
WNetKAT: A Weighted SDN Programming and
Verification Language∗

Kim G. Larsen1, Stefan Schmid2, and Bingtian Xue3

1 Aalborg University, Aalborg, Denmark
kgl@cs.aau.dk

2 Aalborg University, Aalborg, Denmark
schmiste@cs.aau.dk

3 Aalborg University, Aalborg, Denmark
bingt@cs.aau.dk

Abstract
Programmability and verifiability lie at the heart of the software-defined networking paradigm.
While OpenFlow and its match-action concept provide primitive operations to manipulate hard-
ware configurations, over the last years, several more expressive network programming languages
have been developed. This paper presents WNetKAT, the first network programming language
accounting for the fact that networks are inherently weighted, and communications subject to
capacity constraints (e.g., in terms of bandwidth) and costs (e.g., latency or monetary costs).
WNetKAT is based on a syntactic and semantic extension of the NetKAT algebra. We demon-
strate several relevant applications forWNetKAT, including cost- and capacity-aware reachability,
as well as quality-of-service and fairness aspects. These applications do not only apply to classic,
splittable and unsplittable (s, t)-flows, but also generalize to more complex (and stateful) net-
work functions and service chains. For example, WNetKAT allows to model flows which need to
traverse certain waypoint functions, which can change the traffic rate. This paper also shows the
relationship between the equivalence problem of WNetKAT and the equivalence problem of the
weighted finite automata, which implies undecidability of the former. However, this paper also
shows the decidability of whether an expression equals to 0, which is sufficient in many practical
scenarios, and we initiate the discussion of decidable subsets of the whole language.

1998 ACM Subject Classification C.2 Computer-Communication Networks

Keywords and phrases Software-Defined Networking, Verification, Reachability, Stateful Pro-
cessing, Service Chains, Weighted Automata, Decidability, NetKAT

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.18

1 Introduction

Managing and operating traditional computer networks is known to be a challenging, manual
and error-prone process. Given the critical role computer networks play today, not only in
the context of the wide-area Internet but also of enterprise and data center networks, this is
worrisome. Software-Defined Networks (SDNs) in general and the OpenFlow standard in
particular, promise to overcome these problems by enabling automation, formal reasoning and
verification, as well as by defining open standards for vendors. Indeed, there is also a wide
consensus that formal verifiability is one of the key advantages of SDN over past attempts

∗ This work was partially supported by the ERC Advanced Grant LASSO, the Danish VILLUM project
ReNet and the Sino-Danish Basic Research Center project IDEA4CPS.

© Kim G. Larsen, Stefan Schmid, and Bingtian Xue;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 WNetKAT: A Weighted SDN Programming and Verification Language

s

F1

v

F
(1)
2

F
(2)
2

t

(1, 8)

(5, 2)

(3, 1)

(2, 1)

(6, 1)

(1, 4)

(2, 10)
(3, 3)

Figure 1 Example: A network hosting two (virtualized) functions F1 and F2. Function F2 is
allocated twice. The functions F1 and F2 may change the traffic rate.

to innovate computer networks, e.g., in the context of active networking [38]. Accordingly,
SDN/OpenFlow is seen as a promising paradigm toward more dependable computer networks.

At the core of the software-defined networking paradigm lies the desire to program
the network. In a nutshell, in an SDN, a general-purpose computer manages a set of
programmable switches, by installing rules (e.g., for forwarding) and reacting to events
(e.g., newly arriving flows or link failures). In particular, OpenFlow follows a match-action
paradigm: the controller installs rules which define, using a match pattern (expressed over
the packet header fields, and defining a flow), which packets (of a flow) are subject to which
actions (e.g., forwarding to a certain port).

While the OpenFlow API is simple and allows to manipulate hardware configurations in
flexible ways, it is very low level and not well-suited as a language for human programmers.
Accordingly, over the last years, several more high-level and expressive domain-specific SDN
languages have been developed, especially within the Frenetic project [13]. These languages
can also be used to express fundamental network queries, for example related to reachability:
They help administrators answer questions such as “Can a given host A reach host B?” or
“Is traffic between hosts A and B isolated from traffic between hosts C and D?”.

What is missing today however is a domain-specific language which allows to describe the
important weighted aspects of networking. E.g., real networks naturally come with capacity
constraints, and especially in the Wide-Area Network (WAN) as well as in data centers,
bandwidth is a precious resource. Similarly, networks come with latency and/or monetary
costs: transmitting a packet over a wide-area link, or over a highly utilized link, may entail a
non-trivial latency, and inter-ISP links may also be attributed with monetary costs.

Weights may not be limited to links only, but also nodes (switches or routers) have
capacities and costs e.g., related to the packet rate. What is more, today’s computer
networks provide a wide spectrum of in-network functions related to security (e.g., firewalls)
and performance (e.g., caches, WAN optimizers). To give an example, today, the number of
so-called middleboxes in enterprise networks can be in the same order of magnitude as the
number of routers [36]. A domain specific language for SDNs should be expressive enough
to account for middleboxes which can change (e.g., compress or increase) the rate of the
traffic passing through them. Moreover, a network language should be able to define that
traffic must pass through these middleboxes in the first place, i.e., that routing policies
fulfill waypointing invariants [39]. With the advent of more virtualized middleboxes, and the
Network Function Virtualization paradigm, short NFV, (virtualized) middleboxes may also
be composed to form more complex network services. For example, SDN traffic engineering
flexibilities can be used to steer traffic through a series of middleboxes, concatenating the
individual functions into so-called service chains [17, 26]. For instance, a network operator
might want to ensure that all traffic from s to t should first be routed through a firewall FW ,
and then through a WAN optimizer WO, before eventually reaching t: the operator can do
so by defining a service chain (s, FW,WO, t).



K.G. Larsen, S. Schmid, and B. Xue 18:3

Let us consider a more detailed example, see the network in Figure 1: The network hosts
two types of (virtualized) functions F1 and F2: possible network functions may include,
e.g., a firewall, a NAT, a proxy, a tunnel endpoint, a WAN optimizer (and its counterpart),
a header decompressor, etc. In this example, function F2 is instantiated at two locations.
Functions F1 and F2 may not be flow-preserving, but may decrease the traffic rate (e.g., in
case of a proxy, WAN optimizer, etc.) or increase it: e.g., a tunnel entry-point may add
an extra header, a security box may add a watermark to the packet, the counterpart of
the WAN optimizer may decompress the packet, etc. Links come with a certain cost (say
latency) and a certain capacity (in terms of bandwidth). Accordingly, we may annotate links
with two weights: the tuple (2, 3) denotes that the link cost is 2 and the link capacity 3. We
would like to be able to ask questions such as: Can source s emit traffic into the service
chain at rate x without overloading the network? or Can we embed a service chain of cost
(e.g., end-to-end latency) at most x?.

