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Abstract
Recently cloud computing has gained popularity among e-Science environments as a high perform-
ance computing platform. From the viewpoint of the system, applications can be submitted by
users at any moment in time and with distinct QoS requirements. To achieve higher rates of suc-
cessful applications attending to their QoS demands, an effective resource allocation (scheduling)
strategy between workflow’s tasks and available resources is required. Several algorithms have
been proposed for QoS workflow scheduling, but most of them use search-based strategies that
generally have a higher time complexity, making them less useful in realistic scenarios. In this
paper, we present a heuristic scheduling algorithm with quadratic time complexity that considers
two important constraints for QoS-based workflow scheduling, time and cost, named Deadline-
Budget Workflow Scheduling (DBWS) for cloud environments. Performance evaluation of some
well-known scientific workflows shows that the DBWS algorithm accomplishes both constraints
with higher success rate in comparison to the current state-of-the-art heuristic-based approaches.
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1 Introduction

Cloud computing infrastructures are the new platforms for tackling the execution needs of
large-scale applications. Cloud computing promises the important benefits such as providing
nearly-unlimited computing resources to execute application’s task, on-demand scaling
and pay-per-use metered service. Computing resources (i.e. virtual machines (VMs)) are
dynamically allocated to user tasks based on application requirements, and users just pay
for what they use. Each large-scale workflow application contains several tasks. Generally,
workflow application can be represented by a Directed Acyclic Graph (DAG) that includes
independent tasks, which can be executed simultaneously, or dependent tasks which need to
be executed in a given other. In order to meet user’s application QoS parameters, we need
to find an efficient schedule map to execute the application tasks on multiple resources.

The majority of studies about workflow scheduling focus on single workflow application
scheduling. However, these approaches are not adequate for cloud infrastructures due to
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two major features: pay-as-you-go pricing model and on-demand resource provisioning. For
example, in [1, 20, 28, 31, 30, 5, 13] authors considered fixed number of resources to the
whole life time of the workflow application. But in our work, resources can be acquired
at any time and released when they are idle, which save the total charged cost. Further,
other approaches such as in [1, 20, 28, 31, 30] did not consider the hourly charging billing
model in the cost model or the data transfer time in total time reservation of the virtual
machine, which affects the effectiveness of the algorithm. In cloud computing infrastructures,
such as Amazon EC21, the charging policy is based on a hour billing model even if the
whole last reservation interval is not used. In this case, time fractions produced by previous
tasks can be used by later tasks to save total renting cost. On the other hand, the workflow
scheduling problem becomes more challenging when we consider multiple QoS parameters.
Many algorithms have been proposed for multi-objective scheduling, but in most of them,
meta-heuristic methods or search-based strategies have been used to achieve good solutions.
However, these methods based on meta-heuristics or search-based strategies usually need
significantly high planning costs in terms of the time consumed to produce good results,
which makes them less useful in real platforms that need to obtain map decisions on the fly.

In this paper, a low-time complexity heuristic, named Deadline-Budget Workflow Schedul-
ing (DBWS), is proposed to schedule workflow applications on cloud infrastructures con-
strained to two QoS parameters, namely, time and cost. The objective of the proposed
DBWS algorithm is to find a feasible schedule map that satisfies the user defined deadline
and budget constraint values. To fulfill this objective, the proposed approach implements a
mechanism to control the time and cost consumption by each task when producing a schedule
solution. To the best of our knowledge, the algorithm proposed here is the first low-time
complexity heuristic, for cloud computing environments, addressing two QoS parameters as
constraints.

The contributions of this paper are:
a review of multiple QoS parameter workflow scheduling on cloud computing environments;
a new heuristic algorithm with quadratic complexity for workflow application scheduling,
constrained to time and cost;
extensive evaluation with results for real-world applications.

The remainder of the paper is organized as follows. After outlining the related work in
Section 2, we introduce the application and infrastructure model in Section 3. Section 4
presents the proposed scheduling algorithm. Section 5 presents results, and Section 6
concludes the paper.

2 Related work

The primary goal of many scheduling algorithms on cloud computing systems has focused
on reducing the execution time of workflow applications without considering other factors
such as the monetary cost or deadline. In [2, 24] we can find a taxonomy of scheduling
algorithms for cloud computing systems. Considering multi-objectives for scheduling, we
classify scheduling algorithms into the following two main categories: single workflow and
multiple workflow scheduling algorithms. As the scheduling constraints on this paper are
time and cost, we only consider these two QoS parameters in our review of previous work.
Nevertheless, there are other QoS parameters such as reliability or energy that are not

1 http://aws.amazon.com/ec2
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considered here. Also, once our target platform is a cloud computing system, works that
were proposed for grid infrastructures are not considered in this review because of different
assumptions in the cost model. In cloud pricing model, i.e. a hour billing model, if the
whole of the time interval is not used, it is still charged. Therefore, the formula used for cost
consumption in grid platforms cannot be used in the cloud model and we cannot compare
grid scheduling approaches with cloud ones in terms of cost consumption.

