
Moving Participants Turtle Consensus∗

Stavros Nikolaou1 and Robbert van Renesse2

1 Department of Computer Science, Cornell University, Ithaca, NY, US
snikolaou@cs.cornell.edu

2 Department of Computer Science, Cornell University, Ithaca, NY, US
rvr@cs.cornell.edu

Abstract
We present Moving Participants Turtle Consensus (MPTC), an asynchronous consensus protocol
for crash and Byzantine-tolerant distributed systems. MPTC uses various moving target defense
strategies to tolerate certain Denial-of-Service (DoS) attacks issued by an adversary capable of
compromising a bounded portion of the system. MPTC supports on the fly reconfiguration of the
consensus strategy as well as of the processes executing this strategy when solving the problem of
agreement. It uses existing cryptographic techniques to ensure that reconfiguration takes place
in an unpredictable fashion thus eliminating the adversary’s advantage on predicting protocol
and execution-specific information that can be used against the protocol.

We implement MPTC as well as a State Machine Replication protocol and evaluate our
design under different attack scenarios. Our evaluation shows that MPTC approximates best
case scenario performance even under a well-coordinated DoS attack.

1998 ACM Subject Classification D.4.5 Fault-Tolerance

Keywords and phrases Consensus, adaptation, moving target defense

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.20

1 Introduction

Most distributed systems today are designed to tolerate failures. Existing fault-tolerance
methods typically assume that failures are rare. They are tailored to provide good performance
when no failures occur but might perform poorly under failure scenarios. However, as
shown in works like [11], such designs allow malicious adversaries to craft workloads and
Denial-of-Service (DoS) attacks that can substantially degrade the performance of certain
state-of-the-art fault-tolerance protocols. As such DoS attacks become more common, it is
becoming increasingly important to design fault-tolerance mechanisms that perform well
in good scenarios while also gracefully handle adversarial ones. A core building block of
many of these mechanisms are consensus protocols used by a set of replicas to agree on
some state. One way to improve existing fault tolerance solutions is by enhancing the
underlying consensus protocols with reconfiguration capabilities that allow them to change
their execution parameters on the fly in order to better deal with adversarial workloads.

Our prior work on Turtle Consensus [22] also aims at attack-tolerant consensus. Turtle
Consensus is a round-based consensus protocol that operates by using different consensus
strategies across different rounds. The system’s processes try to reach agreement running a

∗ This work was partially supported by AFOSR DURIP grant FA2386-12-1-3008, by NSF grants CCF-
1047540, CNS-1040689, CNS-1422544, CNS-1561209, CNS-1601879, by a Google Faculty Research
Award, by MDCN/iAd grant 54083, and by gifts from Infosys, Facebook, and Amazon.com. The authors
would also like to thank the anonymous reviewers.

© Stavros Nikolaou and Robbert van Renesse;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Moving Participants Turtle Consensus

round of some consensus protocol in the literature; if they fail to do so they move onto the
next round using a different protocol. The selection of each round’s strategy is predetermined
and known to all processes running the protocol. The main strategy of Turtle Consensus is
to use the best approach available for normal operation in a particular setting and switch to
different “backup protocols” as soon as the approach becomes inefficient, for example in the
case of a DoS attack. We showed that the approach used sub-optimal strategies during DoS
attacks, thus bounding the protocol’s efficiency to the capabilities of these backup protocols.
In addition, an adversary capable of compromising even a single consensus participant can
learn and use the predetermined nature of the protocols’ succession to constantly drive the
system to sub-optimal executions.

In this paper we address these concerns by adding another degree of freedom in the
reconfiguration capabilities of Turtle Consensus. We present Moving Participants Turtle
Consensus (MPTC), an extension to the Turtle Consensus protocol that allows switching not
only the protocols but also the set of processes on which they run across different rounds of
a single consensus instance. The consensus protocol round and the processes participating in
its execution form what we call a configuration, which our approach changes unpredictably at
each round. While the configuration selection for each round is predetermined by a trusted
dealer, it is unknown to the processes during MPTC execution. Using existing cryptographic
techniques, we ensure that, only if sufficiently many processes collaborate during some round,
the next round’s configuration can be determined. This renders MPTC a valuable tool
for building systems that can tolerate DoS attacks in crash-tolerant environments where a
bounded portion of the system may be compromised. An extended version of this work that
also handles Byzantine failures appears in [23].

2 Model

2.1 Processes and communication
Our system consists of a set of processes N that communicate using message passing.
Each process is modeled as a state machine with a potentially unbounded set of states
that executes transitions according to some protocol. The protocol specifies the transition
function of the processes as well as the messages they exchange. Each process’s state consists
of two components, the public and the private or secret state. The public state contains
the description of the protocol that each process executes and any public cryptographic
keys associated with the process. The secret state contains any run-time state the process
manages during the execution of the protocol as well as any secret cryptographic keys and/or
shares associated with the process.

Protocol execution and communication are asynchronous, meaning that there are no
bounds on the time it takes processes to execute transitions and deliver messages.

A process can be correct or faulty. A correct process faithfully executes the protocol and
is guaranteed to make progress as long as the conditions specified by the protocol at any given
step are eventually met. In this paper we only consider crash failures, although we extend
our techniques to Byzantine failures in [23]. A faulty process may crash at any time after
which it stops executing the protocol. Up to the point of the crash, processes faithfully follow
the steps of the protocol. Communication between correct processes is reliable and secure.
This means that, in the absence of a DoS attack (see below), messages sent by some correct
process to another correct process are eventually delivered. It also means that messages
are authenticated and cannot be tampered with or fabricated. We assume an upper bound,
fc < |N |, on the total number of processes that might fail during the protocol’s execution.

S. Nikolaou and R. van Renesse 20:3

Finally, we assume the existence of a special process T /∈ N that from now on we will
refer to as trusted dealer or simply dealer. The dealer is only used during initialization
of the system during which it generates the initial public and secret state of all processes.
We assume that during this setup phase the dealer is correct, that it can communicate via
private channels with any process in the system, and that it does not disclose its state. After
initialization, however, the dealer does not execute any protocol steps or exchange messages
with any other process, and the dealer’s state is destroyed.