1.1 Contributions
This paper initiates the study of weighted network languages for programming and reas-
oning about SDN networks, which go beyond topological aspects but account for actual
resource availabilities, capacities, costs, or even stateful operations. In particular, we
present WNetKAT, an extension of the NetKAT [1] algebra.

For example,WNetKAT supports a natural generalization of the reachibility concepts used
in classic network programming languages, such as cost-aware or capacity-aware reachability.
In particular, WNetKAT allows to answer questions of the form: Can host A reach host B
at cost/bandwidth/latency x?

We demonstrate applications of WNetKAT for a number of practical use cases related to
performance, quality-of-service, fairness, and costs. These applications are not only useful in
the context of both splittable and unsplittable routing models, where flows need to travel
from a source s to a destination t, but also in the context of more complex models with
waypointing requirements (e.g., service chains).

The weighted extension of NetKAT is non-trivial, as capacity constraints introduce
dependencies between flows, and arithmetic operations such as addition (e.g., in case of
latency) or minimum (e.g., in case of bandwidth to compute the end-to-end delay) have to
be supported along the paths. Therefore, we extend the syntax of NetKAT toward weighted
packet- and switch-variables, as well as queues, and provide a semantics accordingly. In
particular, one contribution of our work is to show for which weighted aspects and use cases
which language extensions are required.

We also show the relation between WNetKAT expressions and weighted finite automata [9]
– an important operational model for weighted programs. This leads to the undeciability of
WNetKAT equivalence problem. However, leveraging this relation we also succeed to prove
the decidability of whether an expression equals to 0: for many practical scenarios a sufficient
and relevant solution. Moreover, this paper initiates the discussion of identifying decidable
subsets of the whole language.

1.2 Related Work
Most modern domain-specific SDN languages enable automated tools for verifying network
properties [12, 13, 29, 43, 44]. Especially reachability properties, which are also the focus
in our paper, have been studied intensively in the literature [19, 20]. Indeed, the formal
verifiability of the OpenFlow match-action interface [19, 20, 30, 46] constitutes a key advantage

OPODIS 2016



18:4 WNetKAT: A Weighted SDN Programming and Verification Language

of the paradigm over previous innovation efforts [5]. Existing expressive languages use SAT
formulas [27], graph-based representations [19, 20], or higher-order logic [45] to describe
network topologies and policies.

Our work builds upon NetKAT, a new framework based on Kleene algebra with tests for
specifying, programming, and reasoning about networks and policies. NetKAT respresents a
more principled approach compared to prior work, and is also motivated by the observation
that end-to-end functionality is determined not only by the behavior of the switches and but
also by the structure of the network topology. NetKAT in turn is based on earlier efforts
performed in the context of NetCore [28], Pyretic [29] and Frenetic [13]. It has recently been
extended to a probabilistic [14] and temporal [2] setting, and first versions for specific use
cases like QoS are emerging [34]. The Kleene algebra with tests was developed by Kozen [24].
However, to the best of our knowledge, there is no prior work on a general weighted (and
stateful) version of NetKAT.

In general, stateful network design and analysis is very active field of research, and there
are several interesting recent results, e.g., on the complexity and scalability of more stateful
verification [42], on quantitative analysis [18], or on reachability [10].

2 Background

A Software-Defined Network (SDN) outsources and consolidates the control over data
plane elements to a logically centralized control plane implemented in software. Arguably,
software-defined networking in general, and its de facto standard, OpenFlow, are about
programmability, verifiability and generality [11]: The behavior of an OpenFlow switch
is defined by its configuration: a list of prioritized (flow) rules stored in the switch flow
table, which are used to classify, filter, and modify packets based on their header fields. In
particular, OpenFlow follows a simple match-action paradigm: the match parts of the flow
rules (expressed over the header fields) specify which packets belong to a certain flow (e.g.,
depending on the IP destination address), and the action parts define how these packets
should be processed (e.g., forward to a certain port). OpenFlow supports a rather general
packet processing: it allows to match and process packets based on their Layer-2 (e.g., MAC
addresses), Layer-3 (e.g., IP addresses), and Layer-4 header fields (e.g., TCP ports), or even
in a protocol-independent manner, using arbitrary bitmasking [4].

OpenFlow also readily supports quantitative aspects, e.g., the selection of queues annot-
ated with different round robin weights (the standard approach to implement quality-of-service
guarantees in networks today), or meters (measuring the bandwidth of a flow). Moreover,
we currently witness a trend toward more flexible and stateful programmable switches and
packet processors, featuring group tables, counters, and beyond [3].

The formal framework developed in this paper is based on NetKAT [1]. NetKAT is a
high-level algebra for reasoning about network programs. It is based on Kleene Algebra with
Tests (KAT), and uses an equational theory combining the axioms of KAT and network-
specific axioms that describe transformations on packets (as performed by OpenFlow switch
rules). These axioms facilitate reasoning about local switch processing functionality (needed
during compilation and for optimization) as well as global network behavior (needed to check
reachability and traffic isolation properties). Basically, an atomic NetKAT policy (a function
from packet headers to sets of packet headers: essentially the per-switch OpenFlow rules
discussed above) can be used to filter or modify packets. Policy combinators (+) allow to
build larger policies out of smaller policies. There is also a sequential composition combinator
to apply functions consecutively.



K.G. Larsen, S. Schmid, and B. Xue 18:5

Besides the policy, modeling the per-switch OpenFlow rules, a network programming
language needs to be able to describe the network topology. NetKAT models the network
topology as a directed graph: nodes (hosts, routers, switches) are connected via edges (links)
using (switch) ports. NetKAT simply describes the topology as the union of smaller policies
that encode the behavior of each link. To model the effect of sending a packet across a link,
NetKAT employs the sequential composition of a filter that retains packets located at one
end of the link, and a modification that updates the switch and port fields to the location at
the other end of the link. Note that the NetKAT topology and the NetKAT policy are hence
to be seen as two independent concepts. Succinctly:

A Kleene algebra (KA) is any structure (K,+, ·,∗ , 0, 1), where K is a set, + and · are
binary operations on K, ∗ is a unary operation on K, and 0 and 1 are constants, satisfying
the following axioms, where we define p ≤ q iff p+ q = q.

p+ (q + r) = (p+ q) + r p(qr) = (pq)r
p+ q = q + p 1 · p = p · 1 = p

p+ 0 = p+ p = p p · 0 = 0 · p = 0
p(q + r) = pq + pr (p+ q)r = pr + qr

1 + pp∗ ≤ p∗ q + px ≤ x⇒ p∗q ≤ x
1 + p∗p ≤ p∗ q + xp ≤ x⇒ qp∗ ≤ x

A Kleene algebra with tests (KAT) is a two-sorted structure (K,B,+, ·,∗ , , 0, 1), where B ⊆ K
and

(K,+, ·,∗ , 0, 1) is a Kleene algebra;
(B,+, ·, , 0, 1) is a Boolean algebra;
(B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

The elements of B are called tests. The axioms of Boolean algebra are:

a+ bc = (a+ b)(a+ c) ab = ba

a+ 1 = 1 a+ a = 1
aa = 0 aa = a

NetKAT is a version of KAT in which the atoms (elements in K) are defined over header
fields f (variables) and values ω:

f ← ω (“assign a value ω to header field f”)
f = ω (“test the value of a header field”)
dup (“duplicate the packet”)

The set of all possible values of f is denoted Ω. For readability, we use skip and drop to
denote 1 and 0, respectively.

