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Abstract
A well-known generalization of the consensus problem, namely, set agreement (SA), limits the
number of distinct decision values that processes decide. In some settings, it may be more
important to limit the number of “disagreers”. Thus, we introduce another natural generaliz-
ation of the consensus problem, namely, bounded disagreement (BD), which limits the number
of processes that decide differently from the plurality. More precisely, in a system with n pro-
cesses, the (n, `)-BD task has the following requirement: there is a value v such that at most `
processes (the disagreers) decide a value other than v. Despite their apparent similarities, the
results described below show that bounded disagreement, consensus, and set agreement are in
fact fundamentally different problems.

We investigate the relationship between bounded disagreement, consensus, and set agreement.
In particular, we determine the consensus number [16] for every instance of the BD task. We
also determine values of n, `, m, and k such that the (n, `)-BD task can solve the (m, k)-SA task
(where m processes can decide at most k distinct values). Using our results and a previously-
known impossibility result for set agreement [8], we prove that for all n ≥ 2, there is a BD
task (and a corresponding BD object) that has consensus number n but can not be solved
using n-consensus and registers. Prior to our paper, the only objects known to have this unusual
characteristic for n ≥ 2 (which shows that the consensus number of an object is not sufficient
to fully capture its power) were artificial objects crafted solely for the purpose of exhibiting this
behaviour [2, 18].
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1 Introduction

Reaching agreement among processes is a fundamental problem in fault-tolerant distributed
computing. The strongest and most-studied formulation of such a problem is the consensus
task [12], where all non-faulty processes must decide on one of their input values. Another
well-known agreement problem is a generalization of consensus, namely, the set agreement
(SA)1 task [7], which limits the number of distinct decision values that processes decide. In
this paper we introduce and study another natural generalization of consensus, one that

1 Also known as set consensus.
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5:2 Bounded Disagreement

limits the number of processes that decide differently from the plurality; we call this the
bounded disagreement (BD) task.

In the consensus, SA and BD tasks, there are n processes, each process has an input
value (its proposal) and must output a value (its decision) such that every correct process
eventually outputs a decision value (Termination) and each decision is one of the proposals
(Validity). Additionally, the (n, k)-SA task must also satisfy the following property:

k-SA: There exist at most k distinct decision values.

For k = 1, the (n, k)-SA task is simply the n-consensus task; in this case, there is only one
decision value and hence no disagreers. For k = 2, however, there are up to two decision
values, but the number of disagreers (i.e., those deciding differently from the majority) can
suddenly jump all to the way to bn/2c. In some settings, it may be more important to limit
the number of processes that disagree than limiting the number of different decision values.
Thus we introduce the (n, `)-BD task that replaces the k-SA property with the following one:

`-BD: There is a value v such that at most ` processes (the disagreers) decide a value
other than v.

For ` = 0, the (n, `)-BD task is just the n-consensus task. Furthermore, having at most `
disagreers implies having at most `+ 1 distinct decision values, so the (n, `)-BD task is at
least as strong as the (n, `+ 1)-SA task.

In this paper, we study the relationship between the consensus, set agreement and bounded
disagreement tasks, and show that despite their similarity, these tasks are fundamentally
different. To do so, we first determine values of n, `, m and k such that the (n, `)-BD task
and registers can solve the (m, k)-SA task. We then determine the consensus number [16] of
every instance of the BD task: specifically, we prove that the (n, `)-BD task has consensus
number max(n− 2`, 1).2 Using the above results and a previously-known impossibility result
for set agreement [8], we prove that BD tasks have the following uncommon property: for
all j ≥ 2, there is a BD task, namely the (9j, 4j)-BD task, that has consensus number j but
cannot be solved using j-consensus objects and registers. These results imply that there are
infinitely many instances of the BD task that are not equivalent to any consensus task or
any set agreement task (because for k ≥ 2 all (m, k)-SA tasks have consensus number 1).3

We also define the (n, `)-BD object that solves the (n, `)-BD task, as follows: intuitively,
processes can “propose” any value to this object and it responds to the first n such proposals
with values that satisfy the Validity and `-BD properties; all subsequent proposals return
arbitrary responses. It turns out that the above results about BD tasks also apply to the
corresponding BD objects. In particular, for all j ≥ 2, the (9j, 4j)-BD object has consensus
number j, but cannot be implemented using j-consensus and registers. The existence of objects
with this unusual property has been the subject of much research [2, 3, 4, 5, 9, 10, 11, 15, 18].
Prior to this paper, however, the only objects known to have this property for j ≥ 2 were
artificial objects crafted solely for the purpose of exhibiting this behaviour [2, 18]. Unlike these
objects, however, our BD objects and tasks are natural generalizations of consensus. The
BD objects and those in [18] are non-deterministic, while the objects in [2] are deterministic.

2 The consensus number of a task T is the maximum number of processes for which consensus can be
solved using any solution of T and registers.

3 We say that two tasks are equivalent if any solution to one task, together with registers, can be used
to solve the other task. Similarly, we say that two objects are equivalent if instances of either object,
together with registers, can be used to implement the other.
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Roadmap. In Section 2, we determine values of `, m, k, and n such that the (m, `)-BD
task can solve the (n, k)-SA task. In Section 3, we define BD objects that can be used to
solve BD tasks, and, in Section 4, we investigate what instances of consensus can not be
solved using these BD objects. Together, these results allow us to determine the consensus
number of every instance of the BD task and BD object. In Section 5, we prove that for
all n ≥ 2, there are instances of the BD task and BD object that have consensus number n,
yet cannot be implemented using n-consensus and registers. In Section 6, we conclude with
a brief discussion on bounded disagreement and related problems.