2.2 Adversary and attacks
We assume an adversary, A, that controls which processes fail and when. A is limited on
the number of processes it can fail by fc and cannot fail the dealer. A can also control the
delivery order of messages of all processes as well as delay communication, but must yield to
the previously stated reliable communication assumption.

The adversary can also issue denial of service (DoS) attacks against the system that
can fully saturate the bandwidth resources of at most fa < |N | correct processes. This can
effectively prevent the targeted processes from progressing in the protocol’s execution since
they can no longer communicate with the rest of the system. A can change the targets of an
attack over time and, in this way, can introduce communication and computation delays on
certain processes. The adversary’s objective is to prevent the system from making progress.
From now on we will denote by f the maximum number of processes that can be crashed or
under attack during the execution of the protocol, that is f = fc + fa < |N |.

In this work, we ignore DoS attacks that target other resources like CPU using legiti-
mate traffic. These attacks can be mitigated using rate limiting techniques such as client
cryptographic puzzles [2].

The adversary has read access to the public state of all processes as well as the secret state
of up to f processes. We call the processes whose secret state is disclosed to A compromised.
While A cannot modify this state, it can use this state to select the target processes of a
DoS attack. Once A has selected the set of compromised processes it can no longer change
that set thus preventing A from accessing the secret state of more than f processes. Note
that the set of compromised processes is not necessarily related to the set of processes that
are crashed or under attack.

Finally, we assume that the various cryptographic schemes we are employing, like public
key cryptography and threshold signatures, are secure in the random oracle model.

2.3 Cryptographic primitives
Our protocol relies on Threshold Coin Tossing [5]. Here we present a high-level description
of this primitive that we will further formalize in Section 3. We employ an (n, f + 1, f)
threshold coin-tossing scheme in which n parties maintain shares of an unpredictable function,
F , mapping an arbitrary bit string, r, to a binary value {0, 1}. Each of these shares can be
used along with an input r to create a value that from now on we will refer to as function
shares1. At least f + 1 of these function shares of r are required to reconstruct the result
F (r), while at most f parties may be compromised. We will use the term function share of
F (r) to denote a function share of r generated with a secret share of F .

The scheme defines three functions: 1) The split function, which takes as input a function
F (represented as a bit string) and creates a set of shares as well as a verification key for

1 The term used in [5] for these values is coin shares.

OPODIS 2016

20:4 Moving Participants Turtle Consensus

each of these shares. 2) The share combining function, combine, which takes an input r of
F along with f + 1 valid function shares of r and produces F (r). 3) The share verification
function verify, which takes an input r of F , a function share on r, and the verification key
corresponding to the share that generated the input function share and determines whether
the function share is valid.

This scheme is based on threshold signatures [26] and can be used to create an unpre-
dictable sequence of bits while ensuring that it is computationally infeasible for the adversary
to produce an input r and f + 1 valid function shares that once combined do not yield F (r).
More formally, the scheme satisfies the following properties taken from [5]:

Robustness: It is computationally infeasible for the adversary to produce a value r and
f + 1 valid shares of r such that the result of the combine function is not F (r).
Unpredictability: Given a value r and functions shares from fewer than f + 1− f correct
processes, the adversary can predict the value of F (r) with probability at most 1

2 + ε for
negligible value ε ∈ R.

The previous unpredictability property was extended to sequences of output bits in [5],
such that, given a sequence of values Ci for i ∈ {1, 2, . . . , b}, an adversary with fewer than
f + 1− f valid shares of some Ci has negligible advantage in predicting F (Ci). From now on,
when we talk about unpredictability we will refer to this extended unpredictability property
of threshold coin-tossing.

Note that the previously described extended unpredictability property allows us to share
unpredictable functions in [{0, 1}∗ → {0, 1}b] for any finite b. In other words, we can model
each such function as a random number generator that can produce 2b different values and
requires f + 1 processes to collaborate in order to produce the random (unpredictable) value
corresponding to some arbitrary bit string r.

Threshold coin-tossing can be implemented using any non-interactive threshold signatures
scheme that ensures unique valid signature per message as in [26]. A direct implementation
of this scheme can be found in [5].

2.4 Underlying consensus protocols
MPTC, like other consensus protocols, solves the problem of agreement. In this problem,
a set of possibly distributed processes, each of which is initialized with some input value,
unanimously and irrevocably output one of those input values. More formally, let N be a set
of processes each of which is initialized with some value from a value set V. Each process
can employ either of the following primitives:

propose a value which allows a process to communicate its value to the rest of the processes
in N ,
decide a value which allows a process to output a value.

Every correct consensus protocol must satisfy the following properties:
Validity: If a process decides a value, then that value must be the input value of some
process in N .
Agreement: If any two processes decide they must decide the same value.
Termination: All correct processes eventually decide.

[13] has shown that in an asynchronous environment no consensus protocol exists that
satisfies all of the above properties when even only a single failure can occur. To circumvent
this result, a variety of protocols have been proposed [3, 10] that use a probabilistic approach
and can guarantee the previous properties with the following modification on termination:

S. Nikolaou and R. van Renesse 20:5

All correct processes eventually decide with probability 1. For the remainder of this work we
will refer to the non-probabilistic description of termination as definite termination and to
the probabilistic one as probabilistic termination.

A consensus protocol that implements the previous specification (using either definite
or probabilistic termination) even under the presence of f crash failures is called f -crash-
resilient. Note that our adversary can additionally perform denial-of-service attacks which
can fully saturate a bounded number of processes and render them entirely unavailable. In
an asynchronous environment there is no difference between a crashed process and a process
that is under DoS attack from the other processes’ perspective. For this reason we say that
a consensus protocol is correct in our model if it is f -crash-resilient where f = fc + fa. From
now on we will refer to such consensus protocols as f -resilient protocols.

