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Abstract
We study the classic NP-Hard problem of finding the maximum k-set coverage in the data stream
model: given a set system of m sets that are subsets of a universe {1, . . . , n}, find the k sets that
cover the most number of distinct elements. The problem can be approximated up to a factor
1− 1/e in polynomial time. In the streaming-set model, the sets and their elements are revealed
online. The main goal of our work is to design algorithms, with approximation guarantees as
close as possible to 1− 1/e, that use sublinear space o(mn). Our main results are:

Two (1 − 1/e − ε) approximation algorithms: One uses O(ε−1) passes and Õ(ε−2k) space1
whereas the other uses only a single pass but Õ(ε−2m) space.
We show that any approximation factor better than (1−(1−1/k)k) in constant passes requires
Ω(m) space for constant k even if the algorithm is allowed unbounded processing time2. We
also demonstrate a simple single-pass, (1−ε) approximation algorithm using Õ(ε−2mk) space.

We also study the maximum k-vertex coverage problem in the dynamic graph stream model. In
this model, the stream consists of edge insertions and deletions of a graph on N vertices. The
goal is to find k vertices that cover the most number of distinct edges.

We show that any constant approximation in constant passes requires Ω(N) space for constant
k whereas Õ(ε−2N) space is sufficient for a (1− ε) approximation and arbitrary k in a single
pass.
For regular graphs, we show that Õ(ε−3k) space is sufficient for a (1 − ε) approximation in
a single pass. We generalize this to a (κ − ε) approximation when the ratio between the
minimum and maximum degree is bounded below by κ.
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1 Introduction

The maximum set coverage problem is a classic NP-Hard problem that has a wide range of
applications including facility and sensor allocation [33], information retrieval [6], influence
maximization in marketing strategy design [29], and the blog monitoring problem where
we want to choose a small number of blogs that cover a wide range of topics [41]. In this

∗ This work was supported by NSF Awards CCF-0953754, IIS-1251110, CCF-1320719, and a Google
Research Award.

1 Õ(·) suppresses polylog factors.
2 Note that limk→∞(1− (1− 1/k)k) = 1− 1/e.
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22:2 Better Streaming Algorithms for the Maximum Coverage Problem

problem, we are given a set system of m sets that are subsets of a universe [n] := {1, . . . , n}.
The goal is to find the k sets whose union covers the largest number of distinct elements. For
example, in the application considered by Saha and Getoor [41], the universe corresponds to
n topics of interest to a reader, each subset corresponds to a blog that covers some of these
topics, and the goal is to maximize the number of topics that the reader learns about if she
can only choose k blogs.

It is well-known that the greedy algorithm, which greedily picks the set that covers
the most number of uncovered elements, is a 1− 1/e approximation. Furthermore, unless
P = NP , this approximation factor is the best possible [24].

The maximum vertex coverage problem is a special case of this problem in which the
universe corresponds to the edges of a given graph and there is a set corresponding to each
node of the graph that contains the subset of edges that are incident to that node. For this
problem, algorithms based on linear programming are known to achieve a 3/4 approximation
for general graphs [1] and a 8/9 approximation for bipartite graphs [15]. Assuming P 6= NP ,
there does not exist a polynomial-time approximation scheme. Recent work has focused on
finding purely combinatorial algorithms for this problem [14].

Streaming Algorithms. Unfortunately, for both problems, the aforementioned greedy and
linear programming algorithms do not scale well to massive data sets. This has motivated a
significant research effort in designing algorithms that could handle large data in modern
computation models such as the data stream model and the MapReduce model [34, 10]. In
the data stream model, the k-set coverage problem and the related set cover problem have
received a lot of attention in recent research [26, 18, 9, 45, 23, 7].

Two variants of the data stream model are relevant to our work. In the streaming-set model
[41, 25, 23, 40, 44, 31], the stream consists of m sets S1, . . . , Sm and each Si is encoded as the
list of elements in that set along with a unique ID for the set. For simplicity, we assume that
ID(Si) = i. In the dynamic graph stream model [2, 3, 4, 5, 27, 28, 25, 13, 20, 8, 32, 37, 36],
relevant to the maximum vertex coverage problem, the stream consists of insertions and
deletions of edges of the underlying graph. For a recent survey of research in graph streaming,
see [35]. Note that any algorithm for the dynamic graph stream model can also be used in
the streaming-set model; the streaming-set model is simply a special case in which there are
no deletions and edges are grouped by endpoint.

1.1 Related Work
Maximum Set Coverage. Saha and Getoor [41] gave a swap based 1/4 approximation
algorithm that uses a single pass and Õ(kn) space. At any point, their algorithm stores k sets
explicitly in the memory as the current solution. When a new set arrives, based on a specific
rule, their algorithm either swaps it with the set with the least contribution in the current
solution or does nothing and moves on to the next set in the stream. Subsequently, Ausiello
et al. [9] gave a slightly different swap based algorithm that also finds a 1/4 approximation
using one pass and the same space. Yu and Yuan [45] claimed an Õ(n) space, single-pass
algorithm with an approximation factor around 0.3 based on the aid of computer simulation.

Recently, Badanidiyuru et al. [10] gave a generic single-pass algorithm for maximizing a
monotone submodular function on the stream’s objects subject to the cardinality constraint
that at most k objects are selected. Their algorithm guarantees a 1/2 − ε approximation.
At a high level, based on a rule that is different from [41, 9] and a guess of the optimal
value, their algorithm decides if the next object (which is a set in our case) is added to the
current solution. The algorithm stops when it reaches the end of the stream or when k
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objects have been added to the solution. In the k-set coverage problem, the rule requires
knowing the coverage of the current solution. As a result, a careful adaptation to the k-set
coverage problem uses Õ(ε−1n) space. For constant ε, this result directly improves upon
[41, 9]. Subsequently, Chekuri et al. [19] extended this work to non-monotone submodular
function maximization under constraints beyond cardinality.