2 Using BD Tasks to Solve SA Tasks

Recall that with the SA and BD tasks, each process starts with an input value (its proposal)
and must output a value (its decision), subject to certain restrictions. A solution to such
a task is a collection of protocols P, one for each process to execute in order to produce
decisions that respect these restrictions.

In this section, we show that for all k ≥ 1, n ≥ 1, ` ≥ 0 andm ≥ max(n+`+b`/kc , 2`+2),
the (m, `)-BD task and registers can solve the (n, k)-SA task.4 For k = 1 and n = m− 2`,
this says that the (m, `)-BD task and registers can solve the (m − 2`, 1)-SA task, i.e.,
the (m− 2`)-consensus task.

We prove this result in two steps: we first assume that processes have access to a
Fetch&Increment object, and then we remove this assumption. Intuitively, a Fetch&Increment
object F is just a counter: each operation on F returns the current value of the counter and
increments it by one [5].

Multisets notation. It is convenient to use a multiset to store the outputs of a BD task.
Given any multiset M , the mode of M , denoted mode(M), is the value that appears the
most often in M (ties are broken arbitrarily), and |M | is the total number of (non-necessarily
distinct) elements in M . The + operator denotes the disjoint union of two multisets. This
is distinct from the normal union operator ∪ in that the elements are added regardless of
whether they are distinct from other elements.

I Theorem 1. For all k ≥ 1, n ≥ 1, ` ≥ 0 and m ≥ n+ `+ b`/kc, the (m, `)-BD task and
registers, together with a Fetch&Increment object, can solve the (n, k)-SA task.

Proof. Consider any k ≥ 1, n ≥ 1, ` ≥ 0 and m ≥ n+ `+ b`/kc. We present an algorithm
that solves the (n, k)-SA task using:
P[1..m], a solution for the (m, `)-BD task.
X , an n-process snapshot object where each field contains a multiset of integers; initially
empty. (Note that snapshot objects can be implemented from registers [1].)
F , a Fetch&Increment object; initialized such that the first operation will have response 1.

Recall that an n-process snapshot object X is composed of n fields, and provides two types
of operations, write and snapshot. A write operation, denoted by X [p].write(v), replaces
the value of field X [p] by v. A snapshot operation, denoted by X .snapshot(), returns the
values in all n fields at once.

Intuitively, each process p uses F to determine which protocol(s) in P[1..m] to execute,
and uses the field X [p] to announce the multiset of all the outputs that p has received from

4 That is, any solution to the (m, `)-BD task can be used, together with registers, to derive a solution to
the (n, k)-SA task.
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5:4 Bounded Disagreement

Algorithm 1 Solving the (n, k)-SA task using an (m, `)-BD task solution P [1..m], an atomic
snapshot X , and a Fetch&Increment object F .

1: while TRUE do
2: next ← F .fetch&increment()
3: if next ≤ m then
4: received ← received + {P[next].execute(vp)}
5: X [p].write(received)
6: else
7: snap ← X .snapshot()
8: decide mode(snap)
9: halt

executing protocols in P[1..m] so far. In an abuse of notation, we will also use X to denote
the multiset formed by the disjoint union of the multisets in the n fields of X .

In addition to these shared objects, each process p also uses the following local variables:
received: a multiset used to store all outputs that p has received from executing protocols
in P[1..m]; initially empty.
snap: a multiset used to store a snapshot of X ; initially empty.
next: a positive integer.

We denote by varp the local variable var of process p, and by vp the input value of p. We
now describe the algorithm that each process p executes to solve the (n, k)-SA task:
1. It executes a Fetch&Increment operation on F to get a positive integer i (line 2).
2. If i ≤ m, it executes protocol P[i] with input value vp, and adds the output to X [p]

(lines 3 to 5).
3. If i > m, it takes a snapshot of X , decides mode(X ), and halts (lines 6 to 9).
4. It repeats from the first step.

For simplicity, let P[i].execute(v) denote the output from executing protocol P[i] with
input value v. The pseudocode for each process p in shown in Algorithm 1.

I Claim 2. Each protocol of P[1..m] is executed at most once.

Proof. Follows immediately from the fact that each protocol P[i] for all 1 ≤ i ≤ m is
executed only when the Fetch&Increment object F gives the response i to some process. J

Thus the outputs of P[1..m] must satisfy the requirements of the (m, `)-BD task.
Let Output(P) be the multiset of all outputs from P[1..m] so far, and let Outputp(P)
be the multiset of all outputs from P[1..m] given to process p so far. To begin the analysis
of this algorithm, first observe that the following invariant always holds:

I Invariant 3. For each process p,
(a) X [p] ⊆ Outputp(P), and hence X ⊆ Output(P).
(b) X [p], and hence X , is monotonically increasing.

I Claim 4 (Termination). Every correct process eventually decides exactly one value.

Proof. Let p be a correct process. Since nextp is derived from repeated operations on the
Fetch&Increment object F , it will eventually become greater than m. Then the conditional
on line 3 will evaluate to false, causing p to decide exactly one value and halt (line 8). J
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I Claim 5 (Validity). Every decision v was proposed by some process, i.e., v = vq for some
process q.