2.1 Single Workflow Scheduling Algorithms
In this category, the scheduling algorithms aim to find a suitable schedule map between
workflow’s task and available resources in order to meet application objective function which
could be to optimize or to be constrained to a single or to multiple QoS parameters. Our
work is related to the strategies which consider time and cost as QoS parameters for workflow
scheduling.

2.1.1 Cost-optimization, deadline-constraint
The deadline of a workflow is defined as the maximum finish time of its last task to be
executed. Calheiros et al. [5] developed an algorithm that is a cost-minimizer and applies
replication of tasks to increase the chance of meeting application deadlines. Sahniet et al. [20]
proposed a dynamic cost-effective deadline-constrained heuristic algorithm, namely JIT-C,
for scheduling a scientific workflow in a public Cloud. In addition to these heuristic-based
scheduling strategies, several works [16, 6] were proposed with the same objectives that by
using search-based or meta-heuristic methods aims to find good solutions.

2.1.2 Time-optimization, budget-constraint
Budget is defined as the maximum amount that a user wants to pay for executing a workflow
application on computing resources. In [13, 28, 31], authors proposed heuristic-based
scheduling algorithms to minimize end-to-end execution under user-specified financial cost
constraint. Zeng et al.[30] proposed a security-aware and budget-aware workflow scheduling
strategy (SABA) for reducing the total execution time while meet required level of security.

2.1.3 Time-optimization, cost-optimization
Most strategies in this class try to mange the trade-off between running time and cost in order
to minimize both QoS parameter time and cost in the provided schedule map. Selvarani et
al. [22] proposed a job scheduling algorithm for making efficient mapping of independent tasks
to available resources in a cloud. Lee et al. [11] proposed critical-path-first scheduling (CPF)
algorithm which uses methods of stretching and compacting the workflow to optimize time
and cost. In [4] authors proposed three bi-criteria complementary approaches for scheduling
workflows on distributed Cloud resources. The first two algorithms, namely cost-based and
time-based approaches, aim to minimize a single objective function (execution cost or time)
individually by using Pareto approach, while the third algorithm, namely cost-time-based
approach, is based on the obtained solutions by the two first algorithms for selecting only
the Pareto solutions. By using the concept of Pareto dominance, authors in [25] proposed
an algorithm that minimize total execution time and cost by setting a cost-efficient factor
that represents the user’s preference for the execution time and the monetary cost. The
similar technique was used in [29]. Don et al. [14] proposed a framework which provided
the balance between the application schedule performance and mandatory cost on Cloud
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resources. However, our problem is different from these approaches in that both time and
cost are treated as constraints at the same time, whereas these works try to consider one
variable as constraint and optimize the other one, or target to optimize both cost and time.

2.1.4 Deadline-constraint, budget-constraint
Poola et al. [18] proposed a robust heuristic algorithm for scheduling a workflow on cloud
computing systems considering deadline or budget constraints. The algorithm uses a search-
based strategy to reassign scheduled tasks to new resources in order to satisfy the workflow
constraint values for time or cost parameters. In [19], Rahman et al. present an adaptive
hybrid heuristic (AHH) for workflow scheduling in hybrid cloud environment.

Two major drawbacks of the previous research work is that: a) usually, in their approaches
the pricing model is the pay-as-go model similar to grid infrastructures and did not consider
the billing model used in commercial cloud platform, i.e. the hour model; b) a fixed
number of resources is considered in the scheduling process; and c) there is no timestamp for
release/acquire of each VM resource.

2.2 Multiple Workflow Scheduling Algorithms
In contrast to single workflow scheduling, multiple workflows scheduling has received less
attention. Li et al. [12] proposed two level workflow scheduling: the macro multi-workflow
scheduling and the micro single workflow scheduling. Workflows are classified into time-
sensitive and cost-sensitive based on QoS demands, and different scheduling strategies are
adopted in order to meet each QoS time and cost requirements for each workflow type. In
[27], authors proposed the Maximize Throughput of Multi-DAG with Deadline (MTMD)
algorithm for scheduling concurrent workflow applications in order to improve the ratio of
DAGs which can be accomplished within their deadline. Sharif et al. [23] proposed two
online multiple workflow scheduling, namely OMPHC-PCPR and OPHC-TR, in Hybrid
Cloud Environments. The difference between the two proposed algorithms is the ranking
methodology to prioritize tasks during resource allocation.