The set cover problem, which is closely related to the k-set coverage problem, has been
studied in [41, 26, 18, 23, 7]. See [7] for a comprehensive summary of results and discussion.

Maximum Vertex Coverage. The streaming k-vertex coverage problem was studied by
Ausiello et al. [9]. They first observed that simply outputting the k vertices with highest
degrees is a 1/2 approximation; this can easily be done in the streaming-set model. The
main results of their work were Õ(kN)-space algorithms that have better approximation for
special types of graph. Their results include a 0.55 approximation for regular graphs and a
0.6075 approximation for regular bipartite graphs. Note that their paper only considered
the streaming-set model whereas our results for maximum vertex coverage will consider the
more challenging dynamic graph stream model.

1.2 Our Contributions
Maximum k-set coverage. Our main goal is to achieve the 1− 1/e approximation that is
possible in the non-streaming or offline setting.

We present polynomial time data stream algorithms that achieve a 1− 1/e− ε approx-
imation for arbitrarily small ε. The first algorithm uses one pass and Õ(ε−2m) space
whereas the second algorithm uses O(ε−1) passes and Õ(ε−2k) space. We consider both
algorithms to be pass efficient but the second algorithm uses much less space at the cost
of using more than one pass. We note that storing the solution itself requires Ω(k) space.
Thus, we consider Õ(ε−2k) space to be surprisingly space efficient.
For constant k, we show that Ω(m) space is required by any constant pass (randomized)
algorithm to achieve an approximation factor better than (1− (1−1/k)k) with probability
at least 0.99; this holds even if the algorithm is permitted exponential time. To the best
of our knowledge, this is the first non-trivial space lower bound for this problem. However,
with exponential time and Õ(ε−2mk) space we observe that a 1 − ε approximation is
possible in a single pass.

For a slightly worse approximation, a 1/2− ε approximation in one pass can be achieved
using Õ(ε−3k) space. This follows by building on the result of Badanidiyuru et al. [10]. How-
ever, we provide a simpler algorithm and analysis. Finally, we design a 1/3− ε approximation
algorithm for the budgeted maximum set coverage problem using one pass and Õ(n) space.
In this version, each set S has a cost wS in the interval [0, L]. The goal is to find a collection
of sets whose total cost does not exceed L that cover the most number of distinct elements.
Khuller et al. [30] presented a polynomial time and 1−1/e approximation algorithm based on
the greedy algorithm and an enumeration technique. Our results are summarized in Figure 1.

Shortly after our submission, in an independent work, Bateni et al. [12] presented a
single-pass, Õ(ε−3m) space algorithm that finds a 1−1/e−ε approximation for the maximum
k-set coverage problem. We note that our approach also works in their edge arrival model in
which the stream reveals the set-element relationships one at a time.

Maximum k-vertex coverage. Compared to the most relevant previous work [9], we study
this problem in a more general model, i.e., the dynamic graph stream model. We manage

ICDT 2017
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Upper/Lower bound Number of passes Space Approximation Constraint
U O

(
ε−1) Õ(ε−2k) 1− 1/e− ε C

U 1 Õ(ε−3k) 1/2− ε C
U 1 Õ(ε−2m) 1− 1/e− ε C
U 1 Õ(ε−2mk) 1− ε C
U 1 Õ(ε−1n) 1/3− ε B
L constant Ω(mk−2) (1− (1− 1/k)k) + ε C

Figure 1 Summary of results for MaxSetCoverage, C: cardinality, B: budgeted.

Upper/Lower bound Number of passes Space Approximation
U 1 Õ(ε−2N) 1− ε
U 1 Õ(ε−3k) κ− ε
L 1 Ω(Nκ3/k) κ+ ε

Figure 2 Summary of results for MaxVertexCoverage. κ is ratio of lowest degree to highest degree.

to achieve a better approximation and space complexity for general graphs even when
comparing to their results for special types of graph. Our results are summarized in Figure
2. In particular, we show that

Õ(ε−2N) space is sufficient for a 1 − ε approximation (or a 3/4 − ε approximation if
restricted to polynomial time) and arbitrary k in a single pass. The algorithms in [9] use
Õ(kN) space and achieve an approximation worse than 0.61 even for special graphs.
Any constant approximation in constant passes requires Ω(N) space for constant k.
For regular graphs, we show that Õ(ε−3k) space is sufficient for 1− ε approximation in a
single pass. We generalize this to an κ − ε approximation when the ratio between the
minimum and maximum degree is bounded below by κ. We also extend this result to
hypergraphs.

Our techniques. On the algorithmic side, our basic approach is a “guess, subsample, and
verify” framework. At a high level, suppose we design a streaming algorithm for approximate
k-coverage that assumes a priori knowledge of a good guess of the optimal coverage. We show
that it is a) possible to run same algorithm on a subsampled universe defined by a carefully
chosen hash function and b) remove the assumption that a good guess was already known.

If the guess is at least nearly correct, running the algorithm on the subsampled universe
results in a small space complexity. However, there are two main challenges. First, an
algorithm instance with a wrong guess could use too much space. We simply terminate
those instances. The second issue is more subtle. Because the hash function is not fully
independent, we appeal to a special version Chernoff bound. The bound needs not guarantee
a good approximation unless the guess is near-correct. To this end, we use the F0 estimation
algorithm to verify the coverage of the solutions. Finally, we return the solution with
maximum estimate coverage. This framework allows us to restrict the analysis solely to the
near-correct guess. The analysis is, therefore, significantly simpler.

Some of our other algorithmic ideas are inspired by previous works. The “thresholding
greedy” technique was inspired by [18, 22, 11]. However, the analysis is different for our
problem. Furthermore, to optimize the number of passes, we rely on new observations.