Proof. Suppose a process p decides a value v. Clearly, v ∈ X . By Invariant 3, X is a subset
of Output(P), so v is an output from P[1..m]. Since P[1..m] is a solution for the (m, `)-BD
task, by the Validity property of this task, v must be one of the input values for P [1..m]. The
claim follows from the fact that each process q only uses vq as the input value for P [1..m]. J

I Claim 6. Consider any snapshot of X that contains at least h ≥ ` elements. The mode of
this snapshot appears at least h− ` times in Output(P).

Proof. Since P [1..m] is a solution for the (m, `)-BD task, by the `-BD property of this task,
there is a value v such that at most ` of the outputs in Output(P) are not v. By Invariant 3,
every snapshot of X is a subset of Output(P). Consequently, each snapshot of X contains at
most ` outputs that are not v, and the rest of the outputs must equal v. In other words,
if a snapshot of X contains at least h elements, then v appears at least h− ` times in this
snapshot. Thus the mode of the snapshot of X appears at least h− ` times in the snapshot.
By Invariant 3, the mode of the snapshot also appears at least h− ` times in Output(P). J

I Claim 7. If a process decides a value v, then v appears at least b`/kc+1 times in Output(P).

Proof. Suppose a process p decides a value v. Then, by lines 8 and 7, v is the mode of a
snapshot S of X , and by the conditional on line 3, the snapshot S is taken after p get a
value greater than m from F . Since F is initialized such that the first operation on F gets a
response of 1, at least m+ 1 operations were performed on F before the snapshot S is taken.

Note that each time a process receives a response from F that is at most m, it cannot
perform another operation on F before executing a protocol of P [1..m] and adding the output
of that execution to the multiset stored by X . Thus, since the n processes perform a total of
at least m+ 1 operations on F before the snapshot S is taken, at least m− n+ 1 outputs
were added to the multiset stored by X before the snapshot S is taken. Thus S contains at
least m− n+ 1 outputs.

Now, recall that m ≥ n+ `+ b`/kc, so m− n+ 1 ≥ `+ b`/kc+ 1. Thus the snapshot S
of X contains at least ` + b`/kc + 1 outputs. By Claim 6, the mode v of S appears at
least b`/kc+ 1 times in Output(P). J

I Claim 8 (k-SA). There are at most k distinct decision values.

Proof. Assume, for contradiction, that there are at least k + 1 distinct decision values.
By Claim 7, each decision value appears at least b`/kc + 1 times in Output(P). In other
words, Output(P) contains at least k+1 distinct output values, each appearing at least b`/kc+
1 times. This implies that for every value v, at least k(b`/kc+ 1) > ` of the outputs given
by P[1..m] are not v. This violates the `-BD property of the (m, `)-BD task, contradicting
the fact that P[1..m] solves the (m, `)-BD task. J

Thus the Termination (Claim 4), Validity (Claim 5), and k-SA (Claim 8) properties of
the (n, k)-SA task all hold. So Algorithm 1 solves the (n, k)-SA task. J

I Theorem 9. For all ` ≥ 0 and m ≥ 2` + 2, the (m, `)-BD task and registers can solve
the 2-consensus task.

OPODIS 2016
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Algorithm 2 Solving consensus among 2 processes using an (m, `)-BD task solution P [1..m]
and an atomic snapshot X .

1: while TRUE do
2: snap ← X .snapshot()
3: if |snap| ≤ m− 2 then
4: if p = 1 then
5: received ← received + {P[|received|+ 1].execute(vp)}
6: else
7: received ← received + {P[m− |received|].execute(vp)}
8: X [p].write(received)
9: else

10: decide mode(snap)
11: halt

Proof. Consider any ` ≥ 0 and m ≥ 2` + 2. We present a modification of Algorithm 1
that solves the 2-consensus task without using a Fetch&Increment object. In addition to a
solution P[1..m] for the (m, `)-BD task, the new algorithm uses only a (shared) 2-process
snapshot object X , and local variables received and snap as described in Algorithm 1.

Recall that the Fetch&Increment object F used in Algorithm 1 serves two roles:
It ensures each protocol of P[1..m] is executed at most once.
It tells processes when to take a snapshot of X and decide the mode.

Roughly speaking, processes can decide as soon as sufficiently many outputs have been
written into X . Thus, the second role can be replaced simply by having processes take a
snapshot of X and counting the current number of outputs. For the first role, we can ensure
that each protocol of P[1..m] is executed at most once by using the fact that there are only
two processes involved in the 2-consensus task. Intuitively, this is achieved by starting the
two processes at opposite ends of the range [1..m], and having them sequentially execute the
protocols of P[1..m] until they meet each other.

As before, let vp denote p’s input value. Let the two processes be numbered 1 and 2. We
now describe the algorithm that each process p executes to solve the 2-consensus task:
1. It takes a snapshot S of X .
2. If S contains more than m− 2 outputs, it decides the mode.
3. If p is process 1, it executes protocol P [i1 + 1] with input value vp, where i1 is the number

of protocols process 1 has executed.
4. If p is process 2, it executes protocol P[m − i2] with input value vp, where i2 is the

number of protocols process 2 has executed.
5. It adds the output to X [p].
6. It repeats from the first step.

The pseudocode for each process p in shown in Algorithm 2.

I Claim 10. Each protocol of P[1..m] is executed at most once.