3 Scheduling background

In this section, we formally describe the QoS workflow scheduling problem on cloud computing
infrastructures.

3.1 Application model
Scientific workflow applications are commonly represented by a Directed Acyclic Graph
(DAG), a directed graph with no cycles. Formally, a workflow application is a DAG represented
by a triple G =< T,E, data >, where T = {t1, t2, . . . , tn} is a finite set of tasks and n denotes
the number of tasks in the workflow application. The set of edges E represent their data
dependencies. A dependency ensures that a child node cannot be executed before all its
parent tasks finish successfully and transfer the required input data. Let data be a n× n
matrix of communication data, where data(ti, tj) is the file size required to be transmitted
before task tj execution from task ti. The C(ti→tj) represents the average transfer time
between the tasks ti and tj which is calculated based on the average bandwidth and latency
among all resources pair. In a given DAG, a task with no predecessors is called an entry task
and a task with no successors is called an exit task. We assume that the DAG has exactly
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Table 1 Performance and price of various Amazon EC2 instances.

Instance Mean performance
Price[$/h] GFLOPs/$

type [GFLOPS]

m1.small 2.0 0.1 19.6

m1.large 7.1 0.4 17.9

m1.xlarge 11.4 0.8 14.2

c1.medium 3.9 0.2 19.6

one entry task tentry and one exit task texit. If a DAG has multiple entry or exit tasks, a
dummy entry or exit task with zero weight and zero communication edges is added to the
graph.

3.2 Resource model
The target cloud computing platform is composed of a set of m heterogeneous resources
R = {∪m

j=1rj | rj ∈ VMtype}, that provide services of different capabilities and costs. Each
resource includes computation service, e.g. Amazon Elastic Cloud Compute (EC2)2, and
storage service, e.g. Amazon Elastic Block Store (EBS)3, used as a local storage device
for saving the input/output files. In this study, all computation and storage resources
are assumed to be in the same data center or region so that average bandwidth between
computation resources is considered equal. Notice that the transfer time between two tasks
being executed on the same VM is 0. Also, resources are offered in form of different type
of virtual machines (VMtype). Each VM type has its own configuration for CPU capacity,
memory size and an associated cost. Further, it is assumed that there is no limitation of the
number of resources (VMs) used by a workflow application, and leasing a VM requires an
initial boot time in order to be properly initialized and made available to the user; this time
is not negligible and needs to be considered on the scheduling plan [15]. Similarly, on current
commercial clouds, the pricing model is based on pay-as-you-go billing model for the number
of time intervals used by a VM and it is specified by the cloud provider. The user will be
charged for each complete time interval even if it does not completely use the time interval.

In this study, each resource rj can be of any type as provided by Amazon EC2 (e.g.
m1.small, m1.large, m1.xlarge and c1.medium). For a given resource rj of a certain
instance type, the average performance measured in GFLOPs and its price per hour of
computation are known. The average performance in GFLOPs of four different Amazon EC2
instance types thorough extensive benchmark experimentation are evaluated in [8]. In our
model, we assume that a task executed in any of these resources can benefit from a parallel
execution using all the virtual cores exposed by the instance [7]. Also, according to Amazon
cloud provider, users are charged based on the time interval of one hour (interval time =
3600 s). Table 1 summarises the mean performance, the cost per hour of computation
(Costrj

), and the ratio GFLOPs per invested dollar of these resources. Since all resource are
located in the same data center or region, the internal data transfer cost is assumed to be
zero.

2 http://aws.amazon.com/EC2/
3 http://aws.amazon.com/EBS/
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Unlike previous work presented in Section 2, here, we propose an array of release/acquire
(VMr/a) timestamp for each VM resource which will be updated during the scheduling
process. The array of timestamps VMr/a = {(S1, F1), (S2, F2), . . .} where each pair (S, F )
represents the Start and Finish time of consecutively execution of the target VM. These
timestamps are calculated based on assigned tasks to the target VM.