Another algorithmic idea in designing one-pass space-efficient algorithm is to treat the
sets differently based on their contributions. During the stream, we immediately add the sets
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with large contributions to the solution. We store the contribution of each remaining sets
explicitly and solve the remaining problem offline. Har-Peled et al. [26] devised a somewhat
similar strategy but the details are different.

For the k-vertex coverage problem, we show that simply running the streaming cut-
sparsifier algorithm is sufficient and optimal up to a polylog factor. The novelty is to treat it
as an interesting corner case of a more space-efficient algorithm for near regular graphs, i.e.,
κ is bounded below.

One of the novelties is proving the lower bound via a randomized reduction from the
k-party set disjointness problem.

2 Algorithms for maximum k-set coverage

In this section, we design various algorithms for approximating MaxSetCoverage in the
data stream model. Our main algorithmic results in this section are two 1 − 1/e − ε

approximation algorithms. The first algorithm uses one pass and Õ(ε−2m) space whereas
the second algorithm uses O(ε−1) passes and Õ(ε−2k) space. We also briefly explore some
other trade-offs in a subsequent subsection.

Notation. If A is a collection of sets, then C(A) denotes the union of these sets.

2.1 (1 − 1/e− ε) approximation in one pass and Õ(ε−2m) space
Approach. The algorithm adds sets to the current solution if the number of new elements
they cover exceeds some threshold. The basic algorithm relies on an estimate z of the
optimum coverage OPT. The threshold for including a new set in the solution is that it
covers at least z/k new elements. Unfortunately, this threshold is too high to ensure that
we selected sets that achieve the required 1− 1/e− ε approximation and we may want to
revisit adding a set, say S, that was not added when it first arrived. To facilitate this, we
will explicitly store the subset of S that were uncovered when S arrived in a collection of sets
W . By the fact that S was not added immediately, we know that this subset is not too large.
At the end of the pass, we continue augmenting out current solutions using the collection W .

Technical Details. For the time being, we suppose that the algorithm is provided with an
estimate z such that OPT ≤ z ≤ 4 OPT. The algorithm uses C to keep track of the elements
that have been covered so far. Upon seeing a new set S, the algorithm stores S \C explicitly
in W if S covers few new elements. Otherwise, the algorithm adds S to the solution and
updates C immediately. At the end of the stream, if there are fewer than k sets in the
solution, we use the greedy approach to find the remaining sets from W .

The basic algorithm maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the
(at most k) sets in the current solution and C is the the union of the corresponding sets. We
also maintain a collection of sets W described above. The algorithm proceeds as follows:
1. Initialize C = ∅, I = ∅, W = ∅.
2. For each set S in the stream:

a. If |S \ C| < z/k then W ←W ∪ {S \ C}.
b. If |S \ C| ≥ z/k then I ← I ∪ {ID(S)} and C ← C ∪ S.

3. Post-processing: Greedily add k − |I| sets from W and update I and C appropriately.

I Lemma 1. There exists a single-pass, O (k logm+mz/k · logn)-space algorithm that finds
a 1− 1/e approximation of MaxSetCoverage.

ICDT 2017
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Proof. We observe that storing the set of covered elements C requires at most OPT logn =
O(z logn) bits of space. For each set S such that S \ C is stored explicitly in W, we need
O (z/k · logn) bits of space. Storing I requires O(k logm) space. Thus, the algorithm uses
the space claimed since k < m.

After the algorithm added the ith set S to the solution, let ai be the number of new
elements that S covers and bi be the total number of covered elements so far. Furthermore,
for i > 0, let ci = OPT−bi. Define a0 := b0 := 0 and c0 := OPT. At the end of the
stream, suppose |I| = j. Then, cj ≤ OPT−zj/k ≤ OPT(1 − 1/k)j . Now, we consider
the sets that were added in post-processing. We then proceed with the usual inductive
argument to show that ci ≤ (1 − 1/k)i OPT for i > j. Before the algorithm added the
(i+ 1)th set for i ≥ j, there must be a set that covers at least ci/k new elements. Therefore,
ci+1 = ci − ai+1 ≤ ci(1 − 1/k) ≤ OPT(1 − 1/k)i+1. The approximation follows since
ck ≤ OPT(1− 1/k)k ≤ 1/e ·OPT. J

Following the approach outlined in Section 2.3 we may assume z = O(ε−2k logm) and
that OPT ≤ z ≤ 4 OPT .

I Theorem 2. There exists a single-pass, Õ(ε−2m) space algorithm that finds a 1− 1/e− ε
approximation of MaxSetCoverage with high probability.

Remark. After the initial submission of this paper, we observed that a slight modification
of the above algorithm can be used to attain a 1 − 1/(4b) approximation for any b > 1 if
we are permitted unlimited post-processing time and increase the space by a factor of b.
Specifically, we increase the threshold for when to add a set immediately to the solution from
z/k to bz/k and then find the optimal set of k − |I| sets from W to add in post-processing.
For example, setting b = 4ε−1 yields a 1− ε approximation using Õ(ε−3m) space. See the
full version for further details [38].

2.2 (1 − 1/e− ε) approximation in O(ε−1) passes and Õ(ε−2k) space
Approach. Our second algorithm is based on the standard greedy approach but instead
of adding the set that increases the coverage of the current solution the most at each set,
we add a set if the number of new elements covered by this set exceeds a certain threshold.
This threshold decreases with each pass in such a way that after only O(ε−1) passes, we
have a good approximate solution but the resulting algorithm may use too much space. We
will fix this by first randomly subsampling each set at different rates and running multiple
instantiations of the basic algorithm corresponding to different rates of subsampling.

The basic “decreasing threshold” approach has been used before in different contexts
[11, 18, 22]. The novelty of our approach is in implementing this approach such that the
resulting algorithm uses small space and a small number of passes. For example, a direct
implementation of the approach by Badanidiyuru and Vondrák [11] in the streaming model
may require O(ε−1 log(m/ε)) passes and O(n) space3.

