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Abstract
Representation systems have been widely used to capture different forms of incomplete data in
various settings. However, existing representation systems are not expressive enough to handle the
more complex scenarios of missing data that can occur in practice: these could vary from missing
attribute values, missing a known number of tuples, or even missing an unknown number of
tuples. In this work, we propose a new representation system called m-tables, that can represent
many different types of missing data. We show that m-tables form a closed, complete and strong
representation system under both set and bag semantics and are strictly more expressive than
conditional tables under both the closed and open world assumptions. We further study the
complexity of computing certain and possible answers in m-tables. Finally, we discuss how to
“interpret” m-tables through a novel labeling scheme that marks a type of generalized tuples as
certain or possible.

1998 ACM Subject Classification H.2.4 [Database Management] Systems

Keywords and phrases missing values, incomplete data, c tables, representation systems

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.21

1 Introduction

Advances in technology have resulted in a large amount of data being collected and integrated
from numerous data sources. A popular way to store such massive data-sets is by sharding
over multiple independent relational database instances. When a user given query spans
over such a collection, the complete data required by the query may not always be available.
For instance, due to inconsistencies and incompleteness during data integration pipelines,
data-sets are frequently incomplete and missing data [7, 11, 21]. As another example, when a
query spans a large collection of shards, it becomes likely that some nodes will be unavailable
for query processing due to outages, misconfigurations, or network congestion. This scenario
of missing data due to node failures has also received attention in the applied literature,
with a recent work [19] advocating an interesting solution: to “ignore” failures during query
evaluation, and to inform the user of problems that may exist by labeling the result with
possible errors.

Missing data in such scenarios can be of varied types: a database could be missing
attribute values, a set of tuples with partially known values along with bounds on the
cardinality of missing tuples, or even an unknown number of tuples. Current techniques
that process queries over incomplete databases cannot handle the numerous kinds of missing
data described above. For this reason, we propose in this paper a new representation system
called m-tables to represent and operate on incomplete databases.
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Table 1 Table R.

Name DOB State Salary
William Smith 6/5/1976 CA 100000 certain tuple

John Doe ? ? ? two records may be missing
? ? WI ? up to 50 employee records may be missing
? ? PA ? unknown number of employee records may be missing

Querying over incomplete databases has been widely studied in the literature [1, 22].
The standard approach is to model an incomplete database using a formal representation
system, M , that can succinctly describe the incomplete database, and then query over M .
For example, conditional tables (c-tables) [16], a widely used representation system, are
expressive enough to efficiently capture the result of any relational algebra query over the
incomplete database represented by the c-table (such a representation system is called strong
for relational algebra). However, c-tables can only represent missing attribute values under
the so-called closed world assumption, and under the open world assumption (where they
can represent an unknown number of missing tuples, but in a very limited manner) they are
not closed for the selection operator. Other representation systems, such as v-tables or Codd-
tables are even less expressive than c-tables. We note here that, to the best of our knowledge,
none of the existing representation systems can represent incomplete databases consisting of
zero tuples (the zero information incomplete database), or tuples with cardinality constraints
(including possibly infinite cardinality). A different approach than using representation
systems is to compute certain answers: a tuple is considered to be a certain answer if it is in
the result of executing a given query over every possible instance of the incomplete database.
However, such an approach loses information about the incomplete database.

To give a more concrete example, consider a practical scenario of a user running analytical
queries over a column store database that consists of information about a company’s employees
in various states. Due to missing values in the database and due to node failures during query
execution, the data required to process the analytical queries may not be completely available.
A toy version of a resulting incomplete database is shown in Table 1. The last column in
table R indicates whether the tuple is certainly part of the table or not and if not, what
constraints are placed on the missing data. The first tuple is definitely part of the dataset.
The second tuple indicates that we may be missing two employees, both with name ‘John
Doe’. We could be missing up to fifty employees from the state of Wisconsin as indicated by
the third tuple, and the fourth tuple indicates that we could be missing an unknown number
of tuples from the state of Pennsylvania. None of the existing representation systems can
handle the last three types of missing data.

Contributions. We summarize below the contributions of this work:
1. We present in detail a new representation system called m-tables (Section 3). To construct

our new representation we use several ideas, among which is the use of annotations in the
form of polynomials (similar to provenance polynomials [13]). We give several examples
of how m-tables can be used to express various types of missing data that can arise in
practice (Section 3.3).