Each process executing MPTC may run different consensus protocols at different rounds.
We denote the set of possible protocols each process can choose from by P. Different
consensus protocols make different assumptions under which they meet the previously
described specification. The crash-tolerant consensus protocol of Ben-Or [3], for instance,
assumes an asynchronous environment and that each infinite schedule has a bounded number
of processes performing a finite number of steps. Other protocols make assumptions such
as bounds on the number of failures, different degrees of synchrony, the existence of failure
detectors [8], etc. We consider a consensus protocol correct if it satisfies agreement, validity
and either definite or probabilistic termination. For each protocol P ∈ P, we denote the set
of assumptions required to hold for P to be correct by AP . In other words, if assumptions
AP hold, then P satisfies validity, agreement, and termination. A protocol P is a valid
candidate for P if it is correct under both the assumptions in AP and our previous model
assumptions regarding failures, network reliability, and adversary.

We only consider consensus protocols operating in rounds and we follow the framework
introduced in [22] for the specification of the round outcomes. According to this specification,
every process running a round of a consensus protocol ends up in one of the following states:
{D,U,M} × V, where states (D, v), v ∈ V indicate that the process has decided v, states
(U, v), v ∈ V indicate that no process has decided up to the current round, and finally, states
(M,v), v ∈ V indicate that while the process is not decided, if a decision was made by some
process then it must have been v. We will refer to these states as round outcomes or simply
outcomes. We denote by or

p the outcome of process p ∈ N at the end of round r ∈ N.
More formally the following invariants hold about the outcomes of processes completing

a round of a correct consensus protocol in P:

I Invariant 1. If ∃p ∈ N , r ∈ N such that or
p = (D, v), where v ∈ V, then for each correct

q 6= p ∈ N it holds that or
q = (M, v) or or

q = (D, v).

I Invariant 2. If ∃p ∈ N , r ∈ N such that or
q = (U, v) for some v ∈ V then ∀q ∈ N , u ∈ V:

or
q 6= (D,u).

This framework facilitates the description of MPTC in the next section and can be used
to describe most consensus protocols in literature, including [3, 8, 18].

Problem. Our goal is to design a round-based consensus protocol that is correct under the
previous system and adversary assumptions and that runs a different existing consensus
protocol on a different set of processes each round. The selection of protocols and processes
for each round must not be predictable by the adversary without the collaboration of correct
processes. For the purposes of this work, unpredictability is as described in Section 2.3.

OPODIS 2016

20:6 Moving Participants Turtle Consensus

3 Moving Participants Turtle Consensus

In this section we describe our Moving Participants Turtle Consensus (MPTC) protocol.
MPTC is an f -resilient consensus protocol operating in rounds such that in each round a
different subset of processes may run a different consensus protocol. We start with some
preliminary definitions and notation and then describe the protocol.

3.1 Participants and participant sets
MPTC is run by all processes in N . In each round, only a subset of N is actively running
a consensus protocol from a set of correct consensus protocols, P. Let Pf correspond to
the minimum number of processes required to run each protocol in P. As an example, let
P consist of the Ben-Or [3] and One-Third [9] consensus protocols. The first one requires
2f + 1 processes to solve the agreement problem tolerating up to f crash failures while the
second one needs 3f + 1. Thus Pf = 3f + 1. We assume that |N | � f and thus |N | > Pf

for most f -resilient consensus protocols.
In the remainder of this paper, we say that a process runs or executes a protocol in P

when it executes a round of that protocol. We will refer to a process executing a protocol
in P at some round of MPTC as a participant or an active participant of that round. Let
PS = {S ⊆ N : |S| = Pf} be the set of all possible subsets of N where each subset has
size Pf . We call each such set a participant set. A process may be a member of multiple
participant sets. In each round r of MPTC, only a single participant set, Sr, is active, that is
executing a consensus protocol in P. We assume that participants in each participant set of
some round r, Sr ∈ PS, are ordered and denote the ith participant in Sr as Si

r. The active
participant set for each round is determined by T during initialization, which we describe
later in this section.

3.2 Configurations
Before describing the initialization procedure and the core of MPTC, we need to define
an important concept that encapsulates the information required for a set of processes to
run a consensus protocol. We define a configuration of MPTC as a tuple (P, S) ∈ P × PS.
P ∈ P describes the consensus protocol to run along with its initialization parameters. To
better understand the information contained in the initialization parameters, consider a
protocol like Lamport’s Paxos [18] and the core consensus protocol he called Synod. In
Synod, processes play multiple roles, such as proposers and acceptors. In that sense, P
needs to encapsulate not only the protocol under execution, e.g. Synod, but also information
related to its initialization such as mapping of proposers and acceptors to processes. The
participant set S ∈ PS corresponds to the set of processes that shall execute the consensus
protocol specified by P . Let the set of all possible configurations C = P ×PS. Our approach
implements a multi-party computation scheme for an unpredictable mapping between natural
numbers (rounds) and configurations. We omit details regarding how to represent P since
this is an implementation issue and does not affect our protocol. We assume that |C| is
bounded.

3.3 Initialization and trusted dealer
We are now ready to describe the initialization of our protocol, how we are using T to create
an unpredictable sequence of configurations, and how the active participants of a round can
compute the corresponding configuration.

S. Nikolaou and R. van Renesse 20:7

T is a special process that generates the configuration that each process in N starts with
in the first round. It also provides the processes the means to generate configurations for
subsequent rounds. To achieve this, T employs a (Pf , f + 1, f) threshold coin tossing scheme
like the one described in Section 2.3. Using this scheme, T shares a function FS between
the Pf processes of each participant set S ∈ PS. Recall that threshold coin-tossing can be
implemented using threshold signatures, thus when we say that T shares a function FS with
each participant set, in reality it simply selects a different public-secret key pair for each
S ∈ PS and shares the secret key. Given some round number r, at least f + 1 processes in S
need to collaborate to produce FS(r) while up to f of them may get compromised. f + 1 is
both a sufficient and necessary number of processes to compute the result of the function
shared. T cannot be compromised, failed or attacked by the adversary.