The NetKAT axioms consist of the following equations, in addition to the KAT axioms
on the commutativity and redundancy of different actions and tests, and enforcing that the
field has exactly one value:

f1 ← ω1; f2 ← ω2 = f2 ← ω2; f1 ← ω1 (f1 6= f2) (1)
f1 ← ω1; f2 = ω2 = f2 = ω2; f1 ← ω1 (f1 6= f2) (2)

f = ω; dup = dup; f = ω (3)
f ← ω; f = ω = f ← ω (4)
f = ω; f ← ω = f = ω (5)

f ← ω1; f ← ω2 = f ← ω2 (6)
f = ω1; f = ω2 = 0 (ω1 6= ω2) (7)∑

ω∈Ω
f = ω = 1 (8)

OPODIS 2016



18:6 WNetKAT: A Weighted SDN Programming and Verification Language

In terms of semantics, NetKAT uses packet histories to record the state of each packet on
its path from switch to switch through the network. The notation 〈pk1, . . . , pkn〉 is used
to describe a history with elements pk1, . . . , pkn being packets; pk :: 〈〉 is used to denote a
history with one element and pk :: h to denote the history constructed by prepending pk
on to h. By convention, the first element of a history is the current packet (the “head”). A
NetKAT expression denotes a function J K : H → 2H , where H is the set of packet histories.
Histories are only needed for reasoning: Policies only inspect or modify the first (current)
packet in the history. Succinctly:

Jf ← ωK(pk :: h) = {pk[ω/f ] :: h}

Jf = ωK(pk :: h) =
{
{pk :: h} if pk(f) = ω

∅ otherwise
JdupK(pk :: h) = {pk :: pk :: h}

Jp+ qK(h) = JpK(h) ∪ JqK(h)
JpqK(h) =

⋃
h′∈JpK(h) JqK(h′)

Jp∗K(h) =
⋃
n JpnK(h)

J0K(h) = ∅
J1K(h) = {h}

JaK(h) =
{
{h} if JaK(h) = ∅
∅ if JaK(h) = {h}

I Example 1. Consider the network in Figure 1. NetKAT can be used to specify the topology
as follows, where the field sw stores the current location (switch) of the packet:

t ::= sw = s; (sw ← F1 + sw ← v)
+sw = F1; (sw ← F

(1)
2 + sw ← F

(2)
2 )

+sw = v; (sw ← F
(1)
1 + sw ← F

(2)
2 )

+sw = F
(1)
2 ; sw ← t

+sw = F
(2)
2 ; sw ← t

The first line of the above NetKAT expression specifies that if the packet is at s, then it
will be sent to F1 or v. Analogously for the other cases. In OpenFlow, this policy can be
implemented using OpenFlow rules, whose match part applies to packets arriving at s, and
whose action part assigns the packets to the respective forwarding ports.

However, one can observe that with NetKAT it is not possible to specify or reason about
the important quantitative aspects in Figure 1, e.g., the cost and capacity along the links or
the function of F2 which changes the rate of the flow. To do these, a weighted extension of
NetKAT is needed.

3 WNetKAT

On a high level, a computer network can be described as a set of nodes (hosts or routers)
which are interconnected by a set of links, hence defining the network topology. While this
high-level view is sufficient for many purposes, for example for reasoning about reachability,
in practice, the situation is often more complex: both nodes and links come with capacity
constraints (e.g., in terms of buffers, CPU, and bandwidth) and may be attributed with costs
(e.g., monetary or in terms of performance). In order to reason about performance, cost, and
fairness aspects, it is therefore important to take these dimensions into account.

The challenge of extending NetKAT to weighted scenarios lies in the fact that in a weighted
network, traffic flows can no longer be considered independently, but they may interfere:



K.G. Larsen, S. Schmid, and B. Xue 18:7

their packets compete for the shared resource. Moreover, packets of a given flow may not
necessarily be propagated along a unique path, but may be split and distributed among
multiple paths (in the so-called multi-path routing or splittable flow variant). Accordingly, a
weighted extension of NetKAT must be able to deal with “inter-packet states”.

We in this paper will think of the network as a weighted (directed) graph G = (V,E,w).
Here, V denotes the set of switches (or equivalently routers, and henceforth often simply
called nodes), E is the set of links (connected to the switches by ports), and w is a weight
function. The weight function w applies to both nodes V as well as links E. Moreover,
a node and a link may be characterized by a vector of weights and also combine multiple
resources: for example, a list of capacities (e.g., CPU and memory on nodes, or bandwidth
on links) and a list of costs (e.g., performance, energy, or monetary costs).

In order to specify the quantitative aspects, we propose in this paper a weighted extension
of NetKAT: WNetKAT. In addition to NetKAT:

WNetKAT includes a set of quantitative packet-variables to specify the quantitative
information carried in the packet, in addition to the regular (non-quantitative) packet-
variables of NetKAT (called fields in NetKAT): e.g., regular variables are used to describe
locations, such as switch and port, or priorities, while quantitative variables are used to
specify latency or energy. The set of all packet-variables is denoted by Vp.
WNetKAT also includes a set of switch-variables, denoted by Vs, to specify the configura-
tions at the (stateful) switch. Switch variables can either be quantitative (e.g., counters,
meters, meta-rules [4, 33]) or non-quantitative (e.g., location related), as it is the case of
the packet-variables.

I Remark. The set of quantitative (packet- and switch-) variables is denoted by Vq and these
variables range over the natural numbers N (e.g., normalized rational numbers). The set of
non-quantitative (packet- and switch-) variables is denoted Vn and the set of the possible
values is denoted Ω. Note that Vq ∩ Vn = ∅ and Vq ∪ Vn = Vp ∪ Vs.