2. We show (in Section 4) that m-tables are a strong representation system for positive
relational algebra RA+ (which includes selection, projection, join, union and renaming)
under both set and bag semantics. This means that we can efficiently compute a new
m-table that represents the result of a RA+ query over underlying m-tables. We should
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emphasize here that an important feature of m-tables is that it can capture bag semantics,
in contrast to other representation systems and current approaches, where operations
under bag semantics are not clearly defined [15].

3. We prove that m-tables are strictly more expressive than c-tables, under both the closed
and open world assumptions (Section 5). We also perform a detailed study of the
expressive power of m-tables (also Section 5).

4. Given a query result as an m-table, interpreting the semantics to determine whether a
tuple is a certain or a possible answer is not an easy task. We thus propose a labeling
scheme (Section 6) that interprets the annotations and labels a type of "generalized"
tuples with either certain or possible labels, along with other possible information. We
show that, as a consequence of the labeling process, we can study the complexity of
computing the certain and possible tuples of an m-table representation.

2 Background

In this section, we present the necessary background on representation systems of incomplete
data. We will focus on c-tables, a representation system that will be of interest to us. We
further provide an overview of semiring algebras and provenance semirings [13].

2.1 Representation Systems
We assume that a relational instance is defined over a countably infinite domain D. For
the sake of simplicity, we will present the definitions over a relational schema with a single
relation with attribute set U ; the definitions extend in a straightforward way to any database
schema. We use the convention that a tuple is a function t : U → D, and we let DU denote
the set of all possible tuples with schema U .

An incomplete database I is any set of finite instances I ⊆ DU (an instance of an
incomplete database refers to a possible completion of the incomplete database). The
standard definition of a complete database corresponds to a singleton set {I}. Representation
systems can concisely describe an incomplete database: a representation system consists of a
set of elementsM, and a function Mod that maps each M ∈M to an incomplete database I.
For a query q ∈ L, where L is a query language, we define the answer of q on the incomplete
database I as q(I) = {q(I) | I ∈ I}. In this work, we will mainly focus on positive Relational
Algebra, or RA+, which contains queries that are formed using the selection, projection, join,
union and renaming, and the full Relational Algebra, RA, which additionally uses difference.

IDefinition 1 (Closure). A representation system is closed under a query language L if for any
query q ∈ L and any M ∈M, there exists some M ′ ∈M such that q(Mod(M)) = Mod(M ′).
We further say that it is strong for L if M ′ is computable.

In addition to the closure property, we are interested in representation systems where we
can efficiently perform the following tasks [14, 24]:
Instance Membership. Given an instance I and M ∈M, is I ∈ Mod(M)?
Tuple Membership. Given a tuple t ∈ DU and M ∈ M, does there exist some instance

I ∈ Mod(M) such that t ∈ I?
Tuple Certainty. Given a tuple t ∈ DU and M ∈M, does t ∈ I for every I ∈ Mod(M)?

We should mention here that tuple and instance membership, as well as tuple certainty,
can be extended to be defined with respect to a given query q. For example, for tuple
membership we can ask whether for a given tuple t, M ∈ M and a query q, there exists
I ∈ q(Mod(M)) such that t ∈ I.

ICDT 2017
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A B C
10 2 y x = 100 ∨ y = 210
40 x x x 6= 100

Figure 1 Example of a c-table.

Conditional Tables. A conditional table, or c-table, is expressed as (S, φ), where S is a
table that contains variables along with constant values from D, and φ is a function that
associates a local condition φs (a boolean combination of equalities involving variables and
constants) with each tuple s ∈ S.

As an example c-table, consider C(A,B,C) with two tuples, t1 and t2. t1 = (10, 2, y)
with conditions (x = 100 ∨ y = 210) and t2 = (40, x, x) with condition (x 6= 100).