At a high level, T operates as follows:
1. For each S ∈ PS the dealer picks a function FS : {0, 1}∗ → C and generates a secret

share, hq
S , for each q ∈ S.

2. T picks a configuration C0 ∈ C.
3. T distributes C0 and shares to processes over private channels. ∀S ∈ PS each process

p ∈ S receives hp
S and C0.

Observe that each function shared by the dealer maps arbitrary strings to configurations.
This differs from the functions we defined in Section 2.3 which map arbitrary bit strings
to bit strings of some finite length b. Since C is finite, there exists b = dlog2|C|e such
that we can trivially obtain an onto function {0, 1}b → C. Thus, the functions we need to
share can be trivially obtained by the ones supported by the threshold coin-tossing scheme.
Note that, by this high-level algorithm, a process in N will receive multiple shares, one
for each participant set it belongs to. The dealer selects each FS such that the output is
computationally indistinguishable from a randomly chosen function.

We now discuss how T generates the secret shares. Given model parameters P and f ,
T generates a different set of secret key shares for each subset, S ∈ PS. Each such set of
secret key shares implicitly defines a function FS mapping bit strings to configurations. We
call this operation split and it is similar to the threshold coin-tossing dealer initialization
described in [5]. split can be implemented using Shamir’s secret sharing [25] (Pf , f + 1).
Note that the implementation in [5] is based on verifiable secret sharing because they are
considering Byzantine failures. In our model, processes cannot lie and messages cannot be
tampered with. As a result, no verification is needed within this context.

Given a secret share, hp
S , of some function FS : N→ C and some input, r ∈ N, process p ∈

S can create a function share of FS(r) using the share generation function, GFS : S×N→ F
where F is the space of valid function shares that can be generated given a share h ∈ S and
a natural number. We define, F p

S(r) = GFS(hp
S , r). A straightforward implementation of

GFS can be derived from the signature share generation for threshold signatures [26].
We define the combine functions as:

combine : Ff+1 × N→ C

combine works by receiving function shares of some function FS and some input, r and
outputting FS(r) which corresponds to a configuration. More formally, let

FQ
S (r) = {F q

S(r) ∈ F | ∀q ∈ Q,Q ⊆ S and |Q| = f + 1}

be any set of f + 1 function shares of FS(r), i.e. FQ
S (r) ∈ Ff+1. Then we have that:

combine(FQ
S (r), r) = FS(r)

OPODIS 2016

20:8 Moving Participants Turtle Consensus

3.4 Protocol description
We can now describe the operation of each process executing MPTC. MPTC is an f -
resilient round-based consensus protocol in which each round is executed under a different
configuration. Let Cr = (Sr, Pr) ∈ C be the configuration used for round r, where Sr ∈ PS
is the active participant set and Pr ∈ P the consensus protocol specification for that round.
Let op

r be the outcome of a process p ∈ Sr running Pr at round r. Let a special value
⊥ /∈ V ∪ C ∪ {{D,M,U} × V} represent the value of an uninitialized variable.

We assume that all processes have common knowledge of N , f , P, C as well as of the
functions GFS combine. Each process p ∈ N runs MPTC with its identifier and some value
xp ∈ V as input and at any point in time maintains the following state:

its current round number, rp, initialized to 0;
its proposal proposalp, initialized to xp;
the outcome of a round, op representing p’s decision state and initialized to ⊥ at the
beginning of each round; and
the current configuration cp describing the currently known active participant set and
the consensus protocol the active participants execute; it is initialized to C0, which is
provided by T during the initialization phase.
the secret shares, hp

S , ∀S ∈ PS such that p ∈ S provided by T during initialization.

We have organized MPTC description in phases. Messages exchanged between processes
carry the number of the phase, the id of the sending process, and the current round along
with the payload. Messages are of the form 〈phase number, process id, round, . . .〉. Each
round, r, of MPTC works in the following 3 phases:

Phase 1: Each process p ∈ Sr runs a round of the consensus protocol specified by Cr.
Let op be p’s outcome for round r. If op = (D, v), then process p updates proposalp = v,
decides v and never updates op and proposalp again in any future round. If op = (M, v),
then p updates proposalp = v. Regardless of op’s value, p goes to Phase 2.
Phase 2:

Step 1 : Each p ∈ Sr computes function share F p
Sr

(r) = GFS(hp
Sr
, r) and sends a

Phase 2 message 〈2, p, rp, o
p
r , F

p
S(r)〉 to all processes in Sr. Then p waits for Phase 2

messages from Pf − f processes in Sr. Once p receives enough messages from some
Q ⊆ Sr, it proceeds to Step 2.
Step 2 : If op = (U, ∗) where ∗ can be any value in V, then p updates its proposal to
a value v, selected arbitrarily from the outcomes contained in the received Phase 2
messages. It also updates op = (U, v).
Step 3 : Let FQ

S (r) be the set of function shares received from processes in Q. p

computes the configuration of the next round, r + 1, as Cr+1 = combine(FQ
Sr

(r), r)
and moves on to Phase 3.

Phase 3: Each p ∈ Sr sends a Phase 3 message 〈3, p, rp, op, Cr+1〉 to each process in
Sr+1. p updates its state: rp = r+ 1, cp = Cr+1 and if it is still undecided, it updates its
outcome, op = ⊥. Each process q ∈ Sr+1 that receives Phase 3 messages with the same
configuration value, Cr+1, from Pf − f processes, updates its proposal as follows. Let R
denote the set of outcomes received:

Case 1: If ∃o ∈ R such that o = (D, v), then q updates proposalq = v, decides v, sets
its outcome oq = (D, v) and never updates oq and proposalq again in any future round.
Case 2: If ∀o ∈ R it holds o = (M,v) for some v ∈ V then proposalq = v.
Case 3: Otherwise, q selects an arbitrary outcome (∗, v) ∈ R where ∗ can be any value
in {M,U} and updates proposalq = v.