In addition to introducing quantitative variables, we also need to extend the atomic actions
and tests of NetKAT. Concretely, WNetKAT first supports non-quantitative assignments
and non-quantitative tests on the non-quantitative switch-variables, similar to those on the
packet-variables in NetKAT. Moreover, WNetKAT also allows for quantitative assignments
and quantitative tests, defined as follows, where x ∈ Vq, V ′ ⊆ Vq, δ ∈ N, ./∈ {>,<,≤,≥,=}:

Quantitative Assignment. x← (Σx′∈V′x′ + δ): Read the current values of the variables
in V ′ and add them to δ, then assign this result to x.
Quantitative Test. x ./ (Σx′∈V′x′+ δ): Read the current value of the variables in V ′ and
add them to δ, then compare this result to the current value of x.

I Remark.
1. In the quantitative assignment and test, only addition is allowed. However, an extension

to other arithmetic operations (e.g., linear combinations) is straightfoward. Moreover,
calculating minimum or maximum may be useful in practice: e.g., the throughput of
a flow often depends on the weakest link (of minimal bandwidth) along a path. Note
that these operations can actually be implemented with quantitative assignments and
tests, i.e., by comparing every variable to another and determining the smallest. E.g., for
x ∈ Vq and y, z ∈ Vq or N,

x← min{y, z} def= y ≤ z;x← y & y > z;x← z .

2. In quantitative assignment and test, x might be in V ′.
3. We use + to denote the arithmetic operation over numbers. Therefore, we will use “&”

in WNetKAT to denote the “+” operator of Kleene Algebra, which is also used in [14].

OPODIS 2016



18:8 WNetKAT: A Weighted SDN Programming and Verification Language

Table 1 Semantics of WNetKAT.

Jx← ωK(ρ, pk :: h) =
{ {ρ, pk[ω/x] :: h} if x ∈ Vp

{ρ(v)[ω/x], pk :: h} if x ∈ Vs and pk(sw) = v
(1)

Jx = ωK(ρ, pk :: h) =

{
{ρ, pk :: h} if x ∈ Vp and pk(x) = ω

or if x ∈ Vs, pk(sw) = v and ρ(v, x) = ω
∅ otherwise

(2)

Jy ← (Σy′∈V′y′ + r)K(ρ, pk :: h) =
{ {ρ, pk[r′/x] :: h} if x ∈ Vp

{ρ(v)[r′/x], pk :: h} if x ∈ Vs and pk(sw) = v
(3)

where r′ = Σyp∈V′∩Vp
pk(yp) + Σys∈V′∩Vq

ρ(v, ys) + r

Jy = (Σy′∈V′y′ + r)K(ρ, pk :: h) =

{
{ρ, pk :: h} if x ∈ Vp and pk(x) = r′

or x ∈ Vs, pk(sw) = v and ρ(v, x) = r′

∅ otherwise
(4)

where r′ = Σyp∈V′∩Vp
pk(yp) + Σys∈V′∩Vq

ρ(v, ys) + r

Given the set of switches V , a switch-variable valuation is a partial function ρ : V ×Vs ↪→
N ∪ Ω. It associates, for each switch and each switch-variable, a integer or a value from Ω.
We emphasize that ρ is a partial function, as some variables may not be defined at some
switches.

A WNetKATexpression denotes a function J K : ρ×H → 2H , where H is the set of packet
histories. The semantics of WNetKAT is defined in Table 1, where x ∈ Vn, y ∈ Vq, δ ∈ N
and ω ∈ Ω.
I Remark.

Equations (1) and (3) update the corresponding header field if x is a packet-variable,
or they update the corresponding switch information of the current switch if x is a
switch-variable. Equation (1) updates the non-quantitative variables and Equation (3)
the quantitative ones.
Equations (2) and (4) test the non-quantitative and quantitative variables respectively,
using the current packet- and switch-variables.

I Example 2. Consider again the network in Figure 1. The topology of the network can be
characterized with the following WNetKAT formula t, where sw specifies the current location
(switch) of the packet, co specifies the cost, and ca specifies the capacity along the links.

t ::= sw = s; (sw ← F1; co← co+ 1; ca← min{ca, 8}
& sw ← v; co← co+ 5; ca← min{ca, 2})

& sw = F1;
(sw ← F

(1)
2 ; co← co+ 3; ca← min{ca, 1}

& sw ← F
(2)
2 ; co← co+ 2; ca← min{ca, 10})

& sw = v; (sw ← F
(1)
2 ; co← co+ 3; ca← min{ca, 3}

& sw ← F
(2)
2 ; co← co+ 2; ca← min{ca, 1})

& sw = F
(1)
2 ; sw ← t; co← co+ 6; ca← min{ca, 1}

& sw = F
(2)
2 ; sw ← t; co← co+ 1; ca← min{ca, 4}

The variable co accumulates the costs along the path, and the variable ca records the
smallest capacity along the path. Notice that ca is just a packet-variable used to record the
capacity of the path; it does not represent the capacity used by this packet (the latter is
assumed to be negligible).

Assume that function F1 is flow conserving (e.g., a NAT), while F2 increases the flow
rate by an additive constant γ ∈ N (e.g., a security related function, adding a watermark or



K.G. Larsen, S. Schmid, and B. Xue 18:9

dc1 1

2 dc2 1
2

3

4

dc3
2

1

dc4
1

2
3

4

dc5

1

2
3

dc61

2
3

4

2

2

6
3

4

8

2 2

Figure 2 Example topology: excerpt of Google B4 [16] (U.S. data centers only). Nodes here
represent data centers (resp. OpenFlow switches located at the end of the corresponding long-haul
fibers). Links are annotated with weights, and nodes are interconnected via ports (small numbers).

an IPSec header). The policy of F2 can be specified as:

pF2 ::= (sw = F
(1)
2 & sw = F

(2)
2 ); ca← ca+ γ

I Remark. Note that this simple example required only (non-quantitative and quantitative)
packet-variables. However, as we will see in Section 4, to model more complex aspects of
networking, such as splittable flows, additonal concepts of WNetKAT will be needed.

4 Applications

The weighted extensions introduced by WNetKAT come with a number of interesting
applications. In this section, we show that the notions of reachability frequently discussed in
prior work, find natural extensions in the world of weighted networks, and discuss applications
in the context of service chains, fairness, and quality-of-service. In our technical report [25],
additional details are provided for some of these use cases.

4.1 Cost Reachability
Especially data center networks but also wide-area networks, and to some extent enterprise
networks, feature a certain path diversity [41]: there exist multiple routes between two
endpoints (e.g., hosts). This path diversity is not only a prerequisite for fault-tolerance,
but also introduces traffic engineering flexibilities. In particular, different paths or routes
depend on different links, whose cost can vary. For example, links may be attributed with
monetary costs: a peering link may be free of charge, while an up- or down-link is not. Links
cost can also be performance related, and may for example vary in terms of latency, for
example due to the use of different technologies [37], or simply because of different physical
distances. The monetary and performance costs are often related: for example, in the context
of stock markets, lower latency links come at a higher price [35]. It is therefore natural to
ask questions such as: “Can A reach B at cost at most c?”. We will refer to this type of
questions as cost reachability questions.

