A (Claim 10).

Then, by Claim 10, p0 is contained in the simplex A formed by W = {wi | 1 ≤ i ≤ d+ 1}
with each wi ∈ F ′i , where |F ′i | = f and ∪d+1

i=1F
′
i = S.

Let π′k denote the facet of simplex A that contains {wi | i 6= k, 1 ≤ i ≤ d + 1}. Let
rA be the radius of the sphere inscribed in the simplex A. Since p0 is contained in the
simplex A, it can be shown that rA ≥ δ∗. Then considering the distribution of faulty
inputs among sets F ′i . There are two cases:
1. There exists k, 1 ≤ k ≤ d+ 1, such that all the faulty inputs are contained in F ′k. Then
π′k is the convex hull of a subset of non-faulty inputs. By equation (3) of Lemma 7,
we have rA < rπ′

k
. Then by equation (4) of Lemma 7, rπ′

k
<

maxe∈E′ ‖e‖2
d−1 , where E′ is

the set of edges between vertices of π′k. Since π′k consists of only non-faulty inputs,
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we have rπ′
k
<

maxe∈E′ ‖e‖2
d−1 ≤ maxe∈E+ ‖e‖2

d−1 . Hence δ∗ ≤ rA < rπ′
k
<

maxe∈E+ ‖e‖2

d−1 . The
relationship between δ∗ and rπ′

k
is shown intuitively in Figure 3.

2. There does not exist k such that all the faulty inputs are contained in F ′k. Then we
can take one non-faulty input from each F ′i and form a simplex C which contains p0.
By equation (4) in Lemma 7, we know that rC <

maxe∈E′′ ‖e‖2
d , where E′′ is the set of

edges between the vertices of C. Since vertices of C are all non-faulty inputs, we have
rC <

maxe∈E′′ ‖e‖2
d ≤ maxe∈E+ ‖e‖2

d . Hence, δ∗ ≤ rC <
maxe∈E+ ‖e‖2

d <
maxe∈E+ ‖e‖2

d−1 .
The relationship between δ∗ and rC is also shown intuitively in Figure 3.

Then, by Lemma 3, R-BVC achieves (δ̂, 2)-relaxed consensus, proving Theorem 5 J

4.7 A Conjecture
While Theorem 6 covers all the interesting cases for f = 1, Theorem 5 leaves some cases
undecided for f ≥ 2. We conjecture that the claim of Theorem 5 is also true for f = 2 and
3f + 1 ≤ n < (d+ 1)f .

5 k-Relaxed Byzantine Vector Consensus

5.1 Definition
To be able to define k-relaxed consensus, we first introduce other definitions.

I Definition 11 (D-projection). Let D = {d1, d2, · · · , dk} where 1 ≤ di < dj ≤ d for
1 ≤ i < j ≤ k. For u ∈ Rd define projection gD(u) = v where v ∈ Rk and v[i] = u[di]. For
multiset S consisting of points in Rd, define gD(S) = {gD(u) | u ∈ S}.

Thus, D-projection gD defined above projects a given vector on the specified set of k
coordinates. When a set is provided as an argument, gD returns D-projection of each vector
in that set. While gD is not a one-to-one function, with an abuse of terminology, we will
define its inverse.

I Definition 12 (Inverse of D-projection). For v ∈ Rk, define g−1
D (v) = U where U ⊂ Rd,

such that u ∈ U if and only if gD(u) = v. For multiset S consisting of points in Rk, define
g−1
D (S) =

⋃
v∈S g−1

D (v).

For example, suppose that d = 4, D = {1, 3}, u = (7,−4,−2, 0)T , and v = (7,−2)T . Then
gD(u) = (7,−2)T , and g−1

D (v) = {(7, a,−2, b)T | a, b ∈ R}.

I Definition 13. The k-relaxed convex hull Hk of S ⊂ Rd is defined as

Hk(S) = {u | gD(u) ∈ H(gD(S)),∀D ∈ Dk}

where Dk = {D | D ⊆ [1, d], |D| = k}. Equivalently,

Hk(S) =
⋂

D∈Dk

g−1
D (H(gD(S))) .

As an example, see Figure 1a. In this example, we consider inputs a, b, c of dimension
2. Let k = 1. The red triangle is the convex hull of a, b, c, while the area within the blue
rectangle is the k-relaxed convex hull of a, b, c (for k = 1). Any point in Hk, o for instance,
is contained in the convex hull formed by projections of a, b, c on each dimension (because
k = 1). o′ and o′′ are projections of o on each of the dimensions. Clearly, o′ is contained in



Z. Xiang and N.H. Vaidya 26:13

the convex hull formed by a′, b′, c′, and o′′ is contained in the convex hull formed by a′′, b′′, c′′
(projections of a, b, c).

Now we define k-relaxed consensus. In particular, k-relaxed consensus must satisfy the
Agreement and Termination conditions in Section 1, and the relaxed validity condition below.

k-relaxed validity: The decision vector at each non-faulty process must be in the
k-relaxed convex hull of the set of input vectors at the non-faulty processes.

5.2 Results
This section presents our key results on k-Relaxed Byzantine Vector Consensus. As noted
before, results for asynchronous systems are summarized in Section 6.