S. Nikolaou and R. van Renesse 20:9

0 0 1

MPTC
round r
Phase 1

M(0) U(1)M(0)

Configuration r Configuration r+1

MPTC
round r
Phase 2

0 00

MPTC
round r
Phase 3

Compute Cr+1

Figure 1 A round of MPTC consensus.

Then q sets rq = r + 1, cq = Cr+1 and if it is still undecided, it sets oq = ⊥. Finally, it
starts the next round.

Figure 1 shows a visualization of the previous round description. MPTC runs for an
unbounded number of rounds and eventually reaches a state in which a decision is made and
all correct processes can eventually learn this decision. Messages from old rounds, either
delayed in the network or sent by slow processes, are ignored while messages from future
rounds are queued to be processed when the receiver reaches that round. The correctness of
the previous protocol is presented in the full version of this paper in [23].

4 Implementation

In this section, we describe a simple implementation of MPTC as well as a state machine
replication protocol we built on top of it. To implement MPTC we need to decide on the
following parameters: the choice of protocol set P, the set of possible configurations C, the
configuration selection functions FS , ∀S ∈ PS, generated by the trusted dealer, and the
implementations of split, GFS and combine functions.

Our set of protocols, P, contains only a single consensus protocol, a parameterized
version of single decree Paxos [18] in which each round comes with a predetermined leader
known to all active participants. Paxos tolerates f crash failures using 2f + 1 processes and
under failure-free execution conditions, it can reach a decision within a single round-trip
of communication. We assume the weakest failure detector, �W, presented in [7] which we
implement using timeouts with exponentially increasing timeout periods. This way we ensure
that there will be enough rounds executed by sufficiently many processes, which is critical
for ensuring termination in our Paxos variant.

The timeouts mentioned above may cause certain processes executing our Paxos variant to
exit a round without knowledge of the round’s decision. Such processes need to retrieve this
knowledge from the rest of the processes. To avoid incurring another round of communication
in our Paxos variant, we piggyback this decision state retrieval onto Phase 2 of MPTC.
Timed out processes can use the set of outcomes received to update their proposal.

Our set of configurations is C = {(S, P) | S ∈ PS and |S| = 2f + 1} where P ∈ P is the
described Paxos variant. Observe that in contrast to prior work on Turtle Consensus [22] we

OPODIS 2016

20:10 Moving Participants Turtle Consensus

use the same protocol across configurations. In Turtle Consensus, different configurations
used the same 2f+1 set of processes. As a result, the adversary could try to track the current
leader within that set of processes even if the leader changed across different configurations.
Therefore, a competent adversary could eventually locate and force Turtle Consensus rounds
to fail, which can lead to poor performance. For that reason, Turtle Consensus kept switching
between a leader-based (Paxos) and fully decentralized (Ben-Or) consensus protocols across
configurations to prevent the adversary from exploiting the leader vulnerability. A side-effect
of that approach, however, was that by falling back to a less efficient protocol (Ben-Or) it
only achieved sub-par performance compared to the graceful execution using only Paxos
rounds. With MPTC we do not need to employ such tactics since the adversary now needs to
scan through |N | � f processes before it can identify the leader of our Paxos configuration.

In the implementation that we evaluate in Section 5 we did not implement the Threshold
coin-tossing scheme. We emulated it instead by assuming that all participant sets use the
same unpredictable function given to all processes via a configuration file. This file defines
a sequence of configurations, one for each round, that processes move to in a round-robin
fashion. We emulate the restrictions that the cryptographic framework imposes on the
adversary by assuming that only the processes involved in rounds r and r+ 1 can learn Cr+1
and only after Phase 2 of round r completes.

The interested reader can find an actual implementation of Threshold coin- tossing in [5].
In that work, they used cryptographically secure hash functions modeled as random oracles
to implement unpredictable functions as well as for the GFS function. They also used
Feldman’s verifiable secret sharing [12] for split function, though in our crash-tolerant case
Shamir’s secret sharing [25] can be used instead. Finally, for combine they use Lagrange
interpolation with coefficients the computed function shares.

For more details, see the full version of this work in [23].

4.1 MPTC-based state machine replication
We used the previous implementation of MPTC to build a SMRP, similar to the one
described in [22]. While the components of the implementation are similar, their interactions
are different. There are three sets of processes, the clients, the replicas R, and the participants
N . The clients issue requests to the participants who order these requests and forward them
to replicas. Replicas execute the received requests in the order established by participants and
send the results back to participants who then forward them back to clients. Participants can
additionally send reconfiguration messages to each other in order to update the configuration
of the MPTC execution.

In greater detail, clients send uniquely identifiable requests to sufficiently many partic-
ipants in order to ensure that at least one correct participant receives each request. The
participants receive requests from clients and are responsible for ordering these requests
and send them for execution to the replicas. Only one participant set can be active at any
point in time. Any participant outside that set receiving a client request relays that request
to the currently known active participant set. Active participants receiving client requests
spawn MPTC instances, one for each request that needs to be ordered. Each instance has its
own identifier and decided requests are ordered according to the identifiers of the MPTC
instances that decided them. Clients can only communicate with participants and thus they
are unable to launch DoS attacks on the replicas. MPTC is lazily instantiated for each slot
and MPTC messages carry instance identifiers so incoming protocol messages are properly
processed by the correct instance. If an instance has not yet been created, messages for
that instance are queued and processed when it is created. Finally, there are at least f + 1

S. Nikolaou and R. van Renesse 20:11

Attacker

Clients

1Gbit/s

Replica 1

Replica 2

Switch 1 Switch 2

Participants

Figure 2 Experiment topology.

replicas, each of which maintains a copy of state of the service implemented by the SMRP.
All replicas are initialized in the same state and execute the clients’ requests in the order
determined by id of the consensus instance created by the participants for each request.

For a detailed description of this SMRP implementation see [23].