Let v denote a valuation that maps the variables in a c-table to values in D. Under
the closed world assumption (CWA), a c-table C = (S, φ) represents: ModC(C) = {I |
∃ valuation v s.t. I = {v(t) | t ∈ S, v satisfies φt}}. The CWA for missing data assume that
all information about an incomplete database is modeled by its representation. Alternatively,
a c-table can be defined under the open world assumption (OWA), where an instance of
an incomplete database can contain any number of tuples, not necessarily justified by the
presence of a tuple in its representation. Under OWA: ModO(C) = {I | ∃ valuation v s.t. I ⊇
{v(t) | t ∈ S, v satisfies φt}}. c-tables form a closed and strong representation system for
RA [16] under CWA. However, c-tables are not closed even for RA+ under OWA. We will
present a detailed comparison of c-tables with m-tables in Section 3.

2.2 Semiring Algebras and Provenance

A commutative monoid is a structure (M,+M , 0M ) where +M is an associative and commut-
ative binary operation and 0M is the identity for +M . A commutative semiring is a structure
(K,+K , ·K , 0K , 1K), where (K,+K , 0K) and (K, ·K , 1K) are commutative monoids, ·K is dis-
tributive over +K , and a ·K 0K = 0K ·K a = 0K . Examples of commutative semirings are the
natural number semiring (N,+, ·, 0, 1) and the boolean semiring (B,∨,∧,⊥,>). A semiring
homomorphism is a mapping h : K → K ′ where K, K ′ are semirings and h(0K) = 0K′ ,
h(1K) = 1K′ , h(a+K b) = h(a) +K′ h(b), h(a ·K b) = h(a) ·K′ h(b).

The work on provenance semirings [13, 4, 12, 18] established the theoretical foundations
and implementations for representing, computing and querying annotated relations. Many
applications need to manipulate some “property” of tuples. These properties, viewed as
annotations, and operations on these tuple annotations together form the semiring algebraic
structure. These semiring structures adequately capture enough information for a variety of
applications including obtaining what and how [5] provenance information. In particular, the
how provenance of result tuples is captured by annotations from the provenance semiring,
(N[X],+, ·, 0, 1), where N[X] represents the multivariate polynomials with indeterminates
from X (a set of provenance tokens that we use to annotate input tuples).

Let U be a finite set of attributes and (K,+, ·, 0, 1) be a commutative semiring. A
K-relation is a function R : DU → K, whose support, supp(R) = {t | R(t) 6= 0} is finite. The
+ operation in the semiring represents alternate derivations for the same tuple, and the ·
operation represents the joint use of data to obtain the tuple. 1 represents a tuple that is
present in the result and 0 represents the absence of that tuple. We refer the reader to [13]
for details on how to execute relational algebra queries over K-relations.
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3 How to Represent Missing Data

In this section, we develop a representation system, called m-tables, which allows us to
represent relational data with missing tuples. Although there exists extensive literature on
representation systems for incomplete and uncertain data (from c-tables [16], to more recent
research [14, 24]), existing representation systems cannot represent and operate on missing
data that may consist of zero to any number of tuples. Consider the following example.

I Example 2. Let R(A,B,C) be a ternary relation, and suppose that the domain D is the
natural numbers N. Our goal is to represent the incomplete database I that contains all
instances that satisfy the following conditions:

The tuple (1, 2, 3) must be included in any instance.
The tuple (2, 3, 4) may be present in an instance; if present, its multiplicity should be 2.
Any other tuple, if present, must be of the form (x, y, 3), where x, y ∈ D and 3 ≤ x ≤ 10.

{R(1, 2, 3), R(2, 3, 4), R(2, 3, 4), R(4, 5, 3)} and {R(1, 2, 3), R(4, 5, 3), R(5, 5, 3)} are possible
instances of I, but {R(2, 3, 4), R(4, 5, 3)} and {R(1, 2, 3), R(2, 3, 4), R(4, 5, 3)} are not. Ob-
serve that an instance in I is a bag, and not a set. Each possible instance of this incomplete
database I can contain zero to any number of tuples of the form (x, y, 3), and this cannot
be represented by a c-table (under either open or closed world semantics), v-table or other
representation system.

An incomplete database like I is not only of theoretical interest, since it can be the result
of answering a query over a partitioned database (can also be a column store), where some
partition has failed during evaluation (additionally, some columns may be unavailable for
processing). Example 2 will be the running example throughout this section.