Technical Details. We will assume that we are given an estimate z of OPT such that
OPT ≤ z ≤ 4 OPT. We will later remove this assumption. We start by designing a
(1− 1/e− ε) approximation algorithm that uses Õ(k + z) space and O(ε−1) passes. We will
subsequently use a sampling approach to reduce the space to Õ(ε−2k).

3 Note that their work addressed the more general problem of maximizing sub-modular functions.
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As with the previous algorithm, the basic algorithm in this section also maintains
maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in the
current solution and C is the the union of the corresponding sets. The algorithm proceeds as
follows:
1. Initialize C = ∅ and I = ∅
2. For j = 1 to 1 + dlogα(4e)e where α = 1 + ε:

a. Make a pass over the stream. For each set S in the stream:
i. If |I| < k and |S \ C| ≥ z/k

(1+ε)j−1 then I ← I ∪ {ID(S)} and C ← C ∪ S.

I Lemma 3. There exists an O(ε−1)-pass, O(k logm+ z logn)-space algorithm that finds a
1− 1/e− ε approximation of MaxSetCoverage.

To analyze the algorithm, we introduce some notation. After the ith set was picked, let ai
be the number of new elements covered by this set and let bi be the total number of covered
elements so far. Furthermore, let ci = OPT−bi. We define a0 := 0 and b0 := 0.

I Lemma 4. Suppose the algorithm picks k′ sets. For 0 ≤ i ≤ k′ − 1, ai+1 ≥ ci/(αk).

Proof. Suppose the algorithm added the (i+ 1)th set S during the jth pass. Consider the
set of covered elements C just before the algorithm added the set S.

We first consider the case where j = 1. Then, the algorithm only adds S if

|S \ C| ≥ z/k ≥ OPT /k ≥ ci/k ≥ ci/(αk) .

Now, we consider the case where j > 1. Note that just before the algorithm added
S, there must exist a set S′ (which could be S) that had not been already added where
|S′ \ C| ≥ ci/k. This follows because the optimum collection of k sets covers at least ci
elements that are currently uncovered and hence one of these sets must cover at least ci/k
new elements. But since S′ had not already been added, we know that S′ was not added
during the first j − 1 passes and thus, |S′ \ C| < z/(kαj−2). Therefore,

z/(kαj−2) > |S′ \ C| ≥ ci/k

and in particular, z/(kαj−1) > ci/(kα). Since the algorithm picked S, we have ai+1 =
|S \ C| ≥ z/(kαj−1) ≥ ci/(kα) as required. J

Proof of Lemma 3. It is immediate that the number of passes is O(ε−1). The algorithm
needs to store the sets I and C. Since |C| ≤ z, the total space is O(k logm+ z logn).

To argue about the approximation factor, we first prove by induction that we always have
ci ≤

(
1− 1

αk

)i OPT for i ≤ k′. Trivially, c0 ≤ (1− 1
αk )0 OPT. Suppose ci ≤ (1− 1

αk )i OPT.
Then, according to Lemma 4, ai+1 ≥ ci/(αk). Thus,

ci+1 = ci − ai+1 ≤ ci −
ci
αk

= ci

(
1− 1

αk

)
≤ OPT

(
1− 1

αk

)i+1
.

Suppose the final solution contains k sets. Then

ck ≤
(

1− 1
αk

)k
OPT ≤ e−1/α OPT ≤ (1/e+ ε) OPT .

As a result, the final solution covers bk = OPT−ck ≥ (1− 1/e− ε) OPT.

ICDT 2017
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Suppose the collection of sets S chosen by the algorithm contains fewer than k sets. We
define S̃ := S \ C(S) to be the set of elements in S that are not covered by the final solution.
For each set S in the optimum solution O, if S is unpicked, then |S̃| ≤ z/(4ek). Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ z

4e ≤ |C(S)|+ OPT
e

.

Hence, |C(S)| ≥ (1− 1/e) OPT. J

Following the approach outlined in Section 2.3 we may assume z = O(ε−2k logm) and
that OPT ≤ z ≤ 4 OPT .

I Theorem 5. There exists an O(1/ε)-pass, Õ(ε−2k) space algorithm that finds a 1− 1/e− ε
approximation of MaxSetCoverage with high probability.

2.3 Removing Assumptions via Guessing, Sampling, and Sketching
In this section, we address the fact that in the previous two sections we assumed a priori
knowledge of a constant approximation of the maximum number of elements that could be
covered and that this optimum was of size O(ε−2k logm).

Addressing both issues are interrelated and are based on a subsampling approach. The
basic idea is to run the above algorithms on a new instance formed by removing occurrences of
certain elements in [n] from all the input sets. The goal is to reduce the maximum coverage to
min(n,O(ε−2k logm)) while ensuring that a good approximation in the subsampled instance
corresponds to a good approximation in the original instance. In the rest of this section we
will assume that k = o(ε2n/ logm) since otherwise this bound is trivial.

Subsampling. Assume we know a value v that satisfies OPT /2 ≤ v ≤ OPT. Let c be some
sufficiently large constant and set λ = cε−2k logm. Let h : [n] → {0, 1} be drawn from a
family of 2λ-wise independent hash functions where

p := Pr [h(e) = 1] = λ/v.

The space to store h is Õ(ε−2k). For any set S that is a subset of [n], we define

S′ := {e ∈ S : h(e) = 1}.

We use the following Chernoff bound for limited independent random variables.

I Theorem 6 (Schmidt et al. [42]). Let X1, . . . , Xn be boolean random variables. Let
X =

∑n
i=1 Xi and µ = E [X]. Suppose µ ≤ n/2. If Xi are dγµe-wise independent, then

Pr [|X − µ| ≥ γµ] ≤ exp
(
−bmin(γ, γ2) · µ/3c

)
.