5 Evaluation

In this section we present an evaluation of MPTC using the SMRP protocol presented in
Section 4.1. In Section 5.1 we present the experiment setup and in Section 5.2 the performance
results of MPTC under different attack scenarios.

5.1 Setup

We implemented MPTC and the SMRP described in Section 4.1 using C++. Our testbed
consists of 10 nodes in Emulab [27], each with 8 cores running at 2.4 GHz, with 64GB of
memory. For our experiments we used f = 1. Two nodes where designated as replicas, six as
participants, one as clients, and one as the attacker. Nodes are connected by 1Gbps switched
Ethernet as shown in Figure 2. Note that clients and attacker can only connect to participants,
while participants connect to both replicas and clients. This choice was made to prevent the
attacker from directly attacking the replicas of SMRP, thus degrading performance without
attacking the consensus mechanism. All communication between participants takes place
through Switch 1. Switch 2 is only used for participant to replica communication. We
do not allow participants to communicate through Switch 2 since this would prevent the
attacker from saturating the participants’ bandwidth with respect to the MPTC execution.
This would give MPTC an unfair advantage and would not showcase the benefits of its
reconfiguration capabilities. All communication is over TCP/IP except for the DoS attack
traffic, which is entirely UDP/IP. One of the two client nodes is used by the attacker and
the other for creating legitimate client threads. We use a separate node for attacks in order
to limit the effect of bandwidth attacks on the clients’ ability to issue requests.

To simplify our evaluation, we set C to contain only two configurations such that the
corresponding participant sets are disjoint. The configuration selection function provided
by the trusted dealer (in our implementation by a configuration file) simply alternates
between these two configurations every time a round fails. The predetermined Paxos leader
of each configuration depends on the round in which the configuration is run and is rotated
in a round-robin fashion every time the same participant set is reused. We consider that
the attacker does not have this knowledge to make informed decisions regarding targeting
processes.

OPODIS 2016

20:12 Moving Participants Turtle Consensus

Clients first connect to f + 1 random participants to which they issues requests. Once
connected, each client executes the following loop: It issues each request to all f + 1
participants, waits for a response, discarding duplicate responses, and then sends the next
request. Note that by connecting to f + 1 participants, we ensure that each client request
reaches at least one correct participant who will further forward the request to the active
participants. We have client requests contain no-ops, which means that when a decided
request becomes ready for execution, replicas can immediately reply with a response.

The attacker creates a small number of attack threads, each of which targets a single
participant, selects a random port, and sends UDP dummy messages as fast as it can. Note
that these messages are not requests and are not processed by our participants since they
never get to the application level. As in the Turtle Consensus evaluation [22], the goal of the
attack is to prevent at most one participant from participating in MPTC instances. The
attacker can focus all threads on the same participant or spread them across different ones.
Since all attack threads are created on a single node, the aggregate bandwidth the attacker
threads can saturate from the service cannot exceed 1Gbps.

We conducted experiments to test the throughput and latency of our implementation
under normal execution and DoS attacks. Both metrics were measured at the client side.
For throughput we measured the aggregate number of operations per second completed by
client threads. Note that this is not the actual number of instances completed per second by
our SMRP implementation since the same request might be decided more than once.

Other parameters of our experiment include:
Duration: Each experiment lasted 1 minute. We found longer experiments did not
significantly affect our metrics.
Load: The number of concurrent clients, which ranged in our experiments from 1 to 64.
Request size: The size of the command contained in each client request, which we set to
100 bytes.
Attack message size: The size of the UDP messages send by attack threads to saturate the
participants bandwidth; we set that to 1KB since our experimentation with our platform
showed it is the smallest message size with the best results for the attacker.
Number of attacker threads: Each run involving a DoS attack had 8 attack threads. We
found that this number of threads yields best results for the attacker even when all 64
clients are connected to the target sharing the same link.
Timeout: This is the initial timeout period used in our Paxos variant (Section 4) for each
MPTC instance. Every time a round of some instance fails we double the timeout period
for that instance.

5.2 Results
In our evaluation, we investigated three main scenarios. In the first, we run our implementation
of MPTC without any attacks taking place. The performance of this scenario will be our
baseline since any attack scenarios drain resources from the system and thus is expected to
perform similar or worse. This scenario is labeled “No attacks” in our figures.

The second scenario has the attacker focusing the DoS attack on a single node, the one
that hosts the Paxos leader. This attack depletes the leader’s bandwidth. In this scenario no
reconfiguration occurs. More specifically, we assume that in each round of MPTC the exact
same configuration is chosen and the leader remains the same. Note that this scenario tries
to simulate the case where the adversary can accurately track and attack the leader of the
Paxos configuration. While any reasonable implementation of Paxos would change leaders

S. Nikolaou and R. van Renesse 20:13

0 10 20 30 40 50 60 70
clients

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
th

ro
ug

hp
ut

(o
ps

/s
)

No attacks
 Attack leader without reconfiguration
 Attack leader with reconfiguration

(a) Throughput as a function of load.

0 10 20 30 40 50 60 70
clients

0.00

0.01

0.02

0.03

0.04

0.05

av
er

ag
e_

la
te

nc
y(

s)

No attacks
 Attack leader without reconfiguration
 Attack leader with reconfiguration

(b) Latency as a function of load.

Figure 3 Moving Participants Turtle Consensus performance under different attack scenarios.

among the 2f + 1 processes, we set up the scenario to simplify issuing a very efficient attack.
In our figures, this scenario is labeled “Attack leader without reconfiguration”.

Finally, the third scenario uses an attacker who like in the previous scenario focuses on a
single node. In this scenario the attacker is given the initial position of the leader but this
time our implementation uses the MPTC version we described in Section 5.1 where consensus
instances execution alternates between two disjoint sets of nodes. The attacker strategy
here is to saturate the bandwidth of the known leader. It keeps attacking that node for the
entirety of the experiment run. This attack is labeled “Attack leader with reconfiguration”.