During the scheduling process and after making final decision of the appropriate resource
(rsel) for execution of the current task (tcurr), if the current task could not benefit from
last executed task on rsel to reduce its execution cost, i.e. using the remaining last interval
from the last previous scheduled task on rsel , the VMr/a of resource rsel is updated in
the way that: a) add the release time after execution of the last scheduled task ; b) add
the start (acquire) time according to the start time of tcurr. Otherwise, the release time of
resource rsel will be updated according to the finish time of the current task. Obviously,
each resource can be rented for as many times and hours as required for finishing all the
tasks scheduled on it. Additionally, we keep the set of scheduled tasks on each resource rj

denoted as schedrj
= {ti | AR(ti) = rj}, where AR(ti) represents the Assigned Resource on

which the task ti is scheduled to be executed. Each set schedrj
is sorted based on the finish

time of its tasks.

3.3 Problem definition
The scheduling problem is defined as finding a map between tasks and resources in order
to meet the QoS parameters defined for each job. The problem here consists in finding a
schedule map in such a way that the total execution time (makespan) and economical costs
are constrained to user’s defined values for time and cost. We describe next how the two
measures are computed.

3.3.1 Makespan
For computing the total execution time (makespan) of a given workflow, it is necessary to
defined the Time Reservation (TR) of execution for task ti on resource rj as the sum of the
execution time of task ti on resource rj (ET (ti, rj)) and the time required for transferring
the biggest input data from any parent tp ∈ pred(ti). The information of task execution
time (ET ) can be gathered via benchmarking or via precise performance models based on
existing estimation techniques (e.g. historical data [9] and analytical modelling [17]).

TR(ti, rj) = max
tp∈pred(ti)

{
Ctp→ti

}
+ ET (ti, rj) . (1)

Considering the existence of data transfer time between tasks, for each task ti to be
executed in resource rj , the resource rj needs to be deployed before the task ti starts
transferring data from its parent and can only be released after its execution is finished and
the data is transferred to its child task. First, we define avail(rj) as the earliest start Time
of task ti on resource rj without considering its parents:

avail(rj) =
{

0 , schedrj
= ∅

FT (tl, rj) , schedrj
6= ∅

(2)

where tl is the last task in the sorted tasks scheduled list for resource rj (schedrj
) and

FT (tl, rj) in the Finish Time of tl on rj . Based on avail(rj), we defined the Release Time
of resource rj (RT (rj)) as the last rental period of one hour for the last scheduled task on it.
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Figure 1 Example of a schedule. Tasks t1, t2 and t3 are scheduled; and task t4 is evaluated for
scheduling.

After that, resource rj will be released if no other task starts executing on the resource.

RT (rj) =
⌈

avail(rj)
interval time

⌉
× interval time . (3)

Figure 1 shows a sample schedule generated for scheduled tasks t1, t2 and t3 and current
task t4 which is selected to be scheduled. The Release Time of three resources, calculated by
Eq. 3, are indicated as the last interval used by their last scheduled task. Note that, task t4
is not scheduled and assigned to its target resource yet.

Next, the Start Time (ST ) and Finish time (FT ) of task ti on each resource rj are
calculated as:

ST (ti, rj) = max
{

max
tp∈pred(ti)

{
FT (tp)

}
, avail(rj)

}
, (4)

FT (ti, rj) = λ(ti,rj) + ST (ti, rj) + TR(ti, rj) (5)

where λ(ti,rj) is defined as required boot time for acquiring resource instance rj . If task ti
can be started at last interval time for resource rj , no boot time required to be considered
for task’s completion, otherwise, the target resource rj need to be lunched and its boot time
should be considered as a delay in task finish time. For example, in Figure 1, only if task
t4 is scheduled on resource VM3, a boot time is required to be consider on its finish time
because it starts after current release time of VM3. The λ(ti,rj) is calculated by:

λ(ti,rj) =
{

0 , ST (ti, rj) < RT (rj) OR schedrj
= ∅

boot_timerj
, otherwise

(6)

where boot_timerj
is the VM startup/boot time. In this study, we consider boot_timerj

=
97 s based on the measurements reported in [15] for the Amazon EC2 cloud. Please note that,
during the resource selection phase for each task ti, the λ(ti,rj) value is calculated according
to the current situation of the target resources rj , i.e. previous scheduled task on it.

The makespan or Schedule length is finally defined as the finish time of the last task of
the workflow:

DAGmakespan = FT (texit) . (7)

3.3.2 Financial cost
The financial cost of task ti on resource rj is calculated based on the total usage time for
complete task execution, considering data transfer time and execution time, and resource
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usage price. In this research, we consider Amazon EC2 instance as the platform which
makes hour price billing for each instance. In this model, partial hours are rounded up. As
a consequence, if other tasks can be executed during that paid interval, they will not be
charged for it. We define total usage time of task ti as the payable period to be charged.

paytime(ti, rj) =


FT (ti, rj)− ST (ti, rj) , RT (rj) < ST (ti, rj)
0 ,FT (ti, rj) < RT (rj)
FT (ti, rj)−RT (rj) , otherwise

(8)

The otherwise condition will be applied if the task ti starts before the current release
time of resource rj (RT (rj)) and finishes after it. So, in this case, the time slice before RT (rj)
is paid by previous tasks and should not be considered in the current usage time of task ti.