The next lemma and its corollary will allow us to argue that approximating the maximum
coverage amongst the elements {e ∈ [n] : h(e) = 1} gives only a slightly weaker approximation
of the maximum coverage amongst the original set of elements.

I Lemma 7. With high probability4, for all collections of k sets S1, . . . , Sk in the stream,
|S′1 ∪ . . . ∪ S′k| = |S1 ∪ . . . ∪ Sk|p± εvp .

4 We consider 1− 1/poly(m) or 1− 1/poly(n) as high probability.
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Proof. Fix any collection of k sets S1, . . . , Sk. Let D = |S1∪ . . .∪Sk| and D′ = |S′1∪ . . .∪S′k|.
We first observe that since k = o(ε2n/ logm), we may assume that λ = o(n).

µ := E [D′] = pD ≤ pOPT < 2pv = 2λ ≤ n/2.

Appealing to the Chernoff bound with limited independence Theorem 6, we have

Pr [|D′ − µ| ≥ εvp] = Pr [|D′ − µ| ≥ γDp] ≤ exp
(
−bmin(γ, γ2) · µ/3

⌋
)

where γ = εv/D since the hash function was dγµe = dεvpe-wise independent. But note that

exp
(
−bmin(γ, γ2) · µ3 c

)
= exp

(
−bmin(1, γ) · εvp3 c

)
≤ exp

(
−b12 ·

ck logm
3 c

)
≤ 1
m10k

where we use the fact that γ = εv/D ≥ ε/2 because D ≤ OPT ≤ 2v. The lemma follows by
taking the union bound over all

(
m
k

)
collections of k sets. J

In particular, the following corollary establishes that a 1/t approximation when restricted
to elements in {e ∈ [n] : h(e) = 1} yields a (1/t− 2ε) approximation and at most pOPT(1 +
ε) = O(ε−2k logm) of these elements can be covered by k sets.

I Corollary 8. Let OPT′ be optimum number of elements that can be covered from {e ∈ [n] :
h(e) = 1}. Then,

pOPT(1 + ε) ≥ OPT′ ≥ pOPT(1− ε)

Furthermore if U1, . . . , Uk satisfies |U ′1 ∪ . . . ∪ U ′k| ≥ pOPT(1− ε)/t for t ≥ 1 then

|U1 ∪ . . . ∪ Uk| ≥ OPT(1/t− 2ε) .

Proof. The fact that OPT′ ≥ pOPT(1− ε) follows by applying Lemma 7 to the optimum
solution. According to Lemma 7, for all collections of k sets U1, . . . , Uk, we have

|U ′1 ∪ . . . ∪ U ′k| = |U1 ∪ . . . ∪ Uk|p± εvp ≤ pOPT(1 + ε)

which implies the first inequality.
Now, suppose |U ′1∪. . .∪U ′k| ≥ pOPT(1−ε)/t. Since |U ′1∪. . .∪U ′k|−εvp ≤ |U1∪. . .∪Uk|p,

we deduce that |U1 ∪ . . . ∪ Uk| ≥ OPT(1− ε)/t− εv ≥ OPT(1/t− 2ε). J

Hence, since we know v such that OPT /2 ≤ v ≤ OPT, then we know that

(1− ε)λ ≤ OPT′ ≤ 2(1 + ε)λ (1)

with high probability according to Corollary 8. Then, by setting z = 2(1 + ε)λ, we ensure
that OPT′ ≤ z ≤ 4 OPT′.

Guessing v and F0 Sketching. We still need to address how to compute v such that
OPT /2 ≤ v ≤ OPT. The natural approach is to make dlog2 ne guesses for v corresponding to
1, 2, 4, 8 . . . since one of these will be correct.5 We then perform multiple parallel instantiations
of the algorithm corresponding to each guess. This increases the space by a factor of O(logn).

5 The number of guesses can be reduced to dlog2 ke if the size of the largest set is known since this gives a
k approximation of OPT. The size of the large set can be computed in one additional pass if necessary.
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But how do we determine which instantiation corresponds to the correct guess? The most
expedient way to deal with this question is to sidestep the issue as follows. Instantiations
corresponding to guesses that are too small may find it is possible to cover ω(ε−2k logm)
elements so we will terminate any instantiation as soon as it covers more than O(ε−2k logm)
elements. Note that by Corollary 8 and Equation 1, we will not terminate the instantiation
corresponding to the correct guess.

Among the instantiations that are not terminated we simply return the best solution. To
find the best solution we want to estimate |∪i∈ISi|, i.e., the coverage of the corresponding sets
before the subsampling. To compute this estimate in small space we can use the F0-sketching
technique. For the purposes of our application, we can summarize the required result as
follows:

I Theorem 9 (Cormode et al. [21]). There exists an Õ(ε−2 log δ−1)-space algorithm that,
given a set S ⊆ [n], can construct a data structureM(S), called an F0 sketch of S, that has
the property that the number of distinct elements in a collection of sets S1, S2, . . . , Sr can be
approximated up to a 1 + ε factor with probability at least 1 − δ given the collection of F0
sketchesM(S1),M(S2), . . . ,M(Sr).

For the algorithms in the previous section we can maintain a sketchM(C) of the set of
covered elements in Õ(ε−2 log δ−1) space and from this can estimate the desired coverage.
We set δ ← Θ(1/n · logn) so that coverages of all non-terminated instances are estimated up
to a factor (1 + ε) with high probability.

2.4 Other Algorithmic Results
In this final subsection, we briefly review some other algorithmic results for MaxSetCoverage,
either with different trade-offs or for a “budgeted” version of the problem.

