
Using Read-k Inequalities to Analyze a
Distributed MIS Algorithm∗†

Sriram Pemmaraju1 and Talal Riaz2

1 Department of Computer Science, University of Iowa, Iowa City, USA
sriram-pemmaraju@uiowa.edu

2 Department of Computer Science, University of Iowa, Iowa City, USA
talal-riaz@uiowa.edu

Abstract
Until recently, the fastest distributed MIS algorithm, even for simple graph classes such as unori-
ented trees that can contain large independent sets within neighborhoods, has been the simple
randomized algorithm discovered independently by several researchers in the late 80s. This al-
gorithm (commonly called Luby’s algorithm) computes an MIS of an n-node graph in O(logn)
communication rounds (with high probability). This situation changed when Lenzen and Wat-
tenhofer (PODC 2011) presented a distributed (randomized) MIS algorithm for unoriented trees
running in O(

√
logn · log logn) rounds. This algorithm was slightly improved by Barenboim

et al. (FOCS 2012), resulting in an O(
√

logn · log logn)-round (randomized) MIS algorithm for
trees. At their core, these algorithms still run Luby’s algorithm, but only up to the point at
which the graph has been “shattered” into small connected components that can be indepen-
dently processed in parallel.

The analyses of these tree MIS algorithms critically depends on “near independence” among
probabilistic events, a feature that arises from the tree structure of the network. In their paper,
Lenzen and Wattenhofer express hope that their algorithm and analysis could be extended to
graphs with bounded arboricity. We show how to do this in the current paper. By using a
new tail inequality for read-k families of random variables due to Gavinsky et al. (Random
Struct Algorithms, 2015), we show how to deal with dependencies induced by the recent tree
MIS algorithms when they are executed on bounded arboricity graphs. Specifically, we analyze
a version of the tree MIS algorithm of Barenboim et al. and show that it runs in O(poly(α) ·√

logn · log logn) rounds in the CONGEST model for graphs with arboricity α.
While the main thrust of this paper is the new probabilistic analysis via read-k inequalities,

we point out that for small values of α, this algorithm is faster than the MIS algorithm of
Barenboim et al. specifically designed for bounded arboricity graphs. In this context, it should
be noted that recently (in SODA 2016) Ghaffari presented a novel distributed MIS algorithm for
general graphs that runs in O(log ∆) + 2O(

√
log logn) rounds and a corollary of this algorithm is

an O(logα+
√

logn)-round MIS algorithm on graphs with arboricity α.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Bounded Arboricity Graphs, CONGEST model, Luby’s Algorithm, Max-
imal Independent Set, Read-k Inequality

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.9

∗ A version of this work appeared as a brief announcement in PODC 2016 [11].
† This work is supported in part by National Science Foundation grant CCF-1318166.

© Sriram Pemmaraju and Talal Riaz;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

1 Introduction

A set of nodes in a graph is said to be independent if no two nodes in the set are adjacent.
A maximal independent set (MIS) is an independent set that is maximal with respect to
inclusion. Computing an MIS is a fundamental problem in distributed computing because
it nicely captures the essential challenge of symmetry breaking and also for its myriad
applications to other problems. The fastest algorithm for MIS is a simple, randomized
algorithm discovered more than 25 years ago, independently by several researchers [1, 9, 7].
This algorithm computes an MIS for an n-node graph in O(logn) communication rounds
with high probability (whp), i.e., with probability at least 1 − 1/n. The essence of this
algorithm is that in each round, each still-active node tentatively joins the MIS with some
probability and then either backs off from this choice or makes it permanent depending on
whether neighboring nodes have made conflicting choices. Following popular usage, we refer
to this as Luby’s algorithm. More recently, Métivier et al. [10] proposed a variant of Luby’s
algorithm in which in each round, each still-active node v picks a priority, a real number
r(v) uniformly at random from [0, 1] and joins the MIS if r(v) is greater than the priorities
chosen by all neighbors. This algorithm also runs in O(logn) rounds whp [10]1.

In PODC 2011, Lenzen and Wattenhofer [8] showed that an MIS in an n-node unoriented
tree can be computed in O(

√
logn · log logn) rounds whp. Note that if a tree is consistently

oriented (i.e., the tree is rooted at an arbitrary node and all nodes know their parent with
respect to this root) then an MIS can be computed in O(log∗ n) rounds using the deterministic
coin tossing technique of Cole and Vishkin [4]. The first phase of the Lenzen-Wattenhofer
algorithm is just the algorithm of Métivier et al. and in a sense all the important hard
work happens in this phase. The running time analysis of the algorithm is sophisticated
and depends critically on the fact that the tree structure ensures that there are very
few dependencies among probabilistic events in the algorithm. There have been previous
sublogarithmic-round MIS algorithms for special graph classes (e.g., the O(log∗ n)-round MIS
algorithm on growth-bounded graphs [13]), but not for graphs that can have arbitrarily large
independent sets in neighborhoods. Thus, in a sense, the Lenzen-Wattenhofer MIS result
is a breakthrough because it shows that MIS can be computed in sublogarithmic rounds
even in settings where neighborhoods can have arbitrarily many independent nodes. More
recently in FOCS 2012, Barenboim et al. [2, 3] presented a tree MIS algorithm (similar to
the Lenzen-Wattenhofer algorithm) that runs in O(

√
logn · log logn) rounds whp, improving

the running time of the Lenzen-Wattenhofer algorithm slightly. This tree MIS algorithm
also uses the algorithm of Métivier et al. to do a significant portion of the work.

A natural question that arises from the analyses of these tree MIS algorithms is whether
the algorithms and analyses can be extended to bounded arboricity graphs. Lenzen and
Wattenhofer raise this question at the end of the “Introduction” section in their paper [8]. A
graph G is said to have arboricity α if α is the minimum number of forests that the edges
of G can be partitioned into. From this it follows that the edges of a graph with arboricity
α can be oriented in such a manner that each node has at most α outgoing edges. Clearly,
forests have arboricity 1, but the family of graphs with constant arboricity is quite rich
and includes all planar graphs, graphs with constant treewidth, graphs with constant genus,
family of graphs that exclude a fixed minor, etc. Unfortunately, the Lenzen-Wattenhofer

1 In fact, Algorithm A in Luby’s 1986 paper [9] is essentially identical to the algorithm of Métivier
et al., the only difference being that in Luby’s Algorithm, vertices choose priorities from the range
{1, 2, . . . , n4}. What we refer to as Luby’s algorithm above appears as Algorithm B in Luby’s paper.

S. Pemmaraju and T. Riaz 9:3

analysis and the Barenboim et al. analysis runs into trouble for graphs with even constant
arboricity because of the nature of dependencies between probabilistic events in the algorithm.
The issue is common to both algorithms because it arises in the portions of the algorithms
that rely on the algorithm of Métivier et al.