The paytime equal to zero means that the task can be executed on a previously paid
interval (but not fully used) without any additional charge. For example, in Figure 1, if
current task t4 is scheduled on resource VM2, the paytime(t4, V M2) = 0. By considering Eq. 8,
the pay time for resource VM1 is equal to paytime(t4, V M1) = FT (t4, V M1) − RT (VM1)
and for resource VM3 we have paytime(t4, V M3) = FT (t4, V M3)−ST (t4, V M3). Please not
that, the boot_time of resource VM3 is already considered in FT (t4, V M3) by Eq. 5.

The execution cost of task ti for paytime > 0 on resource rj is computed by:

Cost(ti, rj) =
⌈

paytime(ti, rj)
interval time

⌉
× Prj

(9)

where Prj
is the associated cost of resource rj for each usage interval (Table 1, price column).

Thus, the overall cost for executing a workflow application is:

DAGcost =
∑
ti∈T

{
Cost(ti, r′) |ti ∈ schedr′

}
(10)

4 Proposed Deadline–Budget workflow Scheduling (DBWS)
algorithm

In this section, we present the Deadline-Budget Workflow Scheduling (DBWS) for cloud
environments, which aims to find a feasible schedule within a budget and deadline constraints.
The DBWS algorithm is a heuristic strategy that in a single step obtains a schedule that
always accomplishes the deadline constraint and that may accomplish or not the budget
constraint. If the cost constraint is met, we have a successful schedule, otherwise we have a
failure and no schedule is produced. The algorithm is evaluated based on the success rate.

Before the description of the DBWS algorithm, next we present the attributes used in
the algorithm.

tcurr denotes the current task to be schedule, selected on the task selection phase among
all ready tasks;
rsel denotes the target resource to execute tcurr on it;
FTmin(tcurr) and FTmax(tcurr) denote the minimum and maximum finish time of current
task among all tested resources;
`(ti) denotes the level of task ti; it is an integer value representing the maximum number of
edges of the paths from the entry node to ti. For the entry node, the level is `(tentry) = 1,
and for other tasks, it is given by:

`(ti) = 1 + max
tp∈pred(ti)

{
`(tp)

}
. (11)
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Costmin(tcurr) and Costmax(tcurr) denote the minimum and maximum execution cost of
the current task among all tested resources;
Costhigh(DAG) and Cost low(DAG) represent the total execution cost for scheduling target
application workflow on the set of homogeneous VMs with highest and lowest cost among
all possible VM types in our platform. Here, we use PEFT [3] algorithm to schedule a
workflow application.

The DBWS algorithm consists of two phases, namely a task selection phase and a resource
selection phase as described next.

4.1 Task selection
Tasks are selected according to their priorities. To assign a priority to a task in the DAG,
the upward rank (ranku) [26] is computed. This rank represents, for a task ti, the length of
the longest path from task ti to the exit node(texit), including the computational time of ti,
and it is given by Eq. 12:

ranku(ti) = ET (ti) + max
tchild∈succ(ti)

{
Cti→tchild + ranku(tchild)

}
(12)

where ET(ti) is the average execution time of task ti over all resources, Cti→tchild is the
average communication time between two tasks ti and tchild, and succ(ti) are the set of
immediate successor tasks of task ti. To prioritize tasks it is common to consider average
values because they have to be prioritize before knowing the location where they will run.
For the exit node, ranku(texit) = ET (texit).

4.2 Resource Selection
The target VM to be selected to execute the current task is guided by the following quantities
related to cost and time. To select the best suitable resource, a trade-off between these two
variables, time and cost, is evaluated. We define a variable, SDL as limit for time. SDL is
defined as the sub-deadline that is assigned to each task based on total application deadline.
First, all tasks are divided in different levels based on their depth in the graph. We defined
level execution (Levelexe) as the maximum execution length of all tasks in corresponding
level and is given by:

Levelj
exe = max

ti∈T
`(ti)==j

{
ETmax(ti) + max

tp∈pred(ti)
{Ctp→ti

)}
}

(13)

where ETmax(ti) represents the maximum execution time for task ti among all VMtype. In
the next step, we distribute the user deadline (Duser) among all levels. The sub-deadline
value for level j (LeveljDL) is computed recursively by traversing the task graph downwards,
starting from the first level, as shown below:

Levelj
DL = Levelj−1

DL +Duser ×
Levelj

exe∑
1≤j′≤`(texit)

Levelj′

exe
. (14)

For the first level (Level1DL), the first part of Eq. (14) is considered zero. Finally, all
tasks belonging to the same level have the same sub-deadline.