Proof. Assume for contradiction, that for some 1 ≤ i ≤ m, protocol P[i] is executed more
than once. Observe that in Algorithm 2, this can only happen if both processes execute
protocol P[i], since each process sequentially traverses the range [1..m]. This means both
processes took a snapshot of X and found at most m − 2 outputs right before executing
protocol P[i]. However, in order for both processes to reach protocol P[i], they must first
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execute all other protocols in P[1..m] and write their outputs into X . Hence one of the two
processes must have found more than m− 2 outputs in its snapshot, a contradiction. J

Since each protocol is executed at most once, their outputs must satisfy the requirements
of the (m, `)-BD task. As before, let Output(P) be the multiset of all outputs from P[1..m]
so far, and let Outputp(P) be the multiset of all outputs from P[1..m] given to process p so
far. First, note that Invariant 3 still holds for this modified algorithm. Furthermore, Claim 5
and Claim 6 also hold here: their proofs are exactly as before. The remaining claims also
have similar proofs:

I Claim 11 (Termination). Every correct process eventually decides exactly one value.

Proof. Let p be a correct process. Observe that each time the conditional on line 3 evaluates
to true, process p will execute a protocol of P [1..m], and write its output to X , increasing the
number of outputs in X by one. By Invariant 3, the number of outputs in X is monotonically
increasing. Thus it will eventually become greater than m − 2. Then the conditional on
line 3 will evaluate to false, causing p to decide exactly one value and halt (lines 10). J

I Claim 12. If a process decides a value v, then v appears at least `+ 1 times in Output(P).

Proof. Suppose a process p decides a value v. Then, by lines 10 and 2, v is the mode of a
snapshot S of X , and by the conditional on line 3, the snapshot S contains at least m− 1
outputs. Now, recall that m ≥ 2` + 2, so m − 1 ≥ 2` + 1. Thus the snapshot S of X
contains at least 2`+ 1 outputs. By Claim 6, the mode v of S appears at least `+ 1 times
in Output(P). J

I Claim 13 (Agreement). All decisions have the same value.

Proof. Assume, for contradiction, that there are at least 2 distinct decision values. By
Claim 12, each decision value appears at least `+ 1 times in Output(P). Thus Output(P)
contains at least 2 distinct output values, each appearing at least `+ 1 times. This implies
that for every value v, at least ` + 1 > ` of the outputs given by P[1..m] are not v. This
violates the `-BD property of the (m, `)-BD task, contradicting the fact that P[1..m] solves
the (m, `)-BD task. J

Thus the Termination (Claim 11), Validity (Claim 5), and Agreement (Claim 13) properties
of the 2-consensus task all hold. So Algorithm 2 solves the 2-consensus task. J

We can now prove the main result of this section:

I Theorem 14. For all k ≥ 1, n ≥ 1, ` ≥ 0 and m ≥ max(n+`+b`/kc , 2`+2), the (m, `)-BD
task and registers can solve the (n, k)-SA task.

Proof. In previous work, Afek et al. [5] proved that (any solution to) the 2-consensus task,
together with registers, can be used to implement a Fetch&Increment object for any number
of processes. Thus from Theorem 9, for all ` ≥ 0 and m ≥ 2`+ 2, the (m, `)-BD task and
registers can implement a Fetch&Increment object for any number of processes. The result
now follows from Theorem 1. J

I Corollary 15. For all ` ≥ 0 and m > 2`, the (m, `)-BD task and registers can solve
the (m− 2`)-consensus task.

Proof. Let ` ≥ 0. For m = 2`+ 1, the (m− 2`)-consensus task is the trivial 1-consensus task.
For m ≥ 2`+ 2, by setting k = 1 and n = m− 2` in Theorem 14, we get that the (m, `)-BD
task and registers can solve the (m− 2`, 1)-SA task, i.e., the (m− 2`)-consensus task. J

OPODIS 2016



5:8 Bounded Disagreement

3 BD Objects

Intuitively, with an (m, `)-BD object, processes can propose any value to the object, and the
object responds to the first m such proposals with values that satisfy the Validity and `-BD
properties; the (m+ 1)-th proposal permanently upsets the (m, `)-BD object, causing it to
nondeterministically respond with an arbitrary value to this proposal and all the subsequent
ones. Thus, as long as the BD object is not upset, every response is one of the proposals
(Validity) and satisfies the following property:

`-BD: There exists a value v such that at most ` responses are not v.

Note that m processes can trivially use a single (m, `)-BD object to solve the (m, `)-BD
task: each process just proposes its input value to the object and decides the object’s
response. However, since the (m, `)-BD object gets upset if more than m proposal operations
are applied, it cannot be used in this trivial way by m′ > m processes to solve the (m′, `)-BD
task.

We now give a more precise specification of the (m, `)-BD object. A linearizable shared
memory object is specified by a tuple (OP,RES, Q, s0, δ), where OP is a set of operations, RES
is a set of response values, Q is a set of states, s0 ∈ Q is the initial state, and δ ⊆
Q×OP×Q× RES is a state transition relation such that:

A tuple (s, op, s′, res) ∈ δ means that if the object is in state s when operation op ∈ OP
is invoked, then the object can change its state to s′ and return res as the response.
δ is total: For every reachable state s ∈ Q and every operation op ∈ OP, there exists at
least one s′ ∈ Q and res ∈ RES such that (s, op, s′, res) ∈ δ.