The source of the difficulty can be explained as follows. Even though these algorithms
run on unoriented trees, for the purposes of analysis it can be assumed that the input
tree is rooted at an arbitrary node. Because the graph is a tree, probabilistic events at
children of a node v are essentially independent, the only slight dependency being caused
by the interaction via their parent, namely v. For graphs with arboricity greater than 1
the dependency structure among the probabilistic events can be much more complicated.
Suppose (for the purposes of the analysis) that we orient the edges of an arboricity-α graph
such that each node has at most α out-neighbors. Let us call the out-neighbors of a node v
its parents (denoted Parent(v)) and the in-neighbors, its children (denoted Child(v)). For a
node v, consider the set Child(v) and the dependencies among probabilistic events at nodes
in Child(v). The events we are referring to are of the type “w joins the MIS” or “a neighbor
of w joins the MIS” for w ∈ Child(v). Even though each node has at most α parents, a node
w ∈ Child(v) may share children with every other node in Child(v) and as a result there
could be dependencies between events at w and events at any of the other nodes in Child(v).
Thus it is not clear how to take advantage of the structure of bounded arboricity graphs in
order to mimic the analysis in [8, 2, 3].

The main purpose of this paper is to show that recent results on read-k families of
random variables deal with roughly this type of dependency structure and therefore provide
a new approach to analyzing algorithms in the style of Métivier et al. with more complicated
dependency structure. Using analysis based on read-k inequalities (see the next section), we
show that the tree MIS algorithms of Lenzen and Wattenhofer [8] and Barenboim et al. [3, 2]
work for bounded arboricity graphs as well. We believe that this analytical tool may be new
to the distributed computing community, but will prove useful for the analysis of randomized
distributed algorithms in general.

1.1 Read-k Inequalities

We now define a read-k family of random variables. Let {Yj | 1 ≤ j ≤ n} be a set of
random variables such that each random variable Yj is a function of some subset of the set of
independent random variables {Xi | 1 ≤ i ≤ m}. For each 1 ≤ j ≤ n, let Pj ⊆ {1, 2, . . . ,m},
let fj be a boolean function of {Xi | i ∈ Pj}, and define Yj := fj((Xi)i∈Pj). The collection of
random variables Yj is called a read-k family if every 1 ≤ i ≤ m appears in at most k of the
Pj ’s. In other words, each Xi is allowed to influence at most k of the Yj ’s. Note that the Yj ’s
can have a complicated dependency structure amongst themselves – it is their dependency
on the Xi’s that is bounded. For example, the dependency graph of the Yj ’s can even be a
clique!

We are now ready to state the first of the two read-k inequalities from Gavinsky et al. [5]
that we use. This inequality provides a bound on the conjunction of a collection of events
whose indicator variables form a read-k family.

I Theorem 1 (Theorem 1.2, [5]). Let Y1, Y2, · · · , Yn be a family of read-k indicator variables
with Pr[Yi = 1] = p. Then, Pr[Y1 = Y2 = · · · = Yn = 1] ≤ pn/k.

If the Yj ’s were independent, then the probability that Y1 = Y2 = · · · = Yn = 1 would
simply be pn. Thus Theorem 1 is essentially saying that the read-k family structure of the

OPODIS 2016

9:4 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

dependencies among the Yj ’s allows us to obtain an upper bound on the probability that is
an exponential factor 1/k worse than what is possible had the Yj ’s been independent.

Gavinsky et al. [5] use Theorem 1 and information-theoretic arguments to derive the
following tail inequality on the sum of indicator random variables that form a read-k family.

I Theorem 2 (Theorem 1.1, [5]). Let Y1, · · · , Yn be a family of read-k indicator variables
with Pr[Yi = 1] = pi. Define p := 1

n

∑n
i=1 pi and Y :=

∑n
i=1 Yi. Then for any ε, δ > 0,

Pr(Y ≤ (p− ε)n) ≤ exp
(
−2ε2n

k

)
, (1)

Pr(Y ≤ (1− δ)E[Y]) ≤ exp
(
−δ

2E[Y]
2k

)
. (2)

Gavinsky et al. only state Form (1) of the tail inequality in their paper. But, Form (2) is
more convenient for us and it is fairly routine to derive this from Form (1). See [14] for the
derivation. Note that upper tail inequalities corresponding to (1) and (2) also exist, but
have not been shown here for brevity. As in Theorem 1, these tail inequalities are also an
exponential 1/k factor worse than corresponding Chernoff bounds that we might have used,
had the Yj ’s been independent. Gavinsky et al. [5] also point out that these tail inequalities
are more general than those that can be obtained by observing that Y is a k-Lipschitz
function and using standard Martingale-based arguments such as Azuma’s inequality.

To see that the above tools are well-suited for analyzing algorithms in the style of Métivier
et al. on bounded arboricity graphs, let us reconsider the situation described earlier. Consider
a graph G with arboricity α and fix an arbitrary node v in G, and consider the set Child(v)
of children of v. For the moment, ignore edges among nodes in Child(v) and also ignore the
influence of parents (v and other parents) on nodes in Child(v), thus focusing only on the
children of nodes in Child(v). For a node w ∈ Child(v), let Yw be an indicator variable for a
probabilistic event at node w. Now suppose that Yw depends on independent random choices
made by w and its children. For example, Yw could be a boolean variable indicating the event
that the priority of w is larger than the priorities of children of w. This models the situation
in the algorithm of Métivier et al. [10], where w joining the MIS depends on random real
values (independently) chosen by w and its children. (Recall that we are ignoring parents for
the moment.) The structure of an arboricity-α graph and the associated edge-orientation
ensures that each node has at most α parents and therefore the random choice at each node
can influence at most α of the Yw’s. Thus the set {Yw | w ∈ Child(v)} forms a read-α family
and we can apply Theorems 1 and 2 to bound Pr(∩wYw = 1) and to show that

∑
w Yw is

concentrated around its expectation.
The above example illustrates the simplest application of read-k inequalities in our analysis.

Somewhat surprisingly, we use read-k inequalities to evaluate probabilistic interactions
between a node and its parents also. This may seem impossible to do given that a parent can
have arbitrarily many children and thus a random choice at a parent can influence events at
arbitrarily many children. However, in our algorithm nodes with extremely high degree opt
out of the competition (temporarily) and this turns out to be sufficient to bound the number
of children a parent can influence, leading to our use of read-k inequalities, with appropriate
k, to analyze the interaction between nodes and their parents. Finally, our analysis also
relies on interactions between a node and its grandchildren, leading to our use of read-Θ(α2)
families as well.

S. Pemmaraju and T. Riaz 9:5

1.2 Our Result
We apply a read-k-inequality-based analysis to the execution of the tree MIS algorithm of
Barenboim et al. [3, 2] on bounded arboricity graphs. We could have chosen to analyze the tree
MIS algorithm of Lenzen and Wattenhofer, but for reasons of exposition we use the algorithm
of Barenboim et al. We present an algorithm that we call BoundedArbIndependentSet,
which is essentially identical to the TreeIndependentSet algorithm of Barenboim et
al. (Section 8, [3]), except for parameter values (which now depend on the arboricity α).
Specifically, we show the following result.