3.1 Basic Definitions
In this section, we define the components of an m-table in a bottom-up manner and then
proceed to discuss m-table semantics. Informally, the construction involves two requirements.
First, we need to represent ‘missing’ values along with the associated domain and cardinality
constraints; we also need to encode correlation constraints between the missing values. Second,
we require that the representation allows for systematic propagation of the constraints of
missing values through the algebraic operators. To achieve this, we define a schema over the
missing values (encoding correlations) with cardinality constraints defined over the schema
elements. Next, we observe that propagating the schema information along with domain
constraints is akin to propagating the provenance information for tuples. So, we introduce
suitable annotations for tuples and propagate these annotations using machinery from [13].

We now begin the construction of m-tables. Let U denote the set of possible attribute
names and D denote the set of all constants. D represents the domain of all the attributes.

Missing values. The first component is a distinguished symbol m, which represents any
missing value. Define D̂ = D ∪ {m}. This notation is similar in spirit to other types of
representation systems; the difference in our setting is that m can potentially represent
multiple possible values, or even no values at all, instead of exactly one. One should think of
m as representing a set or a bag (depending on the semantics) of possible values.

We introduce the notion of an extended tuple t̂ ∈ D̂U , where U ⊆ U, to represent tuples
in the representation M ∈ M. This notation is meant to distinguish from a tuple t in an
instance of an incomplete database. Notice that the distinguished symbol m can only be part
of a tuple t̂ and not t. We define m(t̂) = {A ∈ U | t̂[A] = m} and m̄(t̂) = {A ∈ U | t̂[A] 6= m}.

ICDT 2017
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In other words, m(t̂) includes the attributes in the tuple that have a missing value instead
of a constant value. For example, to represent the incomplete database in Example 2, we
introduce three extended tuples: t̂1 = (1, 2, 3), t̂2 = (2, 3, 4) and t̂3 = (m,m, 3).

The set of extended tuples is not enough by itself to represent the incomplete database I
of Example 2. Indeed, there is no way to distinguish that (1, 2, 3) is a certain tuple, in the
sense that it appears in all instances, and (2, 3, 4) is a possible tuple with multiplicity 2, in
the sense that it appears in some instances. Furthermore, we want to ensure that for the
tuple (m,m, 3), the first m can only take values between 3 and 10, which is not yet captured.
We thus augment the table with annotations.

However, simply annotating tuples with domain conditions will not be sufficient. A
structure is necessary to encode correlations between different missing values that appear in
different tuples or attributes of the same tuple. For instance, consider the tuple t̂3 = (m,m, 3);
consider another relation S(C,D,E) with tuples ŝ1 = (3, 4, 5) and ŝ2 = (3, 9, 10). If t̂3 were
to be joined with the relation S on attribute C, then we will have two tuples in the result:
r1 = (m,m, 3, 4, 5) and r2 = (m,m, 3, 9, 10). Observe that m(r̂1) = m(r̂2) = {A,B}; the
pairs of m values across tuples are not independent and are bound by the values taken by
m(t̂3). To capture this, we need to relate annotations to the m values in the tuples; we do so
by introducing a second component, a database schema Σ = {T1(U1), T2(U2), . . . , TN (UN )},
where Ui ⊆ U for each i = 1, . . . , N .

For the running example, we need a schema that allows the presence of the tuple (2, 3, 4)
(with multiplicity 2) to be toggled and allows the tuple (m,m, 3) to take on multiple values
for m. We construct the schema Σ = {T1(), T2(A,B)}. Observe that relation T1 has no
attributes: this means that T1 will behave like a boolean variable depending on whether T1
is empty or contains the empty tuple () (this is also because of the additional cardinality
constraints that we introduce next).

An instantiation of Σ determines an instance of the incomplete database. The size of
the possible instantiations of Σ are constrained by two vectors, min = (min1, . . . ,minN )
and max = (max1, . . . ,maxN ), where mini,maxi ∈ N ∪ {∞}. The number of tuples in
every instantiation of Ti ∈ Σ are lower bounded by mini and upper bounded by maxi.
For our running example, we add the cardinality constraints min1 = 0,max1 = 1 and
min2 = 0,max2 =∞. The constraints enforce that T1 behaves like a boolean variable and
T2 can be instantiated to anything.

We next introduce annotations that capture all necessary properties of an extended tuple;
as we will argue in the next section, annotations are also necessary to make the representation
system complete for SPJU queries.