I Example 3. Consider the network in Figure 2. The topology roughly describes the North
American data centers interconnected by Google B4, according to [16].

OPODIS 2016



18:10 WNetKAT: A Weighted SDN Programming and Verification Language

In order to reason about network latencies, we not only need information about the switch
at which the packet is currently located (as in our earlier examples), but also the port of the
switch needs to be specified. We introduce the packet-variable pt. We can then specify this
network topology in WNetKAT. The link from dc1 to dc2 (latency 4 units) represented by
the port 1 at dc1 and the port 4 at dc2 is specified as follows, where we use packet-variable sw
to denote the current switch, pt to specify the current port, and l to specify the latency of
the path the packet traverses,

sw = dc1; pt = 1; sw ← dc2; pt← 4; l← l + 4 .

Analogously, the entire network topology can be modeled with WNetKAT, henceforth denoted
by t. The policy of the network determines the functionality of each switch (the OpenFlow
rules), e.g., in dc2, packets from dc1 to dc5 arriving at port 4 are always sent out through
port 1 or port 3. This can be specified as:

src = dc1; dst = dc5; sw = dc2; pt = 4; (pt← 1& pt← 3) .

Analogously, the entire network policy can be modeled with WNetKAT, henceforth denoted
by p.

To answer the cost reachability question, one can check whether the following WNetKAT
expression is equal to drop.

scr ← A; dst← B; l← 0; sw ← X; pt(pt)∗; sw = B; l ≤ c .

If it is equal to drop, then B cannot be reached from A at latency at most c; otherwise, it
can.
I Remark. For ease of presentation, in the above example, we considered only one weight.
However, WNetKAT readily supports multiple weights: we can simply use multiple variables
accordingly. Moreover, while the computational problem complexity can increase with the
number of considered weights [23], the multi-constrained path selection does not affect the
general asymptotic complexity of WNetKAT.

4.2 Capacitated Reachability
Especially in the wide-area network, but also in data centers, link capacities are a scarce
resource: indeed, wide-area traffic is one of the fastest growing traffic aggregates [16]. However,
also the routers themselves come with capacity constraints, both in terms of memory (size of
TCAM) as well as CPU: for example, the CPU utilization has been shown to depend on the
packet rate [31]. Accordingly, a natural question to ask is: Can A communicate at rate at
least r to B? We will refer to this type of questions as capacitated reachability questions.

There are two problem variants:
Unsplittable flows: The capacity needs to be computed along a single path (e.g., an MPLS
tunnel).
Splittable flows: The capacity needs to be computed along multiple paths (e.g., MPTCP,
ECMP). We will assume links of higher capacity are chosen first.
For both variants, to find out the capacity of paths between two nodes, a single test packet

will be sent to explore the network and record the bandwidth/capacity with a packet-variable
in the packet. We assume that the bandwidth consumed by this packet is negligibile. Also,
only once the packet has traversed and determined the bandwidth, e.g., the actual (large)
flows are allocated accordingly (by the SDN controller).
I Example 4. Consider the network in Figure 2 again, but assume that the labels are the
capacities rather than latency.



K.G. Larsen, S. Schmid, and B. Xue 18:11

Unsplittable flow scenario: The switch policies are exactly the same as in Example 3, while
the topology will be specified similarly using packet-variable c to record the capacity of the
link. E.g., the link between dc1 and dc2 can be specified as:

sw = dc1; pt = 1; sw ← dc2; pt← 4; c← min{c, 4} .

The unsplittable capacitated reachability question can be answered by checking whether the
following expression is equal to drop,

scr ← A; dst← B; c← r; sw ← A; pt(pt)∗; sw = B; c ≥ r .

If the above formula does not equal drop, then A can communicate at rate at least r to B.
Another (possibly) more efficient approach is not to update c while the bandwidth is

smaller than r (meaning that a flow of size r cannot go through this link). In this case, one
can specify the topology as follows, where c is not used to record the capacity along the path
anymore, but rather to test whether this link is wide enough:

sw = dc1; pt = 1; sw ← dc2; pt← 4; c ≤ 4 .

The above WNetKAT expression only tests whether c is less than or equal to 4. It makes
sure that the value of c (which is r) does not exceed the capacity of the following link. If it
exceeds the capacity of the link, then a flow of rate r cannot use this link. Therefore, the
test packet is dropped already. The capacitated reachability question can then be answered
by checking whether the following expression is equal to drop:

scr ← A; dst← B; c← r; sw ← A; pt(pt)∗; sw = B .

If the above formula does not equal drop, then A can communicate at rate at least r to B.

Splittable flow scenario: For the splittable scenario, the situation is far more complicated.
For example, in dc2, packets arriving at port 4 are sent out through port 1 or port 2, and
port 2 prioritizes port 1. That is, if the incoming traffic has rate 4, then a share of 3 units
will be sent out through port 2, and a 1 share through port 1.

Note that also here, still only one single test packet will be sent to collect the capacity
information. This information will be stored in the packet-variable c as well. However, when
the test packet arrives at a switch where a flow can be split, copies of the packet are sent
(after updating the c according to the bandwidth of each path) to all possible paths, to
record the capacity along all other paths. This exploits the fact that WNetKAT (NetKAT)
treats the & operator as conjunction in the sense that both operations are performed, rather
than disjunction, where one of the two operations would be chosen non-deterministically
(according to the usual Kleene interpretation). Again, we emphasize that we will refer to c
stored in one single test packet, and not the actual real data flow. Now the topology will
update c as in the unsplittable case. However, the policy needs to not only decide which
ports the packets go to, but also update c according to the split policy. E.g.„ at dc2, the
data flow from dc1 to dc5 at rate 4 is sent out through port 1 at rate 3, and the port 3 at 1.
And if the rate is smaller than or equal to 3, e.g., 2, then the whole flow of rate 2 will be
sent out through port 1. The following WNetKAT formula specifies this behavior:

src = dc1; dst = dc5; sw = dc2; pt = 4; c ≤ 5
(pt← 1; c← min{3, c}
& pt← 3; c← max{0, c− 3})