I Theorem 3. The tree MIS algorithm of Barenboim et al. [3, 2] (with appropriate parameter
values) can be used to compute an MIS in the CONGEST model on the family of graphs
with arboricity α in O(poly(α) ·

√
logn · log logn) rounds, whp.

This result can also be seen as an improvement over the MIS result on bounded arboricity
graphs due to Barenboim et al. [3, 2]. In their paper, Barenboim et al. have a separate
algorithm (distinct from their tree MIS) algorithm that computes an MIS on graphs with
arboricity α in O(log2 α+ log2/3 n) rounds. The dependency on n of the running time of our
algorithm is asymptotically better, implying that for small α (i.e., α = O(logc n) for a small
enough constant c) our algorithm is asymptotically faster. In our subsequent calculations the
degree of polynomial in α in the running time comes out to be 9. It is not difficult to reduce
this degree, but it does seem difficult with the current algorithm to improve the dependency
on α to something better than a polynomial and to replace the multiplication between the
poly(α)-term and the

√
logn · log logn-term by an addition.

Recently, in SODA 2016 Ghaffari has presented a novel MIS algorithm [6] that runs in
O(log ∆) + 2O(

√
log logn) rounds on any n-vertex graph with maximum degree ∆. In Luby’s

MIS algorithm, a node’s “desire” to join the MIS is a simple function of its degree with
respect to the still-active nodes in the graph. In Ghaffari’s MIS algorithm each node explicitly
maintains a desire-level that is initially set to 1/2, but is updated in each iteration depending
on the aggregate desire-level of nodes its neighborhood. Using techniques from [3, 2], Ghaffari
obtains, as a corollary of this main result, an O(logα +

√
logn)-round MIS algorithm for

n-vertex graphs with arboricity α. This of course dominates the round complexity our
algorithm for all values of α and n. Thus the main contribution of this paper is not the
fastest distributed MIS algorithm for bounded arboricity graphs, but it is (i) introducing
the use of read-k inequalities for the analysis of randomized distributed algorithms and (ii)
showing that recent tree MIS algorithms are effective for bounded arboricity graphs as well,
but need more sophisticated analysis.

2 MIS Algorithm for Bounded Arboricity Graphs

We start by presenting an algorithm that we call BoundedArbIndependentSet, which
is essentially identical to the TreeIndependentSet algorithm of Barenboim et al. (Sec-
tion 8, [3]), except for parameter values (Θ, Λ, ρk) which now depend on α as well. We
emphasize this point because we are essentially analyzing the TreeIndependentSet algo-
rithm (via a new approach based on the read-k inequalities), but with bounded arboricity
graphs as input.

The algorithm (see Algorithm 1) begins by initializing two sets I and B as empty.
I denotes the set of nodes which have joined the MIS and B will store a set of so-called
“bad” nodes. As nodes join I and B, they exit the algorithm, i.e., become inactive. In
addition, neighbors of nodes in I also exit the algorithm and become inactive. We use VIB to

OPODIS 2016

9:6 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

Algorithm 1: BoundedArbIndependentSet(Graph G):
1: Initialize sets I, B ⊆ V (G): I ← φ; B ← φ

2: for each scale k from 1 to Θ :=
⌊
log
(

∆
1176·16α10 ln2 ∆

)⌋
do

Initialize ρk ← 8 ln ∆ ·∆/2k+1

2(a) Execute Λ := dp · 8α2(32α6 + 1) · ln(260α4 ln2 ∆)e times
Each node v ∈ VIB chooses a priority r(v):

r(v)←

{
0, if degIB(v) > ρk

a real in(0, 1) chosen uniformly at random otherwise

I ← I ∪ {v ∈ VIB |r(v) > max{r(w)|w ∈ ΓIB(v)}}
VIB ← VIB \ (I ∪ ΓIB(I))

2(b) Each node v is marked “bad” if |{w ∈ ΓIB(v)|degIB(w) > ∆/2k + α}| > ∆/2k+2

B ← B ∪ {v ∈ VIB | v is marked “bad”}
VIB ← VIB \B

end
3: return (I, B)

denote the set of nodes which are currently active. Let ΓIB(u) represent the neighborhood
of a node u restricted to nodes in VIB. Let degIB(u) denote |ΓIB(u)|. Similarly, for
any subset S ⊆ V of nodes, let ΓIB(S) denote ∪u∈SΓIB(u). The algorithm proceeds in
Θ :=

⌊
log
(∆

1176·16α10 ln2 ∆
)⌋

scales. For any scale k, 1 ≤ k ≤ Θ, a node in VIB that has
degree more than ∆/2k +α is called a high degree node for that scale. In each scale, we start
by performing O(α8(logα+ log log ∆)) iterations of the Métivier et al. MIS algorithm [10].
The exact number of iterations is dp · 8α2(32α6 + 1) · ln(260α4 ln2 ∆)e and denoted by the
parameter Λ, where p is a large enough constant whose value will be fixed later.

In a single iteration, every node v ∈ VIB chooses a real number r(v) ∈ [0, 1) called a
priority. If v has more than ρk := 8 ln ∆ ·∆/2k+1 neighbors in any iteration, its priority is
(deterministically) set to 0, otherwise, it chooses a priority uniformly at random in (0, 1). In
any iteration, a node u is called competitive, if r(u) is chosen randomly in that iteration. If
in an iteration, v chooses a priority greater than the priority of any node in its neighborhood
in VIB , it joins I. After each iteration, nodes in I and neighbors of these nodes (i.e., ΓIB(I))
are removed from VIB. If, after Λ iterations in the current scale, a node v ∈ VIB has more
than ∆/2k+2 high-degree neighbors then it is designated a “bad” node and added to the set
B It is worth emphasizing the fact that this algorithm has no access to an edge-orientation
or a forest-decomposition of the given α-arboricity graph. We use the existence of an
edge-orientation extensively in our analysis, but it plays no role in the algorithm.

2.1 Finishing Up
The algorithm returns an independent set I (which need not be maximal), and a set B of
“bad” nodes. Also, the set VIB need not be empty at the end of the algorithm and so after
Algorithm BoundedArbIndependentSet has completed, we still need to process the sets
B and VIB .

Our main contribution in this paper is a new analysis of BoundedArbIndependentSet
that culminates in Theorem 10, showing that any node joins B with probability at most
1/∆2p. (Here p is the constant that is used in determining Λ, the number of iterations of
BoundedArbIndependentSet.) The fact that each node joins B with very low probability

S. Pemmaraju and T. Riaz 9:7

implies (as shown by Barenboim et al. [3] and restated in Lemma 11) that with high probability
all connected components in the graph induced by B are small. These components induced
by B can be processed in parallel, with each component being processed by a deterministic
algorithm (since each component is small).

Nodes that remain in VIB have the property that they do not have too many high degree
neighbors. Otherwise, they would have been placed in B. Thus VIB can be partitioned into
two sets Vhi and Vlow such that the graphs induced by each of these sets has small maximum
degree. Then, by using an alternate MIS algorithm that finishes quickly as a function of the
maximum degree, we process nodes in Vhi and Vlow (one set after the other) to complete
the MIS computation. All these steps that “finish up” the algorithm run in the CONGEST
model and we describe these in greater detail in Section 3.3.