Annotations. To construct a suitable set of annotations for m-tables, we first need to
define two new kinds of expressions. The first kind has expressions of the form αi(U),
where i = 1, . . . , N corresponds to the relation Ti(Ui) of the schema Σ, with U ⊆ U and
|U | = |Ui|. The condition |U | = |Ui| is sufficient, since as we will see in the next section,
applying a renaming operator can change the attributes in αi. We define K = {αi(U) |
Ti(Ui) ∈ Σ, U ⊆ U, |U | = |Ui|}. In the preceding definition, not requiring Ui = U allows the
reuse of α expressions across multiple attributes and tables.

The second kind of expressions are symbolic equations, which will be used to capture
selection and join conditions in query evaluation. We define E = {[x op y] | x, y ∈ D∪U, op ∈
{=, <,>,≤,≥, 6=}}.

For example, if A,B ∈ U and D = N, both [A = B] and [A > 3] are valid expressions
in E . This definition is similar to the technique used in [4] to capture provenance for
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queries with aggregates. We will use the above expressions to annotate each extended tuple.
Formally, let K̂ be the polynomial semiring with variables from K ∪ E and coefficients from
N: (N[K ∪ E ],+, ·, 0, 1). We can then define a K̂-relation R that maps each extended tuple
in D̂U to an element in the semiring K̂. The coefficients from N in the polynomial enable
the annotations to handle both set and bag semantics.

I Example 3. Continuing the running example, the annotation for the tuple (1, 2, 3) is 1
(the tuple is certain). The annotation for the tuple (2, 3, 4) is 2 ·α1(), with α1() operating like
a boolean variable. Alternately, we could have had two (2, 3, 4) tuples, each with annotation
α1(). Finally, the annotation for the tuple (m,m, 3) is α2(A,B) · [A ≤ 10] · [A ≥ 3]. Intuitively,
for each instance of the relation T2(A,B), we first filter the tuples using the conditions of
the expressions [A ≤ 10] and [A ≥ 3]. The result will define a set of valuations from (A,B)
to (D,D); each such valuation will correspond to a tuple in the possible world.

An annotation R(t̂) ∈ N[K ∪ E ] has a natural interpretation as a query in RA+. We first
write the polynomial R(t̂) in the following canonical form1: R(t̂) =

∑n
k=1(

∏
ki
αki

(Uki
) ·∏

kj
θkj ) where, θkj ∈ E . We can now interpret each monomial in R(t̂) as a query, which

involves a renaming operation (to match attributes in αi and Ti), followed by a natural
join, followed by a selection condition specified by the equations θkj

and followed by a
projection on m(t̂). Formally, for the k-th monomial in R(t̂), we associate the query:

qk(R(t̂)) = πm(t̂)

(
σ∧

kj
θkj

(
./ki (ρAki

/Ui
Tki)

))
. The result of this query will be a relation

defined over the attributes in m(t̂). To obtain the final query associated with R(t̂), we first
extend this definition over all attributes in U , and then take the union over all monomials.
Formally, we map each annotation R(t̂) to:

q(R(t̂)) def=
n⋃
k=1

(
πm̄(t̂){t̂(A)} × qk(R(t̂))

)
(1)

The query q(R(t̂)) returns a relation (set or bag) defined over the attribute set U . In the
case where R(t̂) = 1, q(R(t̂)) is the constant query that returns a relation with an empty
tuple ().

I Example 4. For the tuples t̂2, t̂3 we have q2 = q(R(t̂2)) = (πA,B,C{t̂2} × π()(T1)) ∪
(πA,B,C{t̂2} × π()(T1)) and q3 = q(R(t̂3)) = πC{t̂3} × πA,B(σA≥3∧A≤10(T2)). Since t̂2 has
two monomials, α1() +α1(), in its annotation, its final annotation is a union over the queries
of each of its monomials.

We could equivalently define an annotation directly as a query in RA+. The choice to
use semirings instead is because they form a more compact annotation and work seamlessly
for both set and bag semantics. For instance, the simple annotation 100 · α1() would have to
be written as a union of 100 expressions T1.

The query q(γ) may not be well-defined for a given polynomial γ, since a selection
condition θkj

or a projection operator may include an attribute that does not appear in
any of the αki terms. For example, the annotation α2(A,B) · [C = 1] for the tuple (m,m, 3)
would correspond to the query πC{t̂3} × πA,B(σC=1(T2)), which is not a valid expression.