Figure 3a shows the throughput comparison of the previous three experiment scenarios as
a function of the load on the SMRP. Each point represents the average throughput over 10
runs for each number of clients. In each of these runs clients connect to random participants,
which in turn means that performance will vary across experiments. The first scenario is our
best case scenario since the system operates at full resource capacity. The second scenario
shows that performance suffers substantially when the Paxos leader is under attack. This is
to be expected since the leader’s participation is critical for making progress in each MPTC
instance. In the third scenario we observe the benefits of the reconfigurable version of MPTC
in action. The SMRP throughput is close to that of the No Attacks case. The main reason
for this behavior is that since the leader of the first configuration is under attack and lacks
the bandwidth to handle the valid traffic, some instance will inevitably fail the first round
since the remaining participants will eventually time out. That will cause a reconfiguration
that changes the active participant set. The new participants will pick up the failed instances
as well as future requests and continue operating at full capacity. The minor deviations
observed between scenarios 1 and 3 are mainly due to the randomness of client distribution
over the set of all participants.

Figure 3b shows a comparison of the same scenarios as load increases, but this time with
respect to latency. Observe that all scenarios behave similarly with latency linearly increasing
with load. This behavior is to be expected since, as load increases, the number of concurrent
MPTC instances increases, which in turn increases latency for each client. After all, each of
them has to wait for a response to their previous request before sending the next one. As
in the case of throughput, we see that both scenarios 1 and 3 have similar latencies while
scenario 2 performs poorly. The reasoning is the same. In the second scenario the leader
under attack is slower in completing instances, which raises the wait time for each client.

Note that this evaluation does not take into account the additional cost of reconfiguration
that stems from the cryptographic operations required for threshold coin tossing like RSA

OPODIS 2016

20:14 Moving Participants Turtle Consensus

exponentiations. We therefore expect that under frequent reconfigurations there will be a
wider gap between the performances of scenarios 1 and 3. However, we also expect that
such reconfigurations will be infrequent, especially as the number of processes increases.
Thus, while not an absolute comparison, our evaluation showcases the expected behavior
and advantage of MPTC.

6 Related Work

A wide range of crash-tolerant consensus protocols have been proposed in literature each
optimized for a different setting and/or metric. Some were designed to handle datacenter-
scale systems like [6] which describes how Paxos was used to implement a fault-tolerant
database for the Chubby locking service, an instance of which lies in each Google’s datacenter.
Others are focused on wide area deployments such as Mencius [21], which is a Paxos variant
that employs multiple leaders each of which is responsible for a different set of consensus
instances and may reside at different datacenters. Another important differentiating aspect of
consensus protocols is whether they employ a special leader process like in [8, 18] or whether
they are fully decentralized like the protocol proposed in [3]. This can greatly affect the
behavior of a consensus protocol under different failure scenarios, including attacks, and was
thus used by previous work on reconfigurable consensus [22] to design consensus protocols
that provide acceptable performance under certain DoS attacks.

Our work resembles the work on Vertical Paxos [19]. Vertical Paxos is a reconfigurable
state machine replication protocol that uses a special auxiliary master process to decide
the next configuration of the system including the set of replicas participating in that
configuration. Unlike Vertical Paxos, MPTC does not require additional online master
processes to compute the next configuration. Our assumed trusted dealer is only active
during initialization. In addition, Vertical Paxos is not designed for an adversary capable
of compromising even a single process and thus would not perform as well against the DoS
attacks described in this work.

Moving target defenses have often been used as response to DoS and Distributed DoS
(DDoS) attacks. [14] proposes changing the IP address of the target node for dealing with
local IP-based DoS attacks. More recently in [16], Software-Defined Networking (SDN) has
been used to implement moving target defense approaches like “random host mutation” in
which, similarly to [14], the controller periodically alters the virtual IP addresses of hosts
to hide the real IP addresses from an intruder. Our Moving Participants Turtle Consensus
approach resembles more the “proactive server roaming” approach in [17]. That is an adaptive
approach in which the active server proactively switches servers from an existing pool in
order to deal with unpredictable and undetectable attacks. Their approach ensures that
only legitimate clients can track the moving server. Like in the case of our MPTC protocol,
proactive server roaming performs gracefully during attacks. However, it imposes significant
overhead in attack-free scenarios, which is not the case for MPTC since we only reactively
change configurations.

Our work assumes an adversary that cannot change the set of corrupted processes over time.
Other related work has focused on dynamic models of corruption. [15] introduced proactive
secret sharing, an instance of proactive security [24] for supporting secure computation in
synchronous distributed systems. These ideas have been adapted to asynchronous ones
in [4, 28]. While these approaches did not consider DoS attacks, they are orthogonal to ours
and can be used to further improve this work for dealing with mobile adversaries.

S. Nikolaou and R. van Renesse 20:15

Running consensus on a subset of a larger set of processes to decrease message complexity
has been explored in [1]. It has also been explored more recently in [20] for improving the
scalability of Byzantine agreement on blockchains.

7 Conclusions

In this paper we presented Moving Participants Turtle Consensus (MPTC), an extension
to the Turtle Consensus protocol [22] that allows running different consensus protocols, on
different sets of processes, across different rounds of a single consensus instance. MPTC
can deal with adversaries with bounded information on the system by making unpredictable
changes in the execution of the protocol. Our evaluation of our prototype implementation of
MPTC suggests that we can achieve the performance offered by the most efficient consensus
protocols even when the system is under attack.

References
1 Dan Alistarh, James Aspnes, Valerie King, and Jared Saia. Communication-efficient ran-

domized consensus. In Fabian Kuhn, editor, Distributed Computing – 28th International
Symposium, DISC 2014, Austin, TX, USA, October 12–15, 2014. Proceedings, volume 8784
of Lecture Notes in Computer Science, pages 61–75. Springer, 2014.

2 Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant authentication with
client puzzles. In Security Protocols, volume 2133 of Lecture Notes in Computer Science,
pages 170–177. Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-44810-1_22.