It is immediate that O(α8(logα+ log log ∆) · log ∆) is the number of rounds it takes to
complete algorithm BoundedArbIndependentSet. The rest of the algorithm (described
informally above and in more detail in Section 3.3) takes an additional O(α2 + log ∆ +
log logn · logα+α · log∗ n) rounds whp. To get a round complexity bound that is exclusively
in terms of n and α, we use a degree-reduction result of Barenboim et al. (Theorem 7.2 [3])
that runs in O(

√
logn · log logn) rounds in the CONGEST model and yields a graph with

maximum degree at most α · 2
√

logn/ log logn. We use this degree reduction as a preprocessing
step and use ∆ = α · 2

√
logn/ log logn in the rest of the algorithm.

I Theorem 4. Using BoundedArbIndependentSet we can compute an MIS on a graph
with arboricity α in O

(
α8(logα+ log log ∆) · log ∆ + log logn logα

)
rounds whp. This leads

to an algorithm that computes an MIS on a graph with arboricity α in O(α9√logn · log logn)
rounds whp.

3 Analysis of BoundedArbIndSet

We start with an overview of our analysis. At a high level, the organization of our analysis is
similar to the analysis of TreeIndependentSet. The analysis is centered around showing
that the following invariant is maintained (at the end of each scale) at every active node,
with sufficiently high probability.

Invariant: At the end of scale k, for all v ∈ VIB ,∣∣{w ∈ ΓIB(v)|degIB(w) > ∆/2k + α}
∣∣ ≤ ∆/2k+2

The Invariant bounds the number of high degree neighbors a node has after k scales of
the algorithm. In a sense the Invariant is trivially satisfied by design; nodes that do not
satisfy the Invariant after Λ iterations in Scale k are simply placed in the set B (of “bad”
nodes) in Step 2(b) of the algorithm. Of course, we have to later on deal with the nodes
in B somehow and so we cannot simply place all nodes in B and claim to have satisfied
the Invariant! Let N denote the set on the left-hand side of the Invariant above. The
goal then is to show that, with probability at least 1− 1/∆2, in Scale k, either v becomes
inactive (Lemma 8) or the size of N falls to ∆/2k+2 or less (Lemma 9). Showing this leads to
Theorem 10 which claims that that after Scale k, each active node satisfies the invariant with
probability at least 1− 1/∆2 and is therefore placed in B with probability at most 1/∆2.

Unlike in the analysis of Algorithm TreeIndependentSet, for bounded arboricity
graphs, the proof of Theorem 10 has to deal with seemingly complicated dependencies among

OPODIS 2016

9:8 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

probabilistic events that the algorithm depends on. Our main contribution in this paper is
to show that all of these dependencies can be quite naturally analyzed via read-k inequalities
(with different values of the parameter k). So first, in Section 3.1, we use read-k inequalities
to analyze three key probabilistic events pertaining to the progress of the algorithm. Later
on we show how the occurrence of these probabilistic events with sufficiently high probability
holds the key to proving Theorem 10.

Notation: For the purposes of the analysis we fix an edge orientation of the given arboricity-
α graph such that each node has at most α out-neighbors (parents). We use ParentIB(v)
to denote the set of currently active parents of node v and ChildIB(v) to denote the set of
currently active children of node v. For any subset S of nodes, we use ∆IB(S) to denote
maxv∈S degIB(v).

3.1 Read-k Inequalities in Action
In this section, we analyze via read-k inequalities, three key probabilistic events whose
occurrence (with sufficient probability) ensures rapid progress of our algorithm. The first
event concerns the interaction between nodes and their children and the second concerns
the interaction between nodes and their parents. The third event is more complicated and
it concerns the interaction between nodes and their children, their children’s children (i.e.,
grandchildren) and their children’s other parents (i.e., co-parents). To be more specific, let us
fix a Scale k and an iteration within that scale. Let M ⊆ VIB be an active subset of nodes
just before the start of the iteration under consideration. The three probabilistic events we
analyze can be informally described as follows. For Events (1) and (2), we assume that all
nodes in M have degree at most ρk and are therefore competitive.

Event (1) Among the set of nodes M , there exists a node whose priority is larger than
the priority of all its children.
Event (2) Suppose that M is sufficiently large. Then a large fraction of the nodes in M
have priority greater than priorities of all their parents.
Event (3) Suppose that every node in M has sufficiently high degree. Then a large
fraction of the nodes in M become inactive due to their children joining the MIS.

The simplest approach to analyzing these events is to decompose each event into sub-
events centered at each of the nodes in M and then apply a tail inequality such as the
Chernoff bound. The difficulty with this approach of course is the lack of independence
among the sub-events at nodes in M . However, as we discuss below and then show later,
each of these collections of sub-events can be analyzed using a read-k inequality with different
values of the parameter k.

Event (1) (see Theorem 5 and Figure 1(A)) can be viewed as the complement of the event
in which every node in M has a child with greater priority. This latter event is a conjunction
of events, Ex for x ∈ M , where Ex ≡ r(x) < max{r(y) | y ∈ ChildIB(x)}. However, for
nodes x, x′ ∈M , Ex and Ex′ need not be independent because x and x′ may share children.
Nevertheless, since a child can have at most α parents, the collection {Ex | x ∈M} of events
has a dependency structure that forms a read-α family and we can analyze Event (1) by
applying the read-α conjunction inequality (Theorem 1).

We can attempt to analyze Event (2) (see Theorem 6 and Figure 1(B)) in a similar manner.
For each x ∈ M , let Fx ≡ r(x) > max{r(y) | y ∈ ParentIB(x)}. However, dependencies

S. Pemmaraju and T. Riaz 9:9

(A) Event (1)

xM

ChildIB(x)

≤ ρk

≤ α

(B) Event (2)

x

CParentIB(x)

≤ α

≤ ρk

M

≤ α

CParentIB(y)

M

C

≤ ∆
2k+1

∆
2k−1 +α≤

w1

.

w2

≤ α

≤ α

assigned(w2)
assigned(w1)

c

∆(c)
(C) Event (3)

≤ ∆
2k+1

Figure 1 (A) shows the application of read-α inequalities to lower bound the probability of some
node x ∈M having priority greater than priorities of all its children. (B) shows the application of a
read-ρk inequality to prove that with sufficient probability a large fraction of the nodes in M have
priorities greater than priorities of parents. (C) shows the application of a read-Θ(α2) inequality to
prove that with sufficient probability, a large fraction of the nodes in M are eliminated by children
joining the MIS.

among the events {Fx | x ∈M} are harder to deal with because a node can be the parent of
arbitrarily many nodes in M and thus possibly affect all nodes in M . However, recall that a
node with degree greater than ρk does not participate in the competition to join the MIS (it
simply sets its priority to 0). Thus, if M is significantly larger than ρk then a competitive
node can only be the parent of a small fraction of nodes in M . Thus the events {Fx | x ∈M}
have a read-ρk dependency structure and we can apply a read-ρk tail inequality to analyze
this event.