The state of an (m, `)-BD object D is either a pair (SOP,MRES), where SOP is the set
of all the values proposed to D and MRES is the multiset of all responses given by D, or
the upset state ⊥. Note that the state of D does not record information about the order of
operations and responses. If the state of D is a pair (SOP,MRES), we denote by |MRES| the
size of MRES; note that |MRES| is also the number of operations performed on D so far. We
say that the state (SOP,MRES) is full if |MRES| = m, since the next operation performed
on D will cause D to permanently enter the upset state ⊥.

For simplicity, we define the set of operations to be Z (the set of integers), where
operation i ∈ Z represents proposing the value i. So for all ` ≥ 1 and m > `, we define
the (m, `)-BD object as the tuple (OP,RES, Q, s0, δ) such that:

OP = Z.
RES = Z.
The set of states Q consists of:
– Every pair (SOP,MRES), where SOP is a set of integers and MRES is a multiset of

integers such that |MRES| ≤ m. If |MRES| = m, the state is called full.
– The upset state ⊥.
s0 = (∅,∅).
The state transition relation δ contains an element (s, op, s′, res) if and only if one of the
following two conditions holds:
– s and s′ are states (SOP,MRES) and (S′OP,M

′
RES) such that all of the following hold:

◦ s is not full.
◦ S′OP = SOP ∪ {op}.
◦ M ′RES = MRES + {res}.
◦ Validity: Each element in M ′RES is in S′OP.
◦ `-BD: There exists a value v such that at most ` elements in M ′RES are not v.

– s is either a full state or the upset state ⊥, and s′ is the upset state ⊥.
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From these definitions, we can make a few observations. First, the validity property
implies:

I Observation 16. The response to the first operation performed on a BD object is the
operation’s own proposal value.

Next, the upset state ⊥ works as intended:

I Observation 17. A BD object that is in either a full state or the upset state ⊥ can
nondeterministically respond with any value to all future operations.

Furthermore, the validity and `-BD properties hold as long as the object is not upset:

I Observation 18. If at most m operations are applied to an (m, `)-BD object D, then each
response given by D is a value proposed to D, and there is a value v such that at most ` of
the responses given by D are not v.

This immediately implies:

I Observation 19. The (m, `)-BD task can be solved with a single (m, `)-BD object.

From the above observation, it is clear that Theorem 14 and Corollary 15 also apply for
BD objects.

4 Unsolvability of (m − 2` + 1)-Consensus by (m, `)-BD Objects

We now show that (m, `)-BD objects and registers cannot solve the (m− 2`+ 1)-consensus
task. This, together with Corollary 15, allows us to determine the consensus number of every
instance of the BD task and BD object.

I Theorem 20. For all ` ≥ 0 and m > 2`, (m, `)-BD objects and registers cannot solve
the (m− 2`+ 1)-consensus task.

Proof. Consider any ` ≥ 0 and m > 2`. For the special case of ` = 0, observe that
the (m, `)-BD object is equivalent to an m-consensus object. Thus the theorem immediately
follows from the fact thatm-consensus objects and registers cannot solve the (m+1)-consensus
task. Hence it suffices to consider the case where ` ≥ 1.

For ` ≥ 1, we prove a stronger result, namely, that (m, `)-BD objects and registers cannot
solve the binary5 (m− 2`+ 1)-consensus task, even when the (m, `)-BD objects are further
strengthened by restricting their nondeterministic behavior as follows: As long as it is not
upset, each (m, `)-BD object outputs at most two distinct response values.

Assume, for contradiction, that there is an ` ≥ 1, an m > 2` and a wait-free algorithm
that solves binary consensus among m− 2`+ 1 ≥ 2 processes using only registers and the
strengthened (m, `)-BD objects. It suffices to prove the existence of an infinite execution of
this algorithm where processes never decide.

The proof uses the bivalency technique introduced by Fischer et al. [12]. We assume the
reader is familiar with bivalency proof terminology such as configuration, bivalent, and 0-
valent [12, 16]. In the following, we omit the proofs of Claims 21 to 24 since they are standard
(see [16]).

I Claim 21. The algorithm has an initial bivalent configuration Cinit.

5 In the binary consensus task, every proposal value is restricted to being either 0 or 1.
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5:10 Bounded Disagreement

I Claim 22. There is a bivalent configuration Cbi, reachable from Cinit, such that if any
process takes a step, the resulting configuration is univalent.

I Claim 23. At Cbi, every process is about to perform an operation on the same object D.

I Claim 24. D is not a register.

Since the algorithm only uses registers and (m, `)-BD objects,

I Claim 25. D is an (m, `)-BD object.

I Claim 26. There exists a pair of distinct processes p0 and p1, and a pair of (not necessarily
distinct) values v0 and v1, such that starting from Cbi,

p0 can take a step with response v0, and the resulting configuration C0 is 0-valent.
p1 can take a step with response v1, and the resulting configuration C1 is 1-valent.

Proof. Follows immediately from Claim 22 since there are at least 2 processes. J

Given a configuration C such that D is not upset in C, we denote by D.MRES(C) the
multiset MRES in the state of D in C.

I Claim 27. D is not upset in Cbi and |D.MRES(Cbi)| < 2`.