We begin with some simple observations about a few special cases of relaxed BVC.
For k-relaxed BVC with k = d, the problem formulation becomes identical to the original
exact BVC problem(Definition 1). Thus, n ≥ max(3f + 1, (d+ 1)f + 1) is the necessary
and sufficient condition in these special cases.
When k = 1, k-relaxed consensus (i.e., 1-relaxed consensus) can be achieved using any
Byzantine consensus algorithm for scalar inputs (such as [1]). In particular, the processes
perform d instances of a scalar Byzantine consensus algorithm. The input of any process j
for the i-th instance is the i-th coordinate of process j’s d-dimensional input for 1-relaxed
consensus. Each process j uses the output of the i-th instance of scalar Byzantine
consensus above to be the i-th coordinate of its output vector for 1-relaxed consensus. It
is easy to verify that this solution correctly achieves 1-relaxed consensus. Thus, the tight
bound on n for k = 1 is identical to the well-known bound for scalar Byzantine consensus,
namely, n ≥ 3f + 1 [5].

I Theorem 14. n ≥ (d + 1)f + 1 is necessary and sufficient for k-relaxed consensus in a
synchronous system when 2 ≤ k ≤ d− 1.

The proof of Theorem 14 is provided in our full version [12]. Analogous to Theorem 4, the
above theorem also shows a negative result.

6 Results for Asynchronous Systems

In this section, we briefly present our results for relaxed Byzantine vector consensus in
asynchronous systems.

Approximate Byzantine vector consensus in asynchronous systems must satisfy the
Validity and Termination conditions stated in Definition 1, and the ε-Agreement condition
below.

ε-Agreement: The decision (or output) vectors at any two non-faulty processes must
be within distance ε of each other, where ε > 0.

From previous studies, n ≥ (d+2)f+1 is necessary and sufficient for the above approximate
Byzantine consensus [6, 11, 7]. As we will see soon, the results for relaxed Byzantine vector
consensus in asynchronous systems are analogous to those of synchronous systems.
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6.1 (δ, p)-Relaxed Byzantine Vector Consensus
(δ, p)-relaxed approximate Byzantine vector consensus in asynchronous systems must satisfy
the ε-Agreement condition above, the (δ, p)-relaxed Validity condition in Section 4.1 and the
Termination condition.

With Constant δ
I Theorem 15. n ≥ (d+ 2)f + 1 is necessary and sufficient for (δ, p)-Relaxed Approximate
BVC in an asynchronous system, where 0 < δ <∞ and 1 ≤ p.

The proof of Theorem 15 is analogous to the one of Theorem 4, and is provided in our full
version [12].

The condition on number of processes n ≥ (d+ 2)f + 1 remains unchanged when we relax
the validity condition, compared with the original Byzantine vector consensus problem.

With Input-dependent δ
For brevity, we only present the results. The algorithm is provided in our full version [12].

I Theorem 16. Suppose (δ̂, p)-Relaxed Exact BVC is achievable where

δ̂ = κ(n, f, d, p) max
e∈E+

‖e‖p

where κ(n, f, d, p) is a finite constant that may depend on number of processes n, number of
failures f , dimension of the inputs d and Lp norm. E+ is the set of edges between pairs of
non-faulty inputs in S.

Then (δ̂, p)-Relaxed Approximate BVC is achievable where

δ̂ = κ(n− f, f, d, p) max
e∈E+

‖e‖p

where κ(n, f, d, p), S and E+ are defined above.

The proof of Theorem 16 is provided in our full version [12].
By Theorem 16 and the previous results in Section 4.4, (δ, p)-relaxed approximate

consensus can be solved with fewer number of processes. Moreover, we established a formula
between the size of feasible δ for solving synchronous case and that for solving asynchronous
case. Namely, we can infer the feasible δ for asynchronous case from that for synchronous
case.

6.2 k-Relaxed Byzantine Vector Consensus
k-relaxed approximate Byzantine vector consensus in asynchronous systems must satisfy
the ε-Agreement condition above, the k-relaxed Validity condition in Section 5.1 and the
Termination condition.

For k = 1, n ≥ 3f + 1 is necessary and sufficient, and for k = d, n ≥ (d + 2)f + 1 is
necessary and sufficient. Bounds for d = 1, 2 are included in the above results.

I Theorem 17. n ≥ (d+ 2)f + 1 is necessary and sufficient for 2 ≤ k ≤ d− 1 in k-Relaxed
Approximate BVC in an asynchronous system.

The proof of Theorem 17 is analogous to the one of Theorem 14, and is provided in our full
version [12].

Similar to Theorem 15 and Theorem 14, the result for k-consensus in asynchronous
systems is also negative.
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7 Summary

This paper studies k-relaxed Byzantine vector consensus, and (δ, p)-relaxed Byzantine vector
consensus with constant and input-dependent δ both. For k-relaxed consensus and (δ, p)-
relaxed consensus with constant δ, the tight necessary and sufficient condition on number of
processes is shown to be identical to that for the original (“unrelaxed”) consensus problem.
For the case of input-dependent δ, we show that the problem is solvable with fewer processes.
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