OPODIS 2016



18:12 WNetKAT: A Weighted SDN Programming and Verification Language

The test c ≤ 5 ensures that the flow does not exceed the capacity of both paths. Notice that
even when the size of the flow is small enough for one path, a copy of the test packet with c = 0
will still be sent to the other. This ensures that sufficient information is available at the
switch where flows merge. That is, the switch collects the weights the packets carry (c in our
example). The switch will only push packets to the right out-ports after all expected packets
have arrived. This will happen before the switch sends the packet to the right out-ports. For
example, at dc4, the flow from dc1 to dc5 might arrive in from ports 1 and 2 and will be
sent out through port 3. In order to record the capacity of both links, switch-variables C
and X are introduced, for each possible merge. For example, the following table provides
the merging rules for the switch at dc4, where X is the counter for the merge, and C stores
the current capacity of the arriving test packets. Initially, X is set to the number of in-ports
for the merge, and C is set to 0.

src dst in out C X

dc1 dc5 1, 2 3 0 2
dc5 dc2 3, 4 1, 2 0 2

The first line of the rules in the table can be specified in WNetKAT as follows:

sw = dc4; src = dc1; dst = dc5; (pt = 1 & pt = 2);
C ← C + c;X ← X − 1;

(X 6= 0; drop & X = 0; c← C; pt← 3)

When a packet from dc1 to dc5 arrives at port 1 or 2 of dc4, first the switch collects the
value of c and adds it to the switch-variable C, then decrements X to record that one packet
arrived. Afterwards, we test whether all expected packets arrived (X = 0). If not, the current
one is dropped; if yes, we send the current packet out to port 3. The reason that we can
drop all packets except for the last, is that all those packets carry exactly the same values.
Therefore, we eventually only need to include the merged capacity (C) in the last packet,
and propagate it.

Combining the split and merge cases, the policy of the switch can be defined. For example,
the second line of the merging rule table can be specified as follows, by first merging from
port 3 and 4, and then splitting to port 1 and 2:

sw = dc4; src = dc5; dst = dc2; (pt = 3 & pt = 4);
C ← C + c;X ← X − 1;
(X 6= 0; drop & X = 0; c← C; c ≤ 8

(pt← 1; c← min{6, c}
& pt← 2; c← max{0, c− 6}))

Then the splittable capacited reachability question can be answered by checking whether the
following expression evaluates to drop:

scr ← A; dst← B; c← r; sw ← A; pt(pt)∗;
sw = B;X = 0; c ≥ r

If the above formula does not equal drop, then A can communicate at rate at least r to B.

4.3 Service Chaining
The virtualization and programmability trend is not limited to the network, but is currently
also discussed intensively for network functions in the context of the Network Function



K.G. Larsen, S. Schmid, and B. Xue 18:13

Virtualization (NFV) paradigm. SDN and NFV nicely complement each other, enabling
innovative new network services such as service chains [17]: network functions which are tra-
versed in a particular order (e.g., first firewall, then cache, then wide-area network optimizer).
Our language allows to reason about questions such as Are sequences of network functions
traversed in a particular order, without violating node and link capacities? WNetKAT can
easily be used to describe weighted aspects also in the context of service chains. In particular,
network functions may both increase (e.g., due to addition of an encapsulation header, or a
watermark) or decrease (e.g., a WAN optimizer, or a cache) the traffic rate, both additively
(e.g., adding a header) or multiplicatively (e.g., WAN optimizer).

I Example 5. Let us go back to Figure 1, and consider a service chain of the form (s, F1, F2, t):
traffic from s to t should first traverse a function F1 and then a function F2, before reaching t.
For example, F1 may be a firewall or proxy and F2 is a WAN optimizer. The virtualized
functions F1 and F2 may be allocated redundantly and may change the traffic volume.
Using WNetKAT, we can ask questions such as: What is the maximal rate at which s can
transmit traffic into the service chain? or Can we realize a service chain of cost (e.g., latency)
at most x?. Let us consider the following example: The question “Can s reach t at cost/latency
at most ` and/or at rate/bandwidth at least r, via the service chain functions F1 and F2?”, can
be formulated by combining the reachability problems above and the waypointing technique
in [1]. For example, in case of cost reachability, we can ask if the following WNetKAT formula
equals drop.

src← s; dst← t; co← 0; sw ← s; pt(pt)∗;
sw = F1; pF1 ; tpt(pt)∗; sw = F2; pF2 ;
tpt(pt)∗; sw = t; co ≤ `; ca ≥ r

Note that in this example, we considered an unsplittable scenario. For the splittable scenario,
we can extend the splittable capacitated reachability use case above analogously.

5 (Un)Decidability

In this section we shed light on the fundamental decidability of weighted SDN programming
languages like WNetKAT. Given today’s trend toward more quantitative networking, we
believe that this is an important yet hardly explored dimension. In particular, we will
establish an equivalence between WNetKAT and weighted automata.

In the following, we will restrict ourselves to settings where quantitative variables of
the same type behave similarly in the entire network: For example, the cost variables (e.g.,
quantifying latencies) in the network are always added up along a given path, while capacity
variables require minimum operations along different paths. This is a reasonable for real-world
networks.

The definition of the weighted automata used here is slightly different from those usually
studied, e.g., [6, 9]. However, it is easy to see that they are equivalent.

We first introduce some preliminaries. A semiring is a structure (K,⊕,⊗, 0, 1), where
(K,⊕, 0) is a commutative monoid, (K,⊗, 1) is a monoid, multiplication distributes over
addition k ⊗ (k′ ⊕ k′′) = k ⊗ k′ ⊕ k ⊗ k′′, and 0 ⊗ k = k ⊗ 0 = 0 for each k ∈ K. For
example, (N ∪ {∞},min,+,∞, 0) and (N ∪ {∞},max,+,∞, 0) are semirings, named the
tropical semiring. (N ∪ {∞},max,min, 0,∞) is also a semiring. A bimonoid is a structure
(K,⊕,⊗, 0, 1), where (K,⊕, 0) and (K,⊗, 1) are monoids. K is called a strong bimonoid if ⊕
is commutative and 0⊗ k = k ⊗ 0 = 0 for each k ∈ K. For example, (N ∪ {∞},+,min, 0,∞)
is a (strong) bimonoid, named the tropical bimonoid.

OPODIS 2016



18:14 WNetKAT: A Weighted SDN Programming and Verification Language

Now fix a semiring/bimonoid K and an alphabet Σ. A weighted finite automaton (WFA)
over K and Σ is a quadruple A = (S, s, F, µ) where S is a finite set of states, s is the starting
state, F is set of the final states, µ : Σ→ KS×S is the transition weight function and λ is
the weight of entering the automaton. For µ(a)(s, s′) = k, we write s a−→k s

′.
Let At be the set of complete non-quantitative tests and P be the set of complete non-

quantitative assignments. Let Ω be the set of complete quantitative tests and ∆ be the set
of complete quantitative assignments.