SDL(tcurr) =
{

Levelj
DL | `(ti) == j

}
. (15)

OPODIS 2016
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Note that, the task’s sub-deadline is a soft limit as in most deadline distribution strategies;
if the scheduler cannot find a resource (VM) that satisfies the sub-deadline for the current
task, the resource that can finish the current task at the earliest time may is selected.

The resource selection phase is based on the combination of the two QoS factors, time
and cost, in order to obtain the best balance between time and cost minimum values. We
define two relative quantities, namely, Time Quality (TimeQ) and Cost Quality (CostQ), for
current task tcurr on each resource rj ∈ R ∪R′, where R represents the set of resources (VM
instances) used in previous steps of scheduling, and R′ is defined as the set of one temporary
resource from each available VMtype. At each step after selecting the suitable resource rsel

for task tcurr, R is updated by R = {R ∪ rsel | rsel /∈ R}.
Both time and cost quantities are shown in (16) and (17), respectively. Both quantities

are normalized by their maximum values.

TimeQ(tcurr , rj) = ξ × SDL(tcurr)− FT (tcurr , rj)
FTmax(tcurr)− FTmin(tcurr) (16)

CostQ(tcurr , rj) = Costmax(tcurr)− Cost(tcurr , rj)
Costmax(tcurr)− Costmin(tcurr) × ξ (17)

where

ξ =
{
1 if FT (tcurr , rj) < SDL(tcurr)
0 otherwise

(18)

TimeQ measures how much closer to the task sub-deadline (SDL) the finish time of current
task on resource rj is. The sub-deadline defines the maximum allowance of task completion
time. Consequently, resources with higher TimeQ values, i.e. larger distance between finish
time and sub-deadline, have higher possibility to be selected. If the current task has higher
finish time on resource rj than its sub-deadline, TimeQ assumes a negative value for rj ,
reducing the possibility for this resource to be selected. Similarly, CostQ measures how much
less the actual cost on resource rj is than the maximum execution cost.

In the case that none of the resources can guarantee the current task sub-deadline
(SDL(tcurr)), CostQ is zero for all of them, and TimeQ for each resource rj is a negative
value that represents the relative finish time obtained with rj , i.e. a lower finish time causes
a lower negative value. And, the resource with higher TimeQ , i.e. close to zero, would be
selected.

Finally, to select the most suitable resource for current task, the Quality measure (Q) for
each resource rj is computed as shown in Eq. (19):

Q(tcurr , rj) = TimeQ(tcurr , rj)× (1− CF ) + CostQ(tcurr , rj)× CF (19)

where Cost-efficient Factor (CF ) is the tradeoff factor and defined as:

CF = Cost low(DAG)
Buser

. (20)

Both TimeQ and CostQ parameters are weighted by the ratio of the cheapest cost
execution of the whole workflow application (Cost low(DAG)) over the user defined available
budget (Buser), so that the effectiveness of both time and cost factors can be controlled. A
lower value of CF means that the user prefers to pay more to execute the application faster,
so that the time quality (TimeQ) is more predominant in the resource Quality measure
(Q). In the same way, a higher value of CF means that the user available budget is close
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Algorithm 1 DBWS algorithm.
Require: a DAG and user’s QoS Parameters values for Deadline (Duser) and Budget (Buser)
1: Compute and sort all tasks based on their upward rank (ranku) value
2: Compute PEFT schedule cost on the resources with cheapest (Cost low) and most expensive

(Costhigh) cost from VM type

3: if Buser < Cost low(DAG) then
4: return no possible schedule map
5: else if Buser > Costhigh(DAG) then
6: return PEFT scheduled map on most expensive VM type

7: end if
8: Compute the Sub-DeadLine value (SDL) for each task
9: while there is an unscheduled task do

10: tcurr = the next ready task with highest ranku value
11: for all rj ∈ R ∪ R′ do
12: Calculate Quality measure Q(tcurr , rj) using Eq. 19
13: end for
14: rsel = resource rj with highest Quality measure (Q)
15: Assign current task tcurr to resource rsel
16: Update R = {R ∪ rsel | rsel /∈ R}
17: Update VM r/a(rsel)
18: end while
19: return Schedule Map

to cheapest possible execution cost of the workflow, so that the time quality (TimeQ) is
inconspicuous while the cost quality (CostQ) becomes more influential, allowing the selection
of more cheap resources that guarantee a lower execution cost for tcurr .