Event (3) (see Theorem 7 and Figure 1(C)) pertains to the elimination of nodes in M
due to children of these nodes joining the MIS. Following the approach used to analyze
Events (1) and (2), we consider events Gx for x ∈M where Gx is the event that some child
of x joins the MIS. Whether a child w of x ∈ M joins the MIS, depends on the priorities
at w and neighbors of w. Specifically, Gx depends on the priority of x and the priorities of
children of x, grandchildren of x, and co-parents of x. As a result, the dependencies among
the events {Gx | x ∈ M} are much more complicated to analyze and cannot be directly
analyzed using read-k inequalities. To get around this problem, we apply the analysis of
Event (2) (Theorem 6) to show that with sufficiently high probability, a substantial fraction
of the children of x ∈ M have priorities greater than all their parents. We then condition
on this event and only focus on such children (denoted Child′IB(x)) of each x ∈ M . Now
let us redefine Gx as the event that some node in Child′IB(x) has priorities greater than all
its children. Note that if a node w ∈ Child′IB(x) has priority greater than its children, it
will join the MIS (thereby eliminating x) since its priority is known to be greater than the
priorities of parents. Thus, if the redefined Gx occurs, then x is eliminated. Now note that
each Gx depends on the priority of x, priorities of children of x and priorities of grandchildren
of x. Given that each node has at most α parents and α2 grandparents, we can see that

OPODIS 2016

9:10 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

the collection {Gx | x ∈M} forms a read-α(α+ 1) family, allowing us to use read-α(α+ 1)
inequalities to analyze Event (3). In the three theorems that follow, we formally describe
and analyze Events (1)-(3).

I Theorem 5 (Event (1)). For some Scale k and some iteration in this scale, let M ⊆ VIB
be an independent subset of nodes that are active just before the start of the iteration. Further

suppose that ∆IB(M) ≤ ρk. Then, with probability at least 1−
(

1− 1
∆IB(M)

)|M |/(2α2)
, some

node in M will choose a priority greater than the priorities of all of its children. This
holds even when we condition on all nodes in M having priorities greater than their parents’
priorities.

Proof. Since the graph induced by VIB has arboricity at most α, there exists an independent
set2 Mind ⊆ M such that |Mind| ≥ |M |/2α. Let x∗ ∈ Mind be a node that chooses a
priority r(x∗) greater than all its children, i.e., r(x∗) > max{r(y) | y ∈ ChildIB(x∗)} in the
iteration being considered. We now calculate the probability that such an x∗ exists. For
each node x ∈ Mind, let Ex denote the event r(x) < max{r(y) | y ∈ ChildIB(x)} and let
Yx be the indicator variable for Ex. We now argue that the collection of random variables
{Yx | x ∈Mind} forms a read-α family. See Figure 1(A).

Read-α family. Each Yx is a function of independent random variables, namely the priority
r(x) and the priorities of children of x, i.e., {r(y)|y ∈ ChildIB(x)}. Thus a priority r(w)
can only influence random variables Yx, where x is a parent of w and this means that each
priority can influence at most α elements in {Yx | x ∈Mind}. Therefore the set of random
variables {Yx | x ∈Mind} forms a read-α family.

Now note that Yx = 0 corresponds to r(x) being larger than r(y) for all y ∈ ChildIB(x).
Therefore, Pr(Yx = 0) ≥ 1

∆IB(M) , implying that Pr(Yx = 1) ≤
(

1− 1
∆IB(M)

)
. Note that

this depends on the fact that degIB(x) ≤ ρk and x is competitive. Using this bound
and the conjunctive read-α inequality in Theorem 1, we see that Pr(∩x∈Mind

Yx = 1) ≤
(1− 1/∆IB(M))(|M |/2α)·(1/α). Thus the probability that there exists an x∗ ∈Mind for which
Ex∗ holds is as claimed. J

I Theorem 6 (Event (2)). For some scale k and some iteration in this scale, let M ⊆ VIB
be a subset of nodes that are active just before the start of the iteration. Further suppose
that ∆(M) ≤ ρk and |M | > 64α2 · ln2 ∆ ·∆/2k+1. Then, at the end of the iteration, with
probability at least (1− 1/∆4), the number of nodes in M that choose a priority greater than
their parents is more than |M |/2α.

Proof. The probability that a node in M chooses a priority greater than its parents is equal
to the probability that it chooses a priority greater than its competitive parents. (Recall that
a non-competitive node has degree more than ρk and it deterministically sets its priority to
0.) Let CParentIB(u) denote the set of current competitive parents of a node u.
For any node u ∈M , let Fu denote the event r(u) > max({r(y)|y ∈ CParentIB(u)}) and let
Xu be the indicator variable for Fu. Let X =

∑
u∈M Xu be the random variable representing

the number of nodes in M whose priorities are greater than priorities of their parents. Since
each node can have at most α parents and since degIB(x) ≤ ρk, Pr(Xu = 1) = E[Xu] ≥ 1/α
and E[X] ≥ |M |/α. We would now like to show that X is concentrated about its expectation,

2 By repeatedly adding a vertex with degree at most α to the independent set, we can see that there is
an independent set of size at least |M |/(α+ 1) in the graph induced by VIB .

S. Pemmaraju and T. Riaz 9:11

but cannot use Chernoff bounds because the variables {Xu | u ∈ M} are not mutually
independent. Again, a read-k inequality comes to the rescue and we first show that the set
of variables {Xu | u ∈M} forms a read-ρk family.

Read-ρk family. Each Xu is a function of independent random variables, namely its own
priority r(u) and the priorities of its competitive parents. Since any competitive node w ∈ VIB
has degree at most ρk, a priority r(w) influences at most ρk Xu’s. Therefore, {Xu | u ∈M}
forms a read-ρk family and we can apply the read-ρk tail inequality in Theorem 2 (Form (1))
to establish the concentration of X about its expectation as follows:

Pr(X ≤ (1/α− 1/2α) · |M |) ≤ exp
(
−2(1/4α2) · |M |

ρk

)
.

Since |M | > 64α2 ln2 ∆ ·∆/2k+1,

Pr(X ≤ |M |/2α) ≤ exp
(
−2(1/4α2) · ∆α2(64 ln2 ∆)/2k+1)

∆(8 ln ∆)/2k+1

)
≤ exp(−4 ln ∆).

Thus, the probability that X > |M |/2α is at least (1− 1/∆4). J

I Theorem 7 (Event (3)). For some scale k and some iteration in this scale, let M ⊆ VIB
be a subset of nodes that are active just before the start of the iteration. Further suppose that
|M | > ∆/2k+2 and degIB(w) > ∆/2k + α for all nodes w ∈ M . Then with probability at
least (1− 1/∆3) at least |M |/8α2(32α6 + 1) nodes in M are eliminated in the iteration.