Proof. Assume, for contradiction, that either D is upset in Cbi or |D.MRES(Cbi)| ≥ 2`. By
Claim 23, every process was about to apply an operation on D at Cbi, and so at both C0
and C1, every process other than p0 and p1 will perform an operation on D as its next step.
Thus consider the following configurations:

A 0-valent configuration C ′0 reached from C0 by letting every process other than p0 and p1
(if any) take a step in an arbitrary order (while p0 and p1 take no steps).
A 1-valent configuration C ′1 reached from C1 by letting every process other than p0 and p1
(if any) take a step in an arbitrary order (while p0 and p1 take no steps).

There are two cases:
1. D is upset in Cbi. Clearly, D is also upset in both C ′0 and C ′1.
2. |D.MRES(Cbi)| ≥ 2`. Since there are m − 2` + 1 processes, by Claim 23, in both C ′0

and C ′1, the number of operations performed on D is |D.MRES(Cbi)|+(m−2`+1)−1 ≥ m.
Thus in both C ′0 and C ′1, D is in either a full state or the upset state ⊥.

So in all cases, D is in either a full state or the upset state ⊥, in both C ′0 and C ′1. By
Observation 17, D is henceforth allowed to nondeterministically return any response to all
subsequent operations. Thus consider the following configurations:

The 0-valent configuration C ′′0 reached from C ′0 by letting p1 take a step with response v1.
The 1-valent configuration C ′′1 reached from C ′1 by letting p0 take a step with response v0.

Since p0 received v0 as the response from D in both C ′′0 and C ′′1 , the state of p0 is
the same in C ′′0 as in C ′′1 . Furthermore, the state of every object is the same in C ′′0 as
in C ′′1 : D is in the upset state ⊥, and all other objects have not changed their state since Cbi.
Consequently, if all processes other than p0 crash, p0 will not be able to distinguish between
the 0-valent configuration C ′′0 and the 1-valent configuration C ′′1 , so if p0 runs solo starting
from configurations C ′′0 and C ′′1 , it decides the same value in both runs – a contradiction. J

I Claim 28. |D.MRES(Cbi)| ≥ 1.
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Proof. Assume, for contradiction, that |D.MRES(Cbi)| = 0. In other words, D is in the
initial state in Cbi. By Observation 16, v0 is the proposal value of the operation that p0
is about to invoke on D at configuration Cbi, and similarly v1 is the proposal value of the
operation that p1 is about to invoke on D at configuration Cbi. We claim that:

Starting from C0, p1 can take a step with response v1, and the resulting configuration C ′0
is 0-valent.
Starting from C1, p0 can take a step with response v0, and the resulting configuration C ′1
is 1-valent.

To see why, recall that D is a strengthened (m, `)-BD object where ` ≥ 1. In both C ′0 and C ′1,
the number of distinct response values from D is at most two, and the number of responses
different from v0 is at most 1. Thus the above steps required to reach C ′0 and C ′1 are possible.

Finally, recall that the state of D does not record information about the order of operations
and responses: it records only the set of proposals and the multiset of responses so far.
Consequently, the state of D is the same in C ′0 as in C ′1. Furthermore, since p0 received v0 as
the response from D in both C ′0 and C ′1, the state of p0 is the same in C ′0 as in C ′1. Similarly,
the state of p1 is the same in C ′0 as in C ′1. Finally, observe that all other objects and processes
have not changed their state since Cbi. Thus their states are also the same in C ′0 as in C ′1.
Therefore C ′0 = C ′1, contradicting the fact that C ′0 is 0-valent and C ′1 is 1-valent. J

By Claim 27 and Claim 28, D is not upset in Cbi and 1 ≤ |D.MRES(Cbi)| < 2`. Let vmode
denote the mode of D.MRES(Cbi) (ties can be decided arbitrarily).

I Claim 29. At most `− 1 of the responses in D.MRES(Cbi) are not vmode.

Proof. By Claim 27, D is not upset at Cbi and D.MRES(Cbi) contains at most 2`−1 responses.
Recall that D is a strengthened (m, `)-BD object that outputs at most two distinct values
as long as it is not upset. Thus D.MRES(Cbi) contains at most two distinct values. So the
mode vmode of D.MRES(Cbi) appears at least d|D.MRES(Cbi)|/2e times. Thus, the number of
responses in D.MRES(Cbi) that are not vmode is at most b|D.MRES(Cbi)|/2c ≤ b(2`− 1)/2c =
`− 1. J

I Claim 30. There exists a pair of distinct processes p∗0 and p∗1, and a value v∗1 (not necessarily
distinct from vmode), such that starting from Cbi,

p∗0 can take a step with response vmode, and the resulting configuration C∗0 is univalent.
p∗1 can take a step with response v∗1 , and the resulting configuration C∗1 is univalent, with
different valence from C∗0 .

Proof. Consider the processes p0 and p1, the values v0 and v1, and the configurations C0
and C1 stated in Claim 26. If v0 = vmode or v1 = vmode, we are done.

Suppose v0 6= vmode and v1 6= vmode. Let C ′0 be the configuration reached when, starting
from Cbi, p0 takes a step with response vmode (note that this step is possible, since the
number of distinct response values, and the number of responses different from vmode, do not
increase). Similarly, let C ′1 be the configuration reached when, starting from Cbi, p1 takes a
step with response vmode. If C ′0 and C ′1 have different valence, we are done.