It is easy to see that an annotation R(t̂) is valid if and only if for every monomial∏
ki
αki

(Aki
) ·
∏
kj
θkj

in the annotation the following hold: (1) m(t̂) ⊆
⋃
ki
Aki

, and (2) for
any θkj = [x1 op x2] such that xi ∈ U, xi ∈

⋃
ki
Aki .

1 A monomial with coefficient > 1 can be easily split into multiple monomials, thus conforming to the
canonical form. For example, the annotation 2 · α1() can be written as α1() + α1().

ICDT 2017
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Table 2 The m-table for the running example.

A B C
1 2 3 1
2 3 4 2 · α1()
m m 3 α2(A,B) · [A ≤ 10] · [A ≥ 3]

I Definition 5 (m-proper). A K̂-relation R over a set of attributes U is m-proper if for every
extended tuple t̂ ∈ D̂U , R(t̂) is a valid annotation.

Using the conditions for a valid annotation, given a K̂-relation, we can efficiently determine
whether it is m-proper. We now formally define m-tables.

I Definition 6. A set of m-tables, or an m-multitable, is a tuple (R,Σ,min,max) such that:
1. each Rj ∈ R is an m-proper K̂-relation, where K̂ is the polynomial semiring (N[K ∪
E ],+, ·, 0, 1) (recall that the elements of K are constructed from the elements of Σ),

2. Σ = {T1(U1), . . . , TN (UN )} is a database schema,
3. min,max ∈ (N ∪ {∞})N are vectors of cardinality constraints.

To define a singlem-table for a relationR, we can simply write it asM = (R,Σ,min,max).
As discussed before, the cardinality constraints mini,maxi provide a lower and upper

bound on the cardinality of an instance of the relation Ti ∈ Σ. In the case where mini = 0
and maxi = ∞ for every i, we say that the m-table is free and for simplicity we omit
min,max from the m-table definition. We denote byMf the set of all free m-tables. When
mini = maxi = 1 for every i, we can equivalently view each relation Ti as a function from
attributes to values in D; as we will see later, this will allow us to capture the semantics of
c-tables. We denote byMc the set of all such m-tables. Finally, we define an m 6 =-table as
an m-table where the expressions in the annotation are restricted to use only =, 6=.

For our running example, the final m-table M = (R,Σ,min,max) will have Σ =
{T1(), T2(A,B)} and min1 = min2 = 0, max1 = 1,max2 = ∞. The annotated relation R
can be seen in Table 2.

3.2 Semantics
We present here the semantics of m-tables. Given M = (R,Σ,min,max), we formally define
the incomplete database Mod(M) that it represents under both set and bag semantics.

To explain the semantics behind m-tables, we draw a parallel with c-tables. For a c-table
C, each possible instance of the incomplete database is produced by computing v(C) for
a valuation v over the variables in the c-table. In m-tables, instead of a valuation, we will
use an instance T on the schema Σ, which satisfies the cardinality constraints; each such
instance will produce a possible instance I of the incomplete database: M [T] in Mod(M).
Under set semantics, the instance I will be a set, and under bag semantics it will be a bag.

We start by looking at a single extended tuple t̂ with annotation R(t̂), for some R ∈ R
with attribute set U . Let J = q(R(t̂))(T). As we discussed in the previous section, each
tuple v ∈ J can be equivalently viewed as a total function v : U → D. We say that v(t̂) is an
instantiation of the extended tuple t̂.

I Definition 7 (Derivation Set/Bag). Let t̂ be an extended tuple with a valid annotation
R(t̂). The derivation set (bag) of t̂ for a set (bag) instance T of Σ is defined as q(R(t̂))(T).
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I Example 8. Consider the schema Σ and the cardinality constraints of our running example.
Consider the following set instance T of Σ: T = {T2(2, 4), T2(3, 4), T1()}. Then, the derivation
set of the tuple (1, 2, 3) with annotation 1 is {(1, 2, 3)}. For the tuple t̂2 = (2, 3, 4) with
annotation 2 · α1(), the derivation set w.r.t. T will be {(2, 3, 4)}. Notice that because of
the set semantics, the coefficient 2 in the annotation is effectively ignored. Finally, for
t̂3 = (m,m, 3) with annotation α2(A,B) · [A ≤ 10] · [A ≥ 3], we compute q3(T) = {(3, 4, 3)}.