Proof. Applying the Invariant, at the end of the scale k − 1, we see that each node w in
M has at most ∆/2k+1 neighbors with degree more than ∆/2k−1 + α. Therefore, w has at
least degIB(w)−∆/2k+1 − α > ∆/2k+1 children with degree at most ∆/2k−1 + α. For the
purposes of this theorem, we will refer to these nodes as low-degree children.

We now construct a set C, that consists of low-degree children of nodes in M . Consider
nodes in M in some arbitrary order w1, w2, . . . , w|M |. For w1, pick ∆/2k+1 low-degree
children from among the more than ∆/2k+1 such children that it has. These nodes are said
to be covered and assigned to w1. For each node wi, 1 < i ≤ |M |, let ci be the number of
low-degree children of wi that have already been covered. If ci is at least ∆/2k+1, we do
nothing. Otherwise, pick (∆/2k+1 − ci) low-degree children of wi arbitrarily and declare
these nodes covered and assign them to wi. Let C be the set of all covered nodes at the end
of this procedure.

Now note that each node in wi ∈ M has at least ∆/2k+1 children in C and at most
∆/2k+1 of these children are assigned to it. See Figure 1(C). Since each node in C has at
most α parents in M , C has size at least |M |α ·

∆
2k+1 . Note that since |M | > ∆/2k+2 and

the maximum value of the scale index k is bounded above by log
(∆

1176·16α10 ln2 ∆
)
, using

a little algebra we see that |M | is more than 64α4 ln2 ∆ and therefore |C| is more than
64α3 ln2 ∆ ·∆/2k+1 for all values of k. Then, applying Theorem 6 on the set C (since it is
large enough), we see that with probability at least 1− 1/∆4, more than |C|/2α nodes in C
choose a priority higher than their parents’ priority. Let C ′ denote the subset of nodes in C
that have chosen a priority higher than priorities of their parents. Let E denote the event
that |C ′| > |C|/2α. (Thus, E happens with probability at least 1−1/∆4.) We now condition
on event E and using a simple averaging argument we show that there are a significant
fraction of the nodes in M , each having sufficiently many children in C ′. This is stated in
the claim below. The point of this is that for such nodes in M to be eliminated, it would
suffice for a child in C ′ to have priority larger than priority of its children – since nodes in
C ′ already have priority more than priorities of parents.

OPODIS 2016

9:12 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

I Claim. Conditioned on E, there are at least |M |/4α2 nodes in M that have more than
1

2α3 · ∆
2k+1 children each in C ′.

Proof. Let O be the subset of nodes in M that have at most 1
2α3 · ∆

2k+1 children in C ′. To
calculate a lower bound on |M | − |O|, we will try to cover nodes in C ′ using O and M \O.
Each node in O is assigned at most 1

2α3 · ∆
2k+1 nodes in C ′ and each node in M \O is assigned

at most ∆/2k+1 nodes in C ′. Thus,

(|M | − |O|) · ∆
2k+1 + |O|

(
1

2α3 ·
∆

2k+1

)
≥ |C ′| ≥ |C|2α ≥

|M |
2α2 ·

∆
2k+1 .

Note that the second-last inequality above depends on the conditioning on event E. Manipu-
lating this expression we get the following upper bound on |O|:

|O| ≤ |M |
(

1− 1/2α2

1− 1/2α3

)
.

Therefore,

|M | − |O| ≥ |M |
(

1− 1− 1/2α2

1− 1/2α3

)
≥ |M |4α2 .

The last inequality above holds for all α ≥ 2. J

LetM ′ denote the subset ofM of nodes each having at least 1
2α3 · ∆

2k+1 children in C ′. Thus
the above claim shows that conditioned on event E, |M ′| ≥ |M |/4α2. Consider an arbitrary
node w ∈ M ′. Now note that |ChildIB(w) ∩ C ′| ≥ 1

2α3 · ∆
2k+1 and ∆(ChildIB(w) ∩ C ′) ≤

∆/2k−1 + α. This means that we can apply Theorem 5 to the set ChildIB(w) ∩ C ′ and
conclude that the probability that some node in ChildIB(w) ∩ C ′ will have priority greater
than the priorities of all its children is at least

1−
(

1− 1
∆/2k−1 + α

)∆/(2α3·2k+1)·(1/2α2)
≥ 1−exp

(
−2k−1

2∆α ·
∆

2k+14α5

)
>
(

1− e−1/32α6
)
.

This last expression can be bounded below by 1/(32α6 + 1).
For any w ∈M ′, let Gw denote the event that some node ChildIB(w) ∩ C ′ has priority

greater than the priorities of all its children. Let Zw be the indicator variable for event Gw.
By the above calculation we see that Pr(Zw = 1) ≥ 1

32α6+1 . Let Z =
∑
w∈M ′ Zw. Note

that if a node x in ChildIB(w) ∩ C ′ has priority greater than the priorities of children, then
it joins the MIS since we already know that it has priority greater than the priorities of
parents. Thus Z is a lower bound on the number of nodes in M ′ that are eliminated in
this iteration of the algorithm. By linearity of expectation, we see that E[Z] ≥ |M ′|

32α6+1 . We
would now like to finish the proof of the theorem by showing that with sufficiently high
probability, Z is at least one-half of its expectation. Unfortunately, the Zw’s are not mutually
independent and we cannot use Chernoff tail bounds to show the concentration of Z about
its expectation. Nevertheless we are able to show that the random variables {Zw | w ∈M ′}
form a read-α(α+ 1) family and exploit this structure to show the tail bound we need.

Read-α(α + 1) family. Note that each Zw is a function of r(w), priorities of children
of w, and priorities of grandchildren of w. It is important to note here that parents of w
and co-parents of w have no role to play in determining the value of Zw. Since the graph
has arboricity α, for any node x, r(x) may influence at most α(α + 1) of the variables in

S. Pemmaraju and T. Riaz 9:13

{Zw | w ∈ M ′}. Using the read-α(α + 1) tail inequality in Theorem 2 (Form (2)), we see
that:

Pr(Z < E[Z]/2) ≤ exp
(
− E[Z]

8α(α+ 1)

)
≤ exp

(
− |M ′|

8α(α+ 1)(32α6 + 1)

)
.

Now we condition on the event E and use the fact that conditioned on E, |M ′| ≥ |M |/4α2

and E[Z] ≥ |M |/(4α2(32α6 + 1)) to obtain:

Pr

(
Z <

|M |
8α2(32α6 + 1)

∣∣∣∣E) ≤ exp
(
− |M |

32α3(α+ 1)(32α6 + 1)

)
.

According to the hypothesis of the theorem, |M | > ∆/2k+2 and we know that the maximum
value of the scale index k is bounded above by log

(∆
1176·16α10 ln2 ∆

)
. Using a little algebra we

see that |M | is more than 1176 · 4α10 ln2 ∆ for all values of k. Therefore,

Pr

(
Z <

|M |
8α2(32α6 + 1)

∣∣∣∣E) ≤ exp
(
− 1176 · 4α10 ln2 ∆

32α3(α+ 1)(32α6 + 1)

)
≤ exp(− ln2 ∆).