3 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proc. of the 2nd Annual ACM Symp. on Principles
of Distributed Computing, PODC’83, pages 27–30, New York, NY, USA, 1983. ACM.
doi:10.1145/800221.806707.

4 Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In in Proc. 9th ACM Conference on
Computer and Communications Security (CCS, pages 88–97. ACM Press, 2002.

5 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople:
Practical asynchronous Byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005. doi:10.1007/s00145-005-0318-0.

6 Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An en-
gineering perspective. In Proceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing, PODC’07, pages 398–407, New York, NY, USA, 2007. ACM.
doi:10.1145/1281100.1281103.

7 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. J. ACM, 43(4):685–722, July 1996. doi:10.1145/234533.234549.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996. doi:10.1145/226643.226647.

9 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009. doi:
10.1007/s00446-009-0084-6.

10 Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asynchronous hardware.
SIAM J. Comput., 23(4):701–712, August 1994. doi:10.1137/S0097539790192635.

11 Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Mak-
ing Byzantine fault tolerant systems tolerate Byzantine faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, NSDI’09, pages

OPODIS 2016

http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1007/s00145-005-0318-0
http://dx.doi.org/10.1145/1281100.1281103
http://dx.doi.org/10.1145/234533.234549
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1007/s00446-009-0084-6
http://dx.doi.org/10.1007/s00446-009-0084-6
http://dx.doi.org/10.1137/S0097539790192635

20:16 Moving Participants Turtle Consensus

153–168, Berkeley, CA, USA, 2009. USENIX Association. URL: http://dl.acm.org/
citation.cfm?id=1558977.1558988.

12 Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In The
28th Annual Symposium on Foundations of Computer Science, pages 427–438, Oct 1987.
doi:10.1109/SFCS.1987.4.

13 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

14 Xianjun Geng and Andrew B. Whinston. Defeating distributed denial of service attacks.
IT Professional, 2(4):36–42, Jul 2000. doi:10.1109/6294.869381.

15 Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret shar-
ing or: How to cope with perpetual leakage. In Proc. of the 15th Annual Int. Cryptol-
ogy Conf. on Advances in Cryptology, CRYPTO’95, pages 339–352, London, UK, 1995.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=646760.706016.

16 Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:
Transparent moving target defense using software defined networking. In Proc. of the
1st Workshop on Hot Topics in Software Defined Networks, pages 127–132. ACM, 2012.
doi:10.1145/2342441.2342467.

17 Sherif. M. Khattab, Chatree Sangpachatanaruk, Rami Melhem, Daniel Mosse, and Taieb
Znati. Proactive server roaming for mitigating denial-of-service attacks. In International
Conference on Information Technology: Research and Education (ITRE 2003), pages 286–
290, Aug 2003. doi:10.1109/ITRE.2003.1270623.

18 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998. doi:10.1145/279227.279229.

19 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical Paxos and primary-backup repli-
cation. In Proceedings of the 28th ACM Symposium on Principles of Distributed Comput-
ing, PODC’09, pages 312–313, New York, NY, USA, 2009. ACM. doi:10.1145/1582716.
1582783.

20 Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS’16, pages 17–30,
New York, NY, USA, 2016. ACM. doi:10.1145/2976749.2978389.

21 Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient repli-
cated state machines for WANs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 369–384, Berkeley, CA, USA, 2008.
USENIX Association. URL: http://dl.acm.org/citation.cfm?id=1855741.1855767.

22 Stavros Nikolaou and Robbert van Renesse. Turtle consensus: Moving target defense for
consensus. In Proceedings of the 16th Annual Middleware Conference, Middleware’15, pages
185–196, New York, NY, USA, 2015. ACM. doi:10.1145/2814576.2814811.

23 Stavros Nikolaou and Robbert van Renesse. Moving Participants Turtle Consensus. Tech-
nical report, Cornell University, November 2016. arXiv:1611.03562.

24 Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended
abstract). In Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC’91, pages 51–59, New York, NY, USA, 1991. ACM. doi:
10.1145/112600.112605.

25 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
doi:10.1145/359168.359176.

26 Victor Shoup. Practical threshold signatures. In Proc. of the 19th Int. Conf. on Theory and
Application of Cryptographic Techniques, pages 207–220, Berlin, Heidelberg, 2000. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=1756169.1756190.

http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dx.doi.org/10.1109/SFCS.1987.4
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1109/6294.869381
http://dl.acm.org/citation.cfm?id=646760.706016
http://dx.doi.org/10.1145/2342441.2342467
http://dx.doi.org/10.1109/ITRE.2003.1270623
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/1582716.1582783
http://dx.doi.org/10.1145/1582716.1582783
http://dx.doi.org/10.1145/2976749.2978389
http://dl.acm.org/citation.cfm?id=1855741.1855767
http://dx.doi.org/10.1145/2814576.2814811
http://arxiv.org/abs/1611.03562
http://dx.doi.org/10.1145/112600.112605
http://dx.doi.org/10.1145/112600.112605
http://dx.doi.org/10.1145/359168.359176
http://dl.acm.org/citation.cfm?id=1756169.1756190

S. Nikolaou and R. van Renesse 20:17

27 Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the 5th Symp. on Operating Systems De-
sign and Implementation (OSDI’02), pages 255–270, Boston, MA, December 2002. Usenix.

28 Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. APSS: Proactive secret sharing
in asynchronous systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286, August 2005. doi:
10.1145/1085126.1085127.

OPODIS 2016

http://dx.doi.org/10.1145/1085126.1085127
http://dx.doi.org/10.1145/1085126.1085127

	Introduction
	Model
	Processes and communication
	Adversary and attacks
	Cryptographic primitives
	Underlying consensus protocols

	Moving Participants Turtle Consensus
	Participants and participant sets
	Configurations
	Initialization and trusted dealer
	Protocol description

	Implementation
	MPTC-based state machine replication

	Evaluation
	Setup
	Results

	Related Work
	Conclusions