A weighted NetKAT automata is a finite state weighted automaton A = (S, s, F, λ, µ)
over a structure K and alphabet Σ. The inputs to the automaton are so called reduced
strings introduced in [1, 15], which belong to the set U = At ·Ω ·P ·∆ · (dup ·P ·∆)∗, i.e., the
strings belonging to U are of the form:

αωp0δ0 dup p1δ1 dup · · · dup pnδn

for some n ≥ 0. Intuitively, µ attempts to consume αωp0δ0 dup from the front of the input
string and move to a new state with a weight and the new state has the residual input string
α0ω0 p1δ1 dup · · · dup pnδn.

The following construction shows the equivalence between WNetKAT and weighted
automata.

From WFA to WNetKAT. Let A = (S, s, F, λ, µ) be a weighted NetKAT automata over
K and Σ. An accepting path in A s

r1−→α1β1 s1
r2−→α2β2 s2 · · ·

rn−→αnβn
sn can be write as

the following WNetKAT expression:

α1ω1p1δ1 dup p2δ2 dup · · · dup pnδn ,

where
1. ω1 = λ, δ1 = ω1 ⊕ r and δi = δi−1 ⊕ ri for i = 2, ..., n;
2. pi = pβi

for i = 1, ..., n.

From WNetKAT to WFA. Let e be a weighted automata expression, then following [1, 15],
we can define a set of reduced strings R which are semantically equivalent to e. We define a
weighted NetKAT automata A = (S, s, F, λ, µ) over a structure K and alphabet Σ, where

s = R and Σ = At× At.
µ : Σ → KS×S is defined as: µ(α, β)(u1, u2) = r iff u2 = {βω′x | αωpδ dup x ∈
u1}, where β = αp, ω

′ = δω and ω ⊗ r = ω′. For short write u1
r−→αβ u2.

S = {s} ∪ {u ⊆ 2U | ∃ µ-path s→ · · · → u}.
F = {u | αωpδ ∈ u ∈ S}.
λ = {ω | αωx ∈ s}.

We have the following theorem.

I Theorem 6.
1. For every finite weighted WNetKAT automaton A, there exists a WNetKAT expression e

such that the set of reduced strings accepted by A is the set of reduced strings of e.
2. For every WNetKAT expression e, there is a weighted WNetKAT automaton A accepting

the set of the reduced strings of e.

Let us just give some examples:
1. For the cost reachability use case, there exists a weighted WNetKAT automaton over the

tropical semiring (N ∪ {∞},+,min,∞, 0) that accepts the set of reduced strings of the
WNetKAT expression in Section 4.1.



K.G. Larsen, S. Schmid, and B. Xue 18:15

2. For the capacitated reachability: (i) There exists a weighted WNetKAT automaton over
the semiring (N ∪ {∞},max,min, 0,∞) that accepts the set of the reduced strings of the
WNetKAT expression for the splitable case in Section 4.2. (ii) There exists a weighted
WNetKAT automaton over the tropical bimonoid (N ∪ {∞},min,+, 0,∞) that accepts
the set of the reduced strings of the WNetKAT expression for the unsplitable case in
Section 4.2.

From this relationship, we have the following theorem about the (un)decidability of
WNetKAT expression equivalence.

I Theorem 7. Deciding equivalence of two WNetKAT expressions is equal to deciding the
equivalence of the two corresponding weighted WNetKAT automata.

For all the semiring and bimonoid we encountered in this paper, the WFA equivalence is
undecidable. Therefore, the equivalence is also undeciable.

This negative result highlights the inherent challenges involved in complex network
languages which are powerful enough to deal with weighted aspects.

However, we also observe that in many practical scenarios, the above undecidability result
is too general and does not apply. For example, most of the use cases presented in in Section
4 can actually be reduced to test emptiness: we often want to test whether a given WNetKAT
expression e equals 0, i.e., whether the corresponding weighted NetKAT automaton is empty.
Indeed, there seems to exist an intriguing relationship between emptiness and reachability.

I Theorem 8. Deciding whether a WNetKAT expression is equal to 0 is equal to deciding
the emptiness of the corresponding weighted automaton.

Interestingly, as shown in [7, 8, 21, 22], the emptiness problem is decidable for several
semirings/bimonoids, e.g., the tropical semiring and the tropical bimonoid used in this paper.
This leads to the decidability of the WNetKAT equivalence over these structures.

Another interesting domain with many decidability results are unambiguous regular
grammars and unambiguous finite automata [40]. Accordingly, in our future work, we aim
to extend these concepts to the weighted world and explore the unambiguous subsets of
WNetKAT which might enable decidability for equivalence.

6 Conclusion

While OpenFlow today does not per se accommodate stateful packet operations or support
arithmetic computations, we currently witness a trend toward computationally more advanced
and stateful packet-processing functionality, see e.g., P4 or OpenState. Moreover, in order to
implement arithmetic operations (see e.g., Equations (3) and (4)), we can simply use lookup
tables realized as OpenFlow rules, see the technique in [32]. For a simple yet inefficient
solution to compile WNetKAT switch variables is to use round robin groups [32].

In our future research, we aim to chart a more comprehensive landscape of the decidability
and decision complexity of WNetKAT in different settings, and related to this, investigate
the axiomatization in more depth. On the practical side, we are exploring possibilities for
compiling WNetKAT to (extended) OpenFlow protocols such as P4 [4].

Finally, we refer the reader to our technical report [25] for additional details and use
cases.

Acknowledgements. We would like to thank Alexandra Silva, Nate Foster, Dexter Kozen,
Manfred Droste and Fredrik Dahlqvist for many inputs and discussions on WNetKAT.

OPODIS 2016



18:16 WNetKAT: A Weighted SDN Programming and Verification Language

References
1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,

Cole Schlesinger, and David Walker. NetKAT: Semantic Foundations for Networks. SIG-
PLAN Not., 49(1), January 2014. doi:10.1145/2578855.2535862.

2 Ryan Beckett, Michael Greenberg, and David Walker. Temporal NetKAT. In Proc.
37th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 386–401, 2016.

3 Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. OpenState: Pro-
gramming Platform-independent Stateful Openflow Applications Inside the Switch. SIG-
COMM Comput. Commun. Rev., 44(2), April 2014.

4 Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Pro-
gramming Protocol-independent Packet Processors. SIGCOMM CCR, 44(3):87–95, 2014.
doi:10.1145/2656877.2656890.

5 Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz. Directions
in active networks. Communications Magazine, IEEE, 36(10):72–78, 1998.

6 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In Proc. ICALP,
2005.

7 Manfred Droste and Doreen Götze. The support of nested weighted automata. In Proc.
Workshop on Non-Classical Models for Automata and Applications – (NCMA), 2013.

8 Manfred Droste and Doreen Heusel. The supports of weighted unranked tree automata.
Fundam. Inform., 2015.

9 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer
Science & Business Media, 2009.

10 Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas Sekar,
and George Varghese. Efficient network reachability analysis using a succinct control plane
representation. In Proc. 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 217–232, 2016.