Finally, noting that Pr(E) ≥ (1− 1/∆4), we see that

Pr

(
Z ≥ |M |

8α2(32α6 + 1)

)
≥ (1− exp(− ln2 ∆)) · (1− 1/∆4) ≥ (1− 1/∆3).

Therefore, with probability at least (1− 1/∆3), at least |M |/8α2(32α6 + 1) fraction of the
nodes in M are eliminated in each iteration. J

3.2 Proving the Invariant
In this section we show inductively that the Invariant holds after every scale. Suppose that
the Invariant holds after Scale k−1 for any k ≥ 1. (Note that “end of Scale 0” refers to the
beginning of the algorithm.) Fix a node v and let N = {w ∈ ΓIB(v)| degIB(w) > ∆/2k + α}
be the set of active high-degree neighbors of v at the beginning of Scale k. To establish that
the Invariant holds after Scale k we will show that with sufficiently high probability either
(i) v is eliminated in Scale k or (ii) |N | shrinks to at most ∆/2k+2 by the end of Scale k. We
consider two cases depending on the size of N and show that (i) holds when |N | is large
(Lemma 8) and (ii) holds when |N | is smaller, but still bigger than ∆/2k+2 (Lemma 9). We
note that this organizational structure of our overall proof is similar to the approach used
by Barenboim et al. [3, 2]. Our main innovation and contribution appears in the previous
section where we analyze, via read-k inequalities, key probabilistic events that Lemmas 8
and 9 depend on.

We first briefly describe the role Events (1)–(3) (Section 3.1) play in the proofs of these
lemmas. Applying the Invariant after scale k− 1 to v implies that a large number of nodes
in N have degree at most ∆/2k−1 + α. This set of “low degree” nodes is large enough for
us to consider Event (2) at these nodes and using Theorem 6 we see that a large fraction
of these nodes have priority greater than their parents (with sufficiently high probability).
Conditioning on this event, we then consider Event (1) at the “low degree” nodes in N whose
priorities are larger than priorities of parents. We then apply Theorem 5 to conclude that
with probability at least 1− 1/∆2 at least one node in N joins the MIS, thereby eliminating
v and yielding Lemma 8. To obtain Lemma 9, we repeatedly consider Event (3) at the
nodes in N and apply Theorem 7 to obtain a decay of roughly 1/α8 fraction, after each
iteration with sufficiently high probability. Performing Λ = Θ(α8(logα+ log log ∆) iterations
is enough to reduce |N | to at most ∆/2k+2 with sufficiently high probability. Lemmas 8
and 9 immediately lead to Theorem 10.

OPODIS 2016

9:14 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

I Lemma 8. If |N | > 130α4 · ln2 ∆ ·∆/2k+1 at the beginning of Scale k, then v is eliminated
with probability at least 1− 1/∆2 after the first iteration in Scale k.

Proof. We focus on the first iteration of Scale k. By applying the Invariant at the end of
Scale k − 1 to node v, we see that v has at most ∆/2k+1 neighbors with degree more than
∆/2k−1 + α. Thus among the nodes in N , there are at least

|N | −∆/2k+1 > 130α4 · ln2 ∆ ·∆/2k+1 −∆/2k+1 > 129α4 · ln2 ∆ ·∆/2k+1

with degree at most ∆/2k−1 +α. Let Nlow ⊆ N denote the subset of N of nodes with degree
at most ∆/2k−1 + α. (Thus, we have just established that |Nlow| > 129α4 · ln2 ∆ ·∆/2k+1.)
Since Nlow is large enough, we can apply Theorem 6 to conclude that with probability
at least 1 − 1/∆4, at least |Nlow|/2α nodes in Nlow have priorities that are larger than
priorities of their parents. (Recall that this is Event (2) at Nlow.) Call this event Epar and
let Npar ⊆ Nlow denote the subset of nodes in Nlow whose priorities are larger than priorities
of their parents. Thus, if we condition on Epar, we get that |Npar| ≥ |Nlow|/2α. We now
apply Theorem 5 to the set Npar to get a lower bound on the probability that Npar contains
a node whose priority is greater than the priorities of all children. Letting F denote this
event, we get the lower bound:

Pr(F) ≥ 1−
(

1− 1
∆(Npar)

)|Npar|/(2α2)
.

Since Npar ⊆ Nlow, we know that ∆(Npar) ≤ ∆/2k−1 + α and if we condition on Epar, we
know that |Npar| > |Nlow|/2α > 64α3 · ln2 ∆ ·∆/2k+1.

Pr(F |Epar) ≥ 1−
(

1− 1
∆/2k−1 + α

) |Npar|
2α2

≥ 1−exp
(
−2k−1

2∆α · 32α ln2 ∆ · ∆
2k+1

)
≥ 1−1/∆4.

Since Epar occurs with probability at least 1− 1/∆4, we conclude that

Pr(F) = Pr(E|Epar) · Pr(Epar) ≥ (1− 1/∆4)(1− 1/∆4) ≥ (1− 1/∆2). J

I Lemma 9. If |N | ≤ 130α4 · ln2 ∆ ·∆/2k+1 at the beginning of Scale k, then after the first
Λ/p iterations of Scale k, |N | ≤ ∆/2k+2 with probability at least 1− 1/∆2.

Proof. Let ni denote the size of N before iteration i, 1 ≤ i ≤ Λ/p, in Scale k and let nΛ/p+1
denote the size of N after the Λ/p+ 1 iteration in Scale k. Suppose that nΛ/p+1 > ∆/2k+2.
Then, ni > ∆/2k+2 for all i, 1 ≤ i ≤ Λ and so we can appeal to Theorem 7 and conclude
that for all i ∈ [Λ/p]

Pr
(
ni+1 ≤

(
1− 1

8α2(32α6 + 1)

)
· ni
)
≥ 1− 1/∆3.

By the union bound,

Pr

(
There exists i : ni+1 >

(
1− 1

8α2(32α6 + 1)

))
≤ Λ/p

∆3 ≤
1

∆2 .

In other words, with probability at least 1− 1/∆2, ni+1 ≤ (1− 1/(2(32α6 + 1))) · ni for Λ/p
iterations. Therefore, with probability at least 1− 1/∆2,

nΛ+1 ≤
(

1− 1
8α2(32α6 + 1)

)Λ/p
· n1.

S. Pemmaraju and T. Riaz 9:15

We now observe that(
1− 1

8α2(32α6 + 1)

)Λ/p
≤ exp

(
− 1

8α2(32α6 + 1) ·
Λ
p

)
.

This implies that choosing Λ at least p·8α2(32α6 +1)·ln(260α4 ln2 ∆) suffices to guarantee
that(

1− 1
8α2(32α6 + 1)

)Λ/p
· n1 ≤

n1

260α4 ln2 ∆
.