2.4.1 (1 − ε) approximation in one pass and Õ(ε−2m) space
In the previous subsection, we gave a single-pass 1− 1/e− ε approximation using Õ(ε−2m)
space. Here we observe that if we are permitted Õ(ε−2mk) space and unlimited post-
processing time then a 1− ε approximation can be achieved directly from the F0 sketches.

Specifically, in one pass we construct the F0 sketches of all m sets,M(S1), . . . ,M(Sm)
where the failure probability of the sketches is set to δ = 1/(nmk). Thus, at the end of
the stream, one can 1 + ε approximate the coverage |Si1 ∪ . . . ∪ Sik | for each collection of k
sets Si1 , . . . , Sik with probability at least 1− 1/(nmk). Since there are at most

(
m
k

)
≤ mk

collections of k sets, appealing to the union bound, we could guarantee that the coverages
of all of the collections of k sets are preserved up to a 1 + ε factor with probability at least
1− 1/n. The space to store the sketches is Õ(ε−2mk).

I Theorem 10. There exists a single-pass, Õ(ε−2mk)-space algorithm that finds a 1 − ε
approximation of MaxSetCoverage with high probability .

2.4.2 (1/2 − ε) approximation in one pass and Õ(ε−3k) space
We next observe that it is possible to achieve a 1/2− ε approximation using a single pass and
Õ(ε−3k) space. Consider the following simple single-pass algorithm that uses an estimate z
of OPT such that OPT ≤ z ≤ (1 + ε) OPT. As with previous algorithms, the basic algorithm
in this section also maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at
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most k) sets in the current solution and C is the the union of the corresponding sets. The
algorithm proceeds as follows:
1. Initialize C = ∅ and I = ∅.
2. For each set S in the stream:

a. If |S \ C| ≥ z/(2k) and |I| < k then I ← I ∪ {ID(S)} and C ← C ∪ S.

The described algorithm is a 1/2− ε approximation. To see this, if the solution consists
of k sets, then the final solution obviously covers at least z/2 ≥ OPT /2 elements. Now we
consider the case in which the collection of sets S chosen by the algorithm contains fewer
than k sets. We define S̃ := S \ C(S) to be the set of elements in S that are not covered
by the final solution. For each set S in the optimum solution O, if S is unpicked, then
|S̃| ≤ z/(2k). Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ z

2

≤ |C(S)|+ OPT(1 + ε)
2 .

and thus |C(S)| ≥ 1−ε
2 OPT.

We note that the above algorithm uses O(k logm + z logn) space but we can use an
argument similar to that used in Section 2.3 to reduce this to Õ(ε−3k). The only difference
is since we need z such that OPT′ ≤ z ≤ (1 + ε) OPT′ we will guess v in powers of 1 + ε/4
and set λ = 16cε−2k logm. Then Equation 1, becomes (1− ε/4)λ ≤ OPT′ ≤ (1 + ε/4)2λ and
hence z = (1 + ε/4)2λ is a sufficiently good estimate.

I Theorem 11. There exists a single-pass, Õ(ε−3k) space algorithm that finds a 1/2 − ε
approximation of MaxSetCoverage with high probability.

2.4.3 Budgeted Maximum Coverage
In this variation, each set S has a cost wS ∈ [0, L]. The problem asks to find the collection
of sets whose total cost is at most L that covers the most number of distinct elements. For
I ⊆ [n], we use w(I) to denote

∑
i∈I wSi .

We present the algorithm assuming knowledge of an estimate z such that OPT ≤
z ≤ (1 + ε) OPT; this assumption can be removed by running the algorithm for guesses
1, (1 + ε), (1 + ε)2, . . . for z and returning the best solution found. The basic algorithm
maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in the
current solution and C is the the union of the corresponding sets. The algorithm proceeds as
follows:
1. Initialize C = ∅ and I = ∅
2. For each set S in the stream:

a. If |S \ C| ≥ 2z
3 ·

wS

L then:
i. If w(I) + wS > L: Terminate and return:

I ←

{
I if |C| ≥ |S|
{ID(S)} if |C| < |S|

ii. I ← I ∪ {ID(S)} and C ← C ∪ S.

I Lemma 12. If the clause in line 2ai is never satisfied, then thealgorithm returns a 1/3− ε
approximation.
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Proof. Suppose the collection of sets chosen by the algorithm is S. We define S̃ := S \ C(S)
to be the set of elements in S that are not covered by the final solution. For each set S in
the optimum solution O, if S is unpicked, then |S̃| ≤ 2z/3 · wS/L. Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ 2z
3

≤ |C(S)|+ 2 OPT(1 + ε)
3 ,

and thus |C(S)| ≥ 1−2ε
3 OPT. J

I Lemma 13. If the clause in line 2ai is satisfied at some point, then the algorithm returns
a 1/3 approximation.

Proof. Suppose the clause is satisfied when the set S is being considered. Then

|S \ C|+ |C| ≥ 2z
3 ·

wS + w(I)
L

≥ 2z
3

where we used the fact that wS + w(I) > L. The claim then follows immediately. J

I Theorem 14. There exists a single-pass, Õ(ε−1n)-space algorithm that finds a 1/3 − ε
approximation of budgeted MaxSetCoverage.

3 Algorithms for Maximum k-Vertex Coverage

In this section, we present algorithms for the maximum k-vertex coverage problem. We present
our results in terms of hypergraphs for full generality. The generalization to hypergraphs can
also be thought of as a natural “hitting set" variant of maximum coverage, i.e., the stream
consists of a sequence of sets and we want to pick k elements in such a way to maximize the
number of sets that include a picked element.