If we switch to bag semantics, we can start with a bag instance of the schema Σ:
T = {T2(2, 4), T2(3, 4), T2(3, 4), T1()}. The derivation bag of (1, 2, 3) will be as before
{(1, 2, 3)}. For the tuple t̂2 = (2, 3, 4) with annotation 2 · α1(), the derivation bag w.r.t. T
will now be {(2, 3, 4), (2, 3, 4)}. Observe that the coefficient 2 is now critical for the correct
interpretation. Finally for t̂3 = (m,m, 3) with annotation α2(A,B) · [A ≤ 10] · [A ≥ 3], we
compute q3(T) = {(3, 4, 3), (3, 4, 3)} as its derivation bag.

I Definition 9 (m-table Semantics). Let M = (R,Σ,min,max) be an m-multitable. For
R ∈ R, define the query QR

def=
⋃
t̂:R(t̂) 6=0 q(R(t̂)). The instantiation ofM under a (set or bag)

instance T of Σ is M [T] = {QR(T) | R ∈ R}. Under set (bag) semantics, the incomplete
database ModS(M) (ModB(M)) that is represented by M is

ModS/B(M) = {M [T] | ∀i = 1, . . . , N : TTi is a set/bag, mini ≤ |TTi | ≤ maxi},

In other words, for each instance T, we construct a possible world of the incomplete
database by taking the union of all the derivation sets (or bags) for each extended tuple (w.r.t.
T) in the annotated relation. This of course is equivalent to computing the query QR(T)
for each R ∈ R. To construct the incomplete database, we compute all possible worlds that
correspond to every instance of Σ that satisfies the cardinality constraints min,max of the
m-table. We present next an example that sheds more light on the semantics of m-tables.

I Example 10. Consider the binary relation R(A,B) along with two different schemas:
Σ1 = {T1(A,B)} and Σ2 = {T2(A), T3(B)}.

Consider first the free m-table M1 = ({R1},Σ1), where R1 contains the tuple (m,m)
with annotation α1(A,B). It is easy to see that ModS(M1) is the set of all possible instances
of R over the domain D, otherwise known as the no-information instance.

Second, consider the free m-table M2 = ({R2},Σ2), where R2 contains, again, a single
tuple (m,m) with annotation α2(A) · α3(B). Observe now that the incomplete data-
base ModS(M2) does not include all possible instances, since for example, the instance
{(1, 1), (1, 2), (2, 1)} can not be produced from M2.

3.3 Examples and Applications
In this section, we show how to use m-tables to represent different types of missing data
that occur in a practical setting. Recall our original motivation: we have a cluster of nodes
executing relational queries. Suppose that one of the tables in this cluster is R(A1, . . . , Ak),
and that during the execution of a query, several nodes become unresponsive. We look at
three different cases:

Missing Arbitrary Data. We are certain about several tuples in the table R, but we are
missing an arbitrary part, for which we have no information. To represent this instance, our
underlying m-table schema needs a single relation: Σ = {T1(A1, . . . , Ak)}. For the annotated
relation, we first include in R all the certain tuples with annotation 1. Then, we introduce
one more tuple (m,m, . . . ,m) with annotation α1(A1, . . . , Ak).
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Missing Data in Range-Partitioned Databases. In this scenario, table R is initially range-
partitioned across different nodes in the cluster using an attribute, say A1. We construct
an m-table for this case as follows. For each responsive node, we add the tuples in the
nodes as certain tuples with annotation 1. Our underlying schema is the same as before:
Σ = {T1(A1, . . . , Ak)}. Let [xi, yi] be the range of each missing node i. We then add a tuple
(m,m, . . . ,m) with annotation α1(A1, . . . , Ak) ·

∑
i([A1 ≥ xi] · [A1 ≤ yi]).