The DBWS algorithm is shown in Algorithm 1. After some initializations in lines 1–2,
first, the possibility of finding a schedule map under a user defined budget is checked in line
3. Then, the sub-deadline value for each task is computed according Eq. 15 in line 8. The
DBWS algorithm starts to map all tasks of the application (while looping in lines 9–18).
At each step, on line 10, among all ready tasks, the task with highest priority (ranku) is
selected as the current task (tcurr). Then, in lines 11–13, the Quality measure for assigning
tcurr to the resource rj (Q(tcurr , rj)) is calculated. Note that, first, the finish time (FT)
and execution cost of the current task is calculated and then the quality measure for all
resources is calculated. Next, the resource (rsel) with the highest quality measure among
all resources is selected (line 14). Finally, after assigning the current task to the resource,
the release/acquire timestamp for the resource rsel is updated as explained in subsection
resource model in Section 3.

In terms of time complexity, DBWS requires the computation of the upward rank (ranku)
and Sub-DeadLines (SDL) for each task that have complexity O(n.p), where p is the number
of available resources and n is the number of tasks in the workflow application. In the
resource selection phase, to find and assign a suitable resource for the current task, the
complexity is O(n.p) for calculating ST and FT for the current task among all resources,
plus O(p) for calculating the Quality measure. The total time is O(n.p+ n(n.p+ p)), where
the total algorithm complexity is of the order O(n2.p).

5 Experimental results

This section presents performance comparisons of the DBWS algorithm with four most
recently published algorithms, Hybrid [25], MTCT (Min-min based time and cost tradeoff)
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[29], CwFT (Cost with Finish Time-based) [14] scheduling algorithms and SABA (Security-
Aware and Budget-Aware) [30]. We choose MTCT[29] for comparison because it outperforms
LOSS algorithms [21] and IC-PCP[1].

5.1 Budget and deadline parameters

To evaluate the DBWS algorithm, the user budget (Duser) and deadline (Buser) parameters
assume values in a range so that the constraints are feasible. To specify these parameters,
boundary values are defined for each of them, by using PEFT scheduling algorithm. We
calculate the total execution time (makespan) of the workflow scheduled on the set of
homogeneous VM instances with highest and lowest associated cost as the minimum (minD)
and the maximum (maxD) deadline boundary value. In the same way, the corresponding
execution costs are the maximum (maxB) and minimum (minB) execution cost of the
workflow application. With these highest and lowest bound values, we define for the current
application a unique Deadline and Budget constraint, as described by Eqs. (21) and (22):

Duser = minD + αD × (maxD −minD) (21)
Buser = minB + αB × (maxB −minB) (22)

where the deadline parameter αD and budget parameter αB can be selected in the range
of [0 . . . 1]. In this paper, to observe the ability of finding valid schedule maps, we selected
a low set of values, {0.1, 0.3, 0.5}, for time and cost parameters (αD and αB) to test the
performance of each algorithm on harder conditions. Undoubtedly, increasing values for αD

and αB , we would be able to achieve higher successful percentage rates.

5.2 Performance metric

To evaluate and compare our algorithm with other approaches, we consider the Planning
Successful Rate (PSR), as expressed by Eq. (23). This metric provides the percentage of
valid schedules obtained in a given experiment.

PSR = 100× Number of Successful Planning workflows
Total Number of workflows in experiment . (23)

In addition, to investigate the quality of results, we compute the ratio of deadline defined
and makespan achieved (NM) for each workflow, as well as the ratio of budget and execution
cost (NB) of the schedule produced, as described in Eqs. (24) and (25):

NM = Duser
DAGmakespan

, (24)

NB = Buser
DAGcost

. (25)

Note that, both metrics NM and NB are calculated for each schedule map, even for not
successful ones, achieved by the algorithm. Basically, a lower value than 1 for NM and NB
metrics means that the schedule map could not meet the constraint values for time and cost,
respectively.



M. Ghasemzadeh, H. Arabnejad, and J. Barbosa 19:13

0

20

40

60

80

100

P
S
R

(P
la
n
n
in
g
S
u
cc
es
sf
u
l
R
a
te
)

DBWS Hybrid(0.3) Hybrid(0.7)
MTCT CwFT SABA

αB → 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

αD → 0.1 0.3 0.5

Figure 2 PSR value for CyberShake.
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Figure 3 PSR value for Epigenomic.
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Figure 4 PSR value for Ligo.
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Figure 5 PSR value for Montage.