Notation. Given a hypergraph G and a subset of nodes S, we define CG(S) to be the
number of edges that contain at least one node in S. Recall that the maximum k-vertex
coverage problem is to approximate the maximum value of CG(S) over all sets S containing
k nodes. We use EG and VG to denote the set of edges and nodes of the hypergraph G

respectively.
The size of a cut (S, V \S) in a hypergraph G, denoted as δG(S), is defined as the number

of hyperedges that contain at least one node in both S and V \ S. In the case that G is
weighted, δG(S) denotes the total weight of the cut. A core idea to our approach is to use
hypergraph sparsification:

I Definition 15 (ε-sparsifier). Given a hypergraph G = (V,E), we say that a weighted
subgraph H = (V,E′) is an ε-sparsifier for G if for all S ⊆ V , δG(S) ≈ε δH(S).

Any graph on N nodes has an ε-sparsifier with only Õ(ε−2N) edges [43]. Similarly,
any hypergraph in which the maximum size of the hyperedges is bounded by d (rank d

hypergraphs) has an ε-sparsifier with only Õ(ε−2dN) edges. Furthermore, an ε-sparsifier
can be constructed in the dynamic graph stream model using one pass and Õ(ε−2dN) space
[25, 27].

First, we show that it is possible to approximate all the coverages by constructing a
sparsifier of a slightly modified graph. In particular, we construct the sparsifier H of the
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graph G′ with an extra node v, i.e., VG′ = VG ∪ {v}, and for every hyperedge e ∈ EG, we
put the hyperedge e ∪ {v} in EG′ . It is easy to see that for all S that is a subset of VG,
CG(S) = δG′(S). Therefore, it is immediate that we could 1 + ε approximate all the coverages
in G by constructing the sparsifer of G′.

I Theorem 16. There exists a single-pass, Õ(ε−2dN)-space algorithm that finds a 1 − ε
approximation of MaxVertexCoverage of rank d hypergraphs with high probability.

The above theorem assumes unbounded post-processing time. If k is constant, the
post-processing will be polynomial. For larger k, if we still require polynomial running
time then, after constructing the ε-sparsifier H, we could either use the (1 − (1 − 1/d)d)
approximation algorithm via linear programming [1] or the folklore (1− 1/e) approximation
greedy algorithm.

3.1 Algorithm for Near-Regular Hypergraphs
In this subsection, we show that is possible to reduce the space used to Õ(ε−3dk) in the case
of hypergraphs that are regular or nearly regular. Define κ ≤ 1 to be the ratio between the
smallest degree and the largest degree; for a regular hypergraph κ = 1. We show that a
(κ− ε) approximation is possible using Õ(ε−3dk) space for rank d hypergraphs. This also
implies a (1− ε) approximation for regular hypergraphs.

I Theorem 17. There exists a single-pass, Õ(ε−3dk)-space algorithm that finds a (κ − ε)
approximation of MaxVertexCoverage of hypergraphs of rank d with high probability .

Proof. Suppose we uniformly sample a set S of k nodes. Let LS(y) = max(0, |y ∩ S| − 1).
Then the coverage of S satisfies

CG(S) =
∑
y∈EG

I[S ∩ y 6= ∅] =
∑
y∈EG

(|S ∩ y| − LS(y)) ≥ kt1 −
∑
y∈EG

LS(y) .

where the last inequality follows since every node in S covers at least t1 hyperedges.
Let ξy(j) denote the event that j nodes in the hyperedge y are in S and let |y| denote

the number of nodes in y. We have

E [LS(y)] =
|y|∑
j=1

(j − 1) Pr [ξy(j)] =

 |y|∑
j=0

j Pr [ξy(j)]

− 1 + Pr [ξy(0)] .

The sum
∑|y|
j=0 j Pr [ξy(j)] is the expected value of the hypergeometric distribution and

therefore it evaluates to |y|k/N . Furthermore,

Pr [ξy(0)] =
k−1∏
i=0

(
1− |y|

N − i

)
≤
(

1− |y|
N

)k
≤ exp

(
−k|y|
N

)
≤ 1− k|y|

N
+ 1

2

(
k|y|
N

)2
.

The last inequality follows from taking the first three terms of the Taylor’s expansion.
Hence,

E [LS(y)] ≤ k|y|
N
− 1 + 1− k|y|

N
+ 1

2

(
k|y|
N

)2
= 1

2

(
k|y|
N

)2
.

Hence, if N ≥ 4kd/ε, then∑
y∈EG

E [LS(y)] ≤ 1
2
∑
y∈EG

(
k|y|
N

)2
≤ 1

2d
(
k

N

)2 ∑
y∈EG

|y| ≤ 1
2d
(
k

N

)2
Nt2 ≤

1
8εkt2.
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By an application of Markov’s inequality,

Pr

 ∑
y∈EG

LS(y) ≥ εkt2

 ≤ 1/8 .

Thus, if we sample O(logN) sets of k nodes in parallel, with high probability, there is a sample
set S of k nodes satisfying

∑
y∈EG

LS(y) ≤ εkt2 which implies that CG(S) ≥ kt1 − εkt2 ≥
(κ− ε) OPT. If N ≤ 4kd/ε, we simply construct the sparsifier of G′ as described above to
achieve a 1− ε approximation. J

4 Lower Bounds

In this section, we prove space lower bounds for data stream algorithms that approximate
MaxSetCoverage or MaxVertexCoverage. In particular, these imply that improving over an
(1 − 1/e) approximation of MaxSetCoverage with constant passes and constant k requires
Ω(m) space. Recall that, still assuming k is constant, we designed a constant-pass algorithm
that returned a (1−1/e−ε) approximation using Õ(ε−2k) space. For constant k, we also show
that improving over a κ approximation (where κ is the ratio between the lowest degree and
the highest degree) for MaxVertexCoverage requires Ω(Nκ3) space. Our algorithm returned
a κ− ε approximation using Õ(ε−3k) space.

Approach. We prove both bounds by a reduction from r-player set-disjointness in com-
munication complexity. In this problem, there are r players where the ith player has a set
Si ⊆ [u]. It is promised that exactly one of the following two cases happens.