Suppose C ′0 and C ′1 have the same valence. Without loss of generality, suppose they are
both 0-valent. Observe that, starting from Cbi, the 0-valent configuration C ′0 is reached
when p0 takes a step with response vmode, and the 1-valent configuration C1 is reached
when p1 takes a step with response v1. J
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We claim that:
Starting from C∗0 , p∗1 can take a step with response v∗1 , and the resulting configuration Ĉ∗0
is univalent.
Starting from C∗1 , p∗0 can take a step with response vmode, and the resulting configura-
tion Ĉ∗1 is univalent, with different valence from Ĉ∗0 .

To see why, note that in both Ĉ∗0 and Ĉ∗1 , the number of distinct response values from D
is at most two, and from Claim 29, the number of responses different from vmode is at
most (`− 1) + 1 = `. Thus the above steps required to reach Ĉ∗0 and Ĉ∗1 are possible.

Recall that the state of D does not record information about the order of operations
and responses: it records only the set of proposals and the multiset of responses so far.
Consequently, the state of D is the same in Ĉ∗0 as in Ĉ∗1 . Furthermore, since p∗0 received vmode
as the response from D in both Ĉ∗0 and Ĉ∗1 , the state of p∗0 is the same in Ĉ∗0 as in Ĉ∗1 .
Similarly, the state of p∗1 is the same in Ĉ∗0 as in Ĉ∗1 . Finally, observe that all other objects
and processes have not changed their state since Cbi. Thus their states are also the same
in Ĉ∗0 as in Ĉ∗1 . Therefore Ĉ∗0 = Ĉ∗1 , contradicting the fact that Ĉ∗0 and Ĉ∗1 have opposite
valence. J

We can now determine the consensus number for every BD task and object as follows:

I Theorem 31. For all ` ≥ 0 and m > 0, both the (m, `)-BD task and the (m, `)-BD object
have consensus number max(m− 2`, 1).

Proof. Consider any ` ≥ 0 and m > 0. There are two cases: either m > 2`, or 0 ≤ m ≤ 2`.
First, consider the case where m > 2`. Since BD objects are at least as strong as

their corresponding BD tasks (Observation 19), by Corollary 15 both the (m, `)-BD task
and the (m, `)-BD object can, together with registers, solve the (m − 2`)-consensus task.
Similarly, by Theorem 20 both the (m, `)-BD task and the (m, `)-BD object, together with
registers, cannot solve the (m− 2`+ 1)-consensus task. Thus both the (m, `)-BD task and
the (m, `)-BD object have consensus number m− 2` = max(m− 2`, 1).

Now consider the case where m ≤ 2`. From the above case, we have that both the (2`+
1, `)-BD task and the (2`+ 1, `)-BD object have consensus number 1. For m ≤ 2`, it is clear
that the (2`+1, `)-BD object is at least as strong as the (m, `)-BD object, and the (2`+1, `)-BD
task is at least as difficult to solve as the (m, `)-BD task. Thus both the (m, `)-BD task and
the (m, `)-BD object also have consensus number 1 = max(m− 2`, 1). J

5 An Unusual Property of Bounded Disagreement

We now show that every level n ≥ 2 of Herlihy’s consensus hierarchy contains a BD object
that cannot be implemented using n-consensus and registers.

I Theorem 32. For all n ≥ 2, both the (9n, 4n)-BD task and the (9n, 4n)-BD object have
consensus number n, but cannot be implemented using n-consensus objects and registers.

Proof. Let n ≥ 2, and consider the (m, `)-BD object for m = 9n and ` = 4n.

1. Since ` ≥ 0 and m > 0, by Theorem 31, the (9n, 4n)-BD object has consensus num-
ber max(m− 2`, 1) = 9n− 2(4n) = n.

2. Consider the (n′, k)-SA task for n′ = 3n and k = 2. Note that m = n′ + ` + b`/kc
(because 9n = 3n+ 4n+ b4n/2c), and m ≥ 2`+ 2 (because for n ≥ 2, 9n ≥ 2(4n) + 2).
Then, since k ≥ 1, n′ ≥ 1, ` ≥ 0, and m ≥ max(n′ + `+ b`/kc , 2`+ 2), by Theorem 14
and the fact that the (9n, 4n)-BD object is at least as strong as the (9n, 4n)-BD task
(Observation 19), (9n, 4n)-BD objects and registers can solve the (3n, 2)-SA task.
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We claim that the (9n, 4n)-BD object cannot be implemented using n-consensus objects
and registers. Suppose, for contradiction, that n-consensus objects and registers can imple-
ment the (9n, 4n)-BD object. Since (9n, 4n)-BD objects and registers can solve the (3n, 2)-SA
task, this implies that n-consensus objects and registers can solve the (3n, 2)-SA task. This
contradicts the following important result about set agreement: for all n ≥ 2, n-consensus
objects and registers cannot solve the (3n, 2)-SA task [8].

Thus, the (9n, 4n)-BD object has consensus number n, but cannot be implemented
using n-consensus objects and registers. The proof that this also holds for the (9n, 4n)-BD
task is almost identical. J

Prior to this paper, the only known objects with consensus number n ≥ 2 and not imple-
mentable using n-consensus and registers were the ad hoc objects defined by Rachman [18]
and Afek et al. [2]. In the appendix, we prove that these objects are fundamentally different
from our BD objects.