11 Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN. Queue, 11(12):20:20–
20:40, December 2013.

12 Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krish-
namurthi. Participatory Networking: An API for Application Control of SDNs. In Proc.
ACM SIGCOMM, pages 327–338, 2013.

13 Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford,
Alec Story, and David Walker. Frenetic: A network programming language. In Proc.
16th ACM SIGPLAN International Conference on Functional Programming (ICFP), pages
279–291, 2011.

14 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic netkat. In Proc. ESOP, 2016.

15 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
coalgebraic decision procedure for NetKAT. In ACM SIGPLAN Notices, 2015.

16 Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Stephen Stuart Jonathan Zolla,
Urs Hölzle, and Amin Vahdat. B4: Experience with a Globally-deployed Software Defined
WAN. SIGCOMM Comput. Commun. Rev., 43(4), 2013. doi:10.1145/2486001.2486019.

17 Wolfgang John, Konstantinos Pentikousis, George Agapiou, Eduardo Jacob, Mario Kind,
Antonio Manzalini, Fulvio Risso, Dimitri Staessens, Rebecca Steinert, and Catalin Meirosu.
Research directions in network service chaining. In Proc. IEEE SDN for Future Networks
and Services, 2013. doi:10.1109/SDN4FNS.2013.6702549.

http://dx.doi.org/10.1145/2578855.2535862
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1109/SDN4FNS.2013.6702549


K.G. Larsen, S. Schmid, and B. Xue 18:17

18 Garvit Juniwal, Nikolaj Bjorner, Ratul Mahajan, Sanjit Seshia, and George Varghese.
Quantitative network analysis. Technical Report, 2016.

19 Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static
checking for networks. In Proc. USENIX NSDI, 2012.

20 Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
Veriflow: Verifying network-wide invariants in real time. In Proc. USENIX NSDI, 2013.

21 Daniel Kirsten. The support of a recognizable series over a zero-sum free, commutative
semiring is recognizable. In Developments in Language Theory, 13th International Confer-
ence, DLT 2009, Stuttgart, Germany, June 30 – July 3, 2009. Proceedings, pages 326–333,
2009.

22 Daniel Kirsten and Karin Quaas. Recognizability of the support of recognizable series over
the semiring of the integers is undecidable. Inf. Process. Lett., 111(10):500–502, 2011.

23 Turgay Korkmaz and Marwan Krunz. Multi-constrained optimal path selection. In Proc.
IEEE INFOCOM 2001, volume 2, pages 834–843, 2001.

24 Dexter Kozen. Kleene algebra with tests and commutativity conditions. Springer, 1996.
25 Kim G. Larsen, Stefan Schmid, and Bingtian Xue. WNetKAT: A Weighted SDN Program-

ming and Verification Language. In ArXiv technical report 1608.08483, 2016.
26 Tamas Lukovszki and Stefan Schmid. Online admission control and embedding of service

chains. In Proc. SIROCCO, 2015.
27 Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey,

and Samuel Talmadge King. Debugging the data plane with anteater. In Proc. ACM
SIGCOMM, 2011. doi:10.1145/2018436.2018470.

28 Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A compiler and
run-time system for network programming languages. In ACM SIGPLAN Notices, 2012.

29 Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing software-defined networks. In Proc. USENIX NSDI, pages 1–14, 2013.

30 Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv, and Sharon
Shoham. Decentralizing SDN policies. In ACM SIGPLAN Notices, 2015.

31 M. Paredes-Farrera, M. Fleury, and M. Ghanbari. Router response to traffic at a bottleneck
link. In Proc. TRIDENTCOM, 2006.

32 Liron Schiff, Michael Borokhovich, and Stefan Schmid. Reclaiming the brain: Useful open-
flow functions in the data plane. In Proc. ACM HotNets, 2014.

33 Liron Schiff, Petr Kuznetsov, and Stefan Schmid. In-Band Synchronization for Distributed
SDN Control Planes. Proc. ACM SIGCOMM CCR, 2016.

34 Cole Schlesinger, Hitesh Ballani, Thomas Karagiannis, and Dimitrios Vytiniotis. Quality
of service abstractions for software-defined networks. Technical Report, 2016.

35 David Schneider. The microsecond market. In Proc. IEEE Spectrum, 2012.
36 Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and

Vyas Sekar. Making middleboxes someone else’s problem: Network processing as a cloud
service. In Proc. ACM SIGCOMM 2012, 2012. doi:10.1145/2342356.2342359.

37 Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and Bruce Maggs. The
internet at the speed of light. In Proc. ACM HotNets-XIII, 2014.

38 Jonathan M. Smith and Scott M. Nettles. Active networking: one view of the past, present,
and future. Proc. IEEE Transactions on Systems, Man, and Cybernetics: Applications and
Reviews, 34(1):4–18, 2004.

39 Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert Kleinberg,
Emin Gun Sirer, and Nate Foster. Merlin: A language for provisioning network resources.
In Proc. ACM CoNEXT, pages 213–226, 2014.

OPODIS 2016

http://dx.doi.org/10.1145/2018436.2018470
http://dx.doi.org/10.1145/2342356.2342359


18:18 WNetKAT: A Weighted SDN Programming and Verification Language

40 Richard E. Stearns and Harry B. Hunt. On the equivalence and containment problems
for unambiguous regular expressions, grammars, and automata. In Proc. 22nd Annual
Symposium on Foundations of Computer Science (SFCS), 1981.

41 Renata Teixeira, Keith Marzullo, Stefan Savage, and Geoffrey M. Voelker. Characterizing
and measuring path diversity of internet topologies. In ACM SIGMETRICS PER, 2003.
doi:10.1145/885651.781069.

42 Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich, Mooly Sagiv, Scott
Shenker, and Sharon Shoham. Some complexity results for stateful network verification.
In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 2016.

43 Andreas Voellmy, Ashish Agarwal, and Paul Hudak. Nettle: Functional reactive program-
ming for openflow networks. Technical report, Yale University, 2010.

44 Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak. Maple:
simplifying SDN programming using algorithmic policies. In SIGCOMM CCR, 2013. doi:
10.1145/2534169.2486030.

45 Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and Prithwish
Basu. Formally verifiable networking. Proc. ACM HotNets, 2009.

46 Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey. Enfor-
cing customizable consistency properties in software-defined networks. In Proc. USENIX
NSDI, 2015.

http://dx.doi.org/10.1145/885651.781069
http://dx.doi.org/10.1145/2534169.2486030
http://dx.doi.org/10.1145/2534169.2486030

	Introduction
	Contributions
	Related Work

	Background
	WNetKAT
	Applications
	Cost Reachability
	Capacitated Reachability
	Service Chaining

	(Un)Decidability
	Conclusion