Case 1 (NO instance): All the sets are pairwise disjoint.
Case 2 (YES instance): There is a unique element e ∈ [u] such that e ∈ Si for all i ∈ [r].

The goal of the communication problem is the rth player answers whether the input is a
YES instance or a NO instance correctly with probability at least 0.9. We shall denote this
problem by DISJr(u).

The communication complexity of the above problem in p-round, one-way model (where
each round consists of player 1 sending a message to player 2, then player 2 sending a
message to player 3 and so on) is Ω(u/r) [17] even if the players may use public randomness.
This implies that in any randomized communication protocol, the maximum message sent
by a player contains Ω(u/(pr2)) bits. Without loss of generality, we could assume that
|S1 ∪ S2 ∪ . . . ∪ Sr| ≥ u/4 via a padding argument.

I Theorem 18. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that finds a
(1+ ε)(1− (1−1/k)k) approximation of MaxSetCoverage with probability at least 0.99 requires
Ω(m/k2) space even when all the sets have the same size.

Proof. Recall that (1 + ε)(1 − (1 − 1/k)k) ≥ 1 − 1/e + O(ε). Our proof is a reduction
from DISJk(m). Consider a sufficiently large n where k divides n. For each i ∈ [m], let Pi
be a random partition of [n] into k sets V i1 , . . . , V ik of equal size. Each partition is chosen
independently and the players agree on these partitions using public randomness before
receiving the input.

For each player j, if i ∈ Sj , then she puts V ij in the stream. According to the aforemen-
tioned assumption, the stream consists of at least m/4 sets.

If the input is a NO instance, then for each i ∈ [m], there is at most one set V ij in the
stream. Hence, the stream consists of independent random sets of size n/k. Therefore, for each
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e ∈ [n] and any k sets V i1j1
, . . . , V ikjk

in the stream, Pr
[
e ∈ V i1j1

∪ . . . ∪ V ikjk

]
= 1− (1− 1/k)k.

By an application of Chernoff bound for negatively correlated boolean random variables [39],

Pr
[∣∣∣∣∣|V i1j1

∪ . . . ∪ V ikjk
| −

(
1−

(
1− 1

k

)k)
n

∣∣∣∣∣ > ε

(
1−

(
1− 1

k

)k)
n

]

≤ 3 exp
(
−ε2

(
1−

(
1− 1

k

)k)
n

3

)
≤ 3 exp

(
−ε2(1− 1/e)n/3

)
≤ 1
m10+k .

The last inequality holds when n is a sufficiently large multiple of kε−2 logm. Therefore,
the maximum coverage in this case is at most (1 + ε)(1− (1− 1/k)k)n with probability at
least 1− 1/m10 by taking the union bound over all

(
m
k

)
≤ mk possible k sets.

If the input is a YES instance, then clearly, the maximum coverage is n. This is because
there exists i ∈ [m] such that i ∈ S1 ∩ . . . ∩ Sk and therefore V i1 , . . . , V ik are in the stream.

Therefore, any constant pass and O(s)-space algorithm that finds a (1+2ε)(1−(1−1/k)k)
approximation of the maximum coverage with probability at least 0.99 implies a protocol to
solve the k-party disjointness problem using O(s) bits of communication. Thus, s = Ω(m/k2)
as required. J

Consider the sets S1, . . . , Sr ⊆ [u] that satisfy the unique intersection promise as in
DISJr(u). Let X be the r by u matrix in which the row Xi is the characteristic vector of Si.
Suppose there are r′ = Ω(r2) players. Chakrabarti et al. [16] showed that if each entry of
X is given to a unique player and the order in which the entries are given to the players is
random, then the players need to use Ω(u/r) bits of communication to tell whether the sets
is a YES instance or a NO instance with probability at least 0.9. Thus, in any randomized
protocol, the maximum message sent by a player contains Ω(u/r3) bits. Hence, using the
same reduction and assuming constant k, we show that the same lower bound holds even for
random order stream.

I Theorem 19. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that finds a
(1+ ε)(1− (1−1/k)k) approximation of MaxSetCoverage with probability at least 0.99 requires
Ω(m/k3) space even when all the sets have the same size and arrive in random order.

Next, we prove a lower bound for the k-vertex coverage problem for graphs where the
ratio between the minimum degree and the maximum degree is at least κ. We show that for
constant k, beating κ approximation for constant κ requires Ω(N) space.

Since κ can be smaller than any constant, this also establishes that Ω(N) space is required
for any constant approximation of MaxVertexCoverage.

I Theorem 20. For ε > 0, any constant-pass algorithm that finds a (κ+ ε) approximation
of MaxVertexCoverage with probability at least 0.99 requires Ω(Nκ3/k) space.

Proof. Initially, assume k = 1. We consider the multi-party set disjointness problem
DISJt(N ′) where t = 1/κ and N ′ = N/t. Here, there are t players and the input sets are
subsets of [N ′]. We consider a bipartite graph where the set of possible nodes are L ∪ R
where L = {ui}i∈[N ′] and R = {vi,j}i∈[N ′],j∈[t]. Note that this graph has (t+ 1)N ′ = Θ(N)
nodes. However we only consider a node to exist if the stream contains an edge incident to
that node.

The j-th player defines a set of edges on this graph based on their set Sj as follows. If
i ∈ Sj she puts the edge between ui and vi,j . If S1, . . . , St is a YES instance, then there
must be a node ui that has degree t. If A is a NO instance, then every node in the graph
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has degree at most 1. Hence the ratio of minimum degree to maximum degree is at least
1/t = κ as required.

Thus, for k = 1, a 1/t approximation with probability at least 0.99 on a graph of N
nodes implies a protocol to solve DISJt(N ′). Therefore, the algorithm requires Ω(Nκ3)
space. For general k, we make k copies of the above construction to deduce the lower bound
Ω(Nκ3/k). J
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