6 Conclusion

In this paper, we introduced a novel and natural generalization of consensus that we call
bounded disagreement, and investigated its relation to consensus and set agreement. Our
results show that, despite apparent similarities, bounded disagreement is fundamentally
different from these two problems:

BD and consensus are distinct problems. In fact, by Theorem 32, for all n ≥ 2,
the (9n, 4n)-BD task [object] have consensus number n, but cannot be solved [implemen-
ted] by n-consensus and registers. Thus for all k ≤ n, k-consensus and registers cannot
solve the (9n, 4n)-BD task, and for all k > n, the (9n, 4n)-BD task and registers cannot
solve k-consensus: so, for all n ≥ 2, there is no k such that k-consensus is equivalent
to the (9n, 4n)-BD task. Therefore there are infinitely many instances of the bounded
disagreement task that are not equivalent to any consensus task.
BD and SA are distinct problems. Except for the special case of k = 1 where the (n, k)-SA
task is simply the n-consensus task, the (n, k)-SA task and registers cannot solve
the 2-consensus task [8]. In contrast, by Theorem 31, the (4, 1)-BD task has consensus
number 2, and in fact, for all n ≥ 2, there are ` ≥ 1 and m such that the (m, `)-BD
task has consensus number n. So there are infinitely many instances of the bounded
disagreement task that are not equivalent to any set agreement task.

Consensus is one of the fundamental problems in distributed computing, and its generaliza-
tions tend to produce deep and valuable insights about the field as a whole. The history of set
agreement is one such example: since its introduction in 1990 [7], research on this problem
has led to significant results, such as linking topology and distributed computing [17, 19].
It has also elucidated the relationship between consensus and other important problems in
distributed computing, such as renaming and symmetry breaking [6, 13, 14]. The bounded
disagreement problem may provide a similar impetus in the future.
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A BD Objects Versus the Object Defined by Rachman in [18]

In [18], Rachman defined the 2-set object with parameter m, which is a composite of an
(∞, 2)-SA object and an m-consensus object. Rachman proved that this object has consensus
number m but cannot be implemented by m-consensus objects and registers.

I Theorem 33. For all m ≥ 1, the 2-set object with parameter m cannot be implemented by
(n, `)-BD objects and registers for any n ≥ 1 and ` ≥ 0.

Proof. For all n ≥ 1, n-consensus objects and registers cannot solve the (∞, 2)-SA task [8].
Since the n-consensus object can trivially implement the (n, `)-BD object for all ` ≥ 0,
(n, `)-BD objects and registers cannot solve the (∞, 2)-SA task. In contrast, by definition,
the 2-set object with parameter m ≥ 1 solves the (∞, 2)-SA task [18]. J

B BD Objects Versus the Object Defined by Afek et al. in [2]

In [2], Afek et al. defined a family of deterministic objects Om,k, where m ≥ 2 and k ≥ 2,
such that: (a) Om,k has consensus number m, (b) Om,k solves the (km+ k − 1, k)-SA task,
and (c) Om,k+1 implements Om,k. They also proved that Om,k objects and registers cannot
solve the (km+m+ k, k + 1)-SA task, which is trivially solved by the Om,k+1 object since
km+m+ k = (k + 1)m+ (k + 1)− 1.

I Theorem 34. For all n ≥ 1, the (9n, 4n)-BD object is not equivalent to the Om,k object,
for any m ≥ 2 and k ≥ 2.

Proof. Consider any n ≥ 1, m ≥ 2, and k ≥ 2. By Theorem 31, the (9n, 4n)-BD object has
consensus number n. On the other hand, the Om,k object has consensus number m [2]. If
m 6= n, it is clear that the two objects are not equivalent. So suppose that n = m.

Case 1: k is odd. Thus there exists a positive integer q such that k + 1 = 2q. Observe
that:

Any solution to the (2q(m+1), 2q)-SA task can be used to solve the (km+m+k, k+1)-SA
task; this is because km+m+ k = (k + 1)(m+ 1)− 1 = 2q(m+ 1)− 1 < 2q(m+ 1).
Any solution to the (2(m+1), 2)-SA task can be used, together with registers, to solve the
(2q(m+ 1), 2q)-SA task; the algorithm to do so is obvious: divide the 2q(m+ 1) processes
into q groups of 2(m+ 1) processes, and have each group solve the (2(m+ 1), 2)-SA task
independently [8].
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Since m ≥ 2, 2(m+ 1) ≤ 3m, and so any solution to the (3m, 2)-SA task can be used to
solve the (2(m+ 1), 2)-SA task.
Since m = n, the (3m, 2)-SA task is the (3n, 2)-SA task.
By Theorem 14 and the fact that the (9n, 4n)-BD object is at least as strong as
the (9n, 4n)-BD task (Observation 19), (9n, 4n)-BD objects and registers can solve
the (3n, 2)-SA task.

Thus, by transitivity, we have that (9n, 4n)-BD objects and registers can solve the (km+m+
k, k + 1)-SA task. In contrast, as we mentioned above, Om,k objects and registers cannot
solve the (km+m+ k, k + 1)-SA task [2]. We conclude that the (9n, 4n)-BD object cannot
be implemented using Om,k objects and registers.

Case 2: k is even. Then k + 1 is odd. From case 1, the (9n, 4n)-BD object cannot be
implemented using Om,k+1 objects and registers. Since the Om,k+1 object implements the
Om,k object [2], by transitivity, the (9n, 4n)-BD object cannot be implemented using Om,k

objects and registers. J
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