Now note that we choose Λ = dp · 8α2(32α6 + 1) · ln(260α4 ln2 ∆)e in Algorithm Bound-
edArbIndependentSet. Since n1 ≤ 130α4 · ln2 ∆ ·∆/2k+1, it follows that with probability
at least 1− 1/∆2, |N | ≤ ∆/2k+2 after Λ/p iterations of scale k. J

I Theorem 10. In any Scale k, a node v that is in VIB at the start of the Scale is included
in B with probability at most 1/∆2p, independent of random choices of nodes outside its three
neighborhood.

Proof. We view the Λ iterations of each scale in chunks of Λ/p consecutive iterations. As a
direct consequence of Lemmas 8 and 9, a node v violates the invariant with probability at
most 1/∆2 after a chunk. The probability that a node is bad at the end of the scale, is equal
to the probability that its bad at the end of each chunk. Thus, the probability that a node is
bad at the end of the Scale is at most (1/∆2)p = 1/∆2p.

We now argue that the event that v joins B after Scale k is bounded independently of
nodes outside v’s three-neighborhood. A node v joins B if it violates the invariant at the
end of a scale. This means that many neighbors of v in N survive the scale. The survival of
these high degree nodes depends on their neighbors (v’s two-neighborhood) not joining the
MIS. The event that nodes in v’s two-neighborhood do not join the MIS, in turn, depends
on these nodes choosing higher priorities than their neighbors, which can be at most three
hops away from v. Thus v joins the bad set with probability at most 1/∆2p, independent of
random choices made by nodes outside v’s three-neighborhood. J

3.3 Finishing Up the MIS Computation
Theorem 10 shows that every node joins B with probability at most 1/∆2p. For p ≥ 9, this
has the following immediate consequence, shown in [3, 2].

I Lemma 11. All connected components in the subgraph induced by B have at most (∆6 ·
c log∆ n) nodes with probability at least 1− n−c

We now describe and analyze an algorithm, we call ArbMIS that takes the output of
BoundedArbIndependentSet (Section 2) and completes the computation of an MIS.
Recall that after the termination of BoundedArbIndependentSet, we get three (disjoint)
sets of nodes, VIB , I, and B with the following properties:
(i) I is an independent set.
(ii) No node in VIB has more than 1176 · 4α10 ln2 ∆ neighbors with degree more than

1176 · 16α10 ln2 ∆ + α. This follows from applying the Invariant at the end of Scale
Θ =

⌊
log
(∆

1176·16α10 ln2 ∆
)⌋
.

(iii) All connected components in the graph induced by B, have size less than O(∆6 ·c log∆ n)
with probability 1− n−c. This follows from Lemma 11.

OPODIS 2016

9:16 Using Read-k Inequalities to Analyze a Distributed MIS Algorithm

After BoundedArbIndependentSet has completed execution, we divide VIB into the
sets Vlo = {v ∈ VIB | degIB(v) ≤ 1176 · 16α10 ln2 ∆ + α} and Vhi = {v ∈ VIB | degIB(v) >
1176 · 16α10 ln2 ∆ + α}. By definition, G[Vlo] has maximum degree 1176 · 16α10 ln2 ∆ + α

and by Property (ii) above, G[Vhi] has maximum degree 1176 · 4α10 ln2 ∆. There are various
options for computing an MIS on a arboricity-α graph with bounded degree. We use
an algorithm from Barenboim et al. (Theorem 7.4, [3]) to compute an MIS of G[Vlo] in
O(log logn · logα+ (log log ∆)2 + α2) time in the CONGEST model. Subsequently, we use
the same algorithm on Vhi \ Γ(Ilo) to get an independent set Ihi in the same time. The
following simple lemma (whose proof appears in the full paper [12]) shows that an MIS can
be computed efficiently for each connected component in the graph induced by B.

I Lemma 12. For each connected component in B, an MIS can be computed in time at most
O(log ∆ + log logn+ α log∗ n) time, using messages of size at most O(logn).

The total run-time of this algorithm is O
(
α8 · log(α log ∆) · log ∆ + log logn · logα

)
. If

∆ > α ·2
√

logn/ log logn, use the independent set algorithm from [3, 2] to reduce the maximum
degree to α · 2

√
logn/ log logn in O(

√
logn · log logn) time, using messages of size O(logn).

Then, apply ArbMIS to compute an MIS for a total run time of O(α9 ·
√

logn · log logn).
We note that this entire algorithm uses messages of size at most O(logn) i.e., it runs in the
CONGEST model.

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.
2 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of

distributed symmetry breaking. In FOCS, pages 321–330, 2012. doi:10.1109/FOCS.2012.
60.

3 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. CoRR, abs/1202.1983, 2015. URL: http://arxiv.org/
abs/1202.1983.

4 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to opti-
mal parallel list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/
S0019-9958(86)80023-7.

5 Dmitry Gavinsky, Shachar Lovett, Michael Saks, and Srikanth Srinivasan. A tail bound
for read-k families of functions. Random Structures & Algorithms, 47:99–108, 2015. doi:
10.1002/rsa.20532.

6 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
SODA, pages 270–277, 2016. doi:10.1137/1.9781611974331.ch20.

7 Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett., 22(2):77–80, 1986. doi:10.1016/0020-0190(86)90144-4.

8 Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC, pages 41–48, 2011.
doi:10.1145/1993806.1993813.

9 M. Luby. A simple parallel algorithm for the maximal independent set. SIAM Journal on
Computing, 15:1036–1053, 1986.

10 Y. Métivier, J.M. Robson, N. Saheb-Djahromi, and A. Zemmari. An optimal bit complexity
randomised distributed MIS algorithm. In SIROCCO, pages 323–337, 2009.

11 Sriram V. Pemmaraju and Talal Riaz. Brief announcement: Using read-k inequalities to
analyze a distributed MIS algorithm. In PODC, pages 483–485, 2016.

12 Sriram V. Pemmaraju and Talal Riaz. Using read-k inequalities to analyze a distributed
MIS algorithm. CoRR, abs/1605.06486, 2016.

http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1109/FOCS.2012.60
http://arxiv.org/abs/1202.1983
http://arxiv.org/abs/1202.1983
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1002/rsa.20532
http://dx.doi.org/10.1002/rsa.20532
http://dx.doi.org/10.1137/1.9781611974331.ch20
http://dx.doi.org/10.1016/0020-0190(86)90144-4
http://dx.doi.org/10.1145/1993806.1993813

S. Pemmaraju and T. Riaz 9:17

13 Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent
set algorithm for growth-bounded graphs. In PODC, pages 35–44, 2008.

14 Alistair Sinclair. Randomness and computation, lecture 13. http://www.cs.berkeley.
edu/~sinclair/cs271/n13.pdf. Accessed: 2015-08-28.

OPODIS 2016

http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf

	Introduction
	Read-k Inequalities
	Our Result

	MIS Algorithm for Bounded Arboricity Graphs
	Finishing Up

	Analysis of BoundedArbIndSet
	Read-k Inequalities in Action
	Proving the Invariant
	Finishing Up the MIS Computation