5.3 Results and discussion
To evaluate the algorithms on a standard and real set of workflow applications, a set of
workflows were generated using the code developed in Pegasus toolkit4. Four well known
structures were chosen [10], namely: CyberShake, Epigenomic, Ligo and Montage.
The workflows are characterized as CPU-bound (Epigenomic), I/O-bound (Montage),
data-intensive (CyberShake); workflows with large memory requirements (CyberShake,
Ligo); and workflows with large resource requirements (CyberShake, Ligo). For each
type of these real world workflows, we generated 1000 DAGs with a number of tasks equal to
50, 300 and 1000 tasks.

The original implementation of the compared scheduling algorithms assumed a fixed
number of resources during the schedule map. In our implementation of those algorithms, we
assigned an initialized fixed number of resources equal to the maximum number of concurrent
tasks among all levels in the workflow application. Also, to apply the cost consumption during
the scheduling process, we consider the same approach to calculate the cost execution of each
task (Eq. 9) for all algorithms. For the Hybrid [25] scheduling algorithm, we consider two
versions, namely Hybrid (α = 0.3) and Hybrid(α = 0.7), where the α parameter represents
the user’s preference for minimizing the execution time or the monetary cost, i.e lower α
corresponds to less monetary cost.

Figures 2, 3, 4 and 5 show the average Planning Successful Rate (PSR) obtained for the
real workflow application considered here. The main result is that the algorithm DBWS
obtains good performance in comparison to other state-of-the-art heuristic-based algorithms,
for the range of budget and deadline values considered here. By increasing the budget factor
(αB), more budget is available to run the workflow resulting in an increase of the PSR value

4 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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Figure 7 Budget-schedule cost ratio.

for DBWS. Note that for shorter deadlines (αD = 0.1) in the most cases only DBWS is able
to complete workflows (Figures 3, 4 and 5).

Figures 6 and 7 represent the ratios related to time and cost, obtained by each algorithm.
In other to have a better presentation, NM and NB values are divided into two main
categories, where safe is represented by the green color and unsafe is represented by the red
color. A value greater than 1 for the NM metric (Eq. 24) means that the algorithm could
obtain a scheduled makespan lower than the user defined deadline. But a value NM < 1
means that the algorithm failed to find the schedule map with a makepsan lower than the
user defined deadline. The same explanation can be considered for NB metric (Eq. 25). As
it is shown in Figure 6, the makespan of the schedule map obtained by proposed DBWS
algorithm always meet the user defined deadline constraint value for all range of budget
factor αB. However, for the total cost execution in Figure 7, by decreasing the deadline
factor αD, the execution cost of the schedule map obtained by DBWS becomes higher than
the user defined budget. Note that the PSR values represented in Figures 2–5 represent the
percentage of workflows for which the schedule meets both time and cost constraint values.
For example, despite of the best reduction in execution cost by CwFT scheduling algorithm
in Figure 7, due to failing in meeting the deadline value (Figure 6), the CwFT approach
shows the worst performance in terms of PSR value (Figure 2–5). Also, for SABA scheduling
algorithm, it fails in most cases as shown by the PSR metric. The reason can be explained
due to the strategy used for VM assignment, namely the Comparative Factor (CF). The
CF approach used the trade-off between time and cost factors and did not control the cost
consumption during the scheduling process. As seen from Figures 6 and 7, SABA shows the
best performance in total execution time reduction and worst one for the total cost.

6 Conclusions and future work

In this paper, we present the Deadline-Budget Workflow Scheduling (DBWS) algorithm for
cloud environments, which maps a workflow application to cloud resources constrained to
user-defined deadline and budget values. The algorithm was compared with other state-of-
the-art heuristic-based scheduling algorithms. In terms of time complexity, which is a critical
factor for effective usage on real platforms, our algorithm has quadratic time complexity. In
terms of the quality of results, DBWS achieves better rates of successful schedules compared
to other heuristic-based approaches for the real world applications considered. For the range
values of deadline and budget constraints considered in this paper, DBWS shows a significant
improvement of the planning successful rate for the workflows and cloud platform considered.

In conclusion, we have presented the DBWS algorithm for budget and deadline constrained
scheduling, which has proved to achieve better performance than other heuristic-based
approaches, namely Hybrid[25] MTCT[29] and CwFT[14].
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In future work, we intend to extend the algorithm to consider dynamic concurrent workflow
applications which can be submitted by any user at any time.
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