Missing Data in Column Stores. Suppose that the table R is stored in columnar format.
In this case, the columns may not be sharded, but observe that all columns may not be
accessed at the same time. A particular node may be accessed several times during query
processing while stitching the columns together. One of these accesses might fail and result
in a missing column. Let’s say we are missing the column corresponding to attribute A1. We
can use m-tables to represent this type of missing data as follows. Every tuple will be of the
form (m, a2, . . . , ak), where ai ∈ D and will have annotation αj(A1), where we introduce a
distinguished unary relation Tj for every tuple. Moreover, we add cardinality constraints
such that minj = maxj = 1.

4 RA+ Algebra for m-tables

In this section we present the specifics of executing operators in the positive relational
algebra (RA+) over m-tables, thus proving that m-tables form a strong representation
system for RA+ under both set and bag semantics. Recall that an m-multitable M is a
tuple ({R1, . . . , R`},Σ,min,max), where each Ri is an m-proper K̂-relation. Thus, in order
to define relational operators over m-tables we will need to modify the standard algebra
operators over K-relations. We next present how each operator works.

Selection. Let R : D̂U → K̂ and let θ be a selection predicate of the form (A op x), where
A ∈ U , x ∈ D and op ∈ {=, <,>,≤,≥, 6=}. Then, the selection σθR : D̂U → K̂ is defined as

(σθR)(t̂) =
{
R(t̂) · [A op x] if t̂(A) = m,

R(t̂) · [t̂(A) op x] otherwise.

Observe that if t̂(A) 6= m, we can immediately evaluate the condition by checking whether
the expression (t̂(A) op x) is true or not. If it is true, then (σθR)(t̂) = R(t̂); otherwise
(σθR)(t̂) = 0. These semantics coincide with the algebra on K-relations. When t̂(A) = m,
the attribute value is unknown and the extended tuple t̂ may potentially satisfy the selection
predicate. Thus, we need to keep the expression uninterpreted as part of the annotation.
The case where the condition is of the form (A op B) is similar and thus omitted.

Projection. Let R : D̂U → K̂ and U ′ ⊆ U . The projection πU ′R : D̂U ′ → K̂ is defined as
(πU ′R)(t̂) =

∑
t′:R(t′)6=0∧t̂=t′ on U ′ R(t′).

Union. Let R1, R2 : D̂U → K̂. Then the union R1 ∪ R2 : D̂U → K̂ is defined as
(R1 ∪R2)(t̂) = R1(t̂) +R2(t̂).

Renaming. Let R : D̂U → K̂ and let β : U → U ′ be a bijection. To define the semantics for
the renaming operator ρβ , we need to rename the attributes in the annotation as well. For
this, we define β(αi(A)) = αi(β(A)) and also β([x op y]) = [β(x) op β(y)]. (The function β
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A B C
a1 b1 50 1
a2 b2 400 1
a3 b3 30 1

(a) Table R.

A C D
a1 3 450 1
a2 3 m α1(D)
a3 3 100 α2()
m m m α3(A,C,D) · [D > 100]

(b) Table S.

./

π(A,C)

R(A,B,C)

π(A,D)

σC=3

S(A,C,D)

(c) Query Plan.

Figure 2 The initial m-tables R,S and the query plan for the running example.

behaves as the identity function for constants and attributes not in U .) For an annotation
R(t̂), we now define β(R(t̂)) as the result of applying β to each element of the polynomial.
We can now define ρβR to be a K̂-relation over U ′ such that: (ρβR)(t̂) = β(R(t̂ ◦ β)).

Cartesian Product. Let Ri : D̂Ui → K̂ for i = 1, 2 and let t̂|Ui represent the restriction of
the tuple t̂ to the attributes of Ui. Then R1×R2 : D̂U1∪U2 → K̂ is defined as (R1×R2)(t̂) =
R1(t̂1) ·R2(t̂2) where, t̂i = t̂|Ui, i = 1, 2. An important point is that we assume w.l.o.g. that
R1, R2 do not share any attributes in the annotations that are not in U1∪U2. If this happens,
it is easy to rename these attributes such that there is no conflict.

We should note here that we defined the cartesian product instead of a natural join
operator for simplicity of presentation: the natural join can be easily defined as a sequence
of renaming, cartesian product, selection and projection.

Given a query Q ∈ RA+, and an m-multitable M = ({R1, . . . , R`},Σ,min,max), let us
define by Q̄(M) the tuple ({Q(R1, . . . , R`)},Σ,min,max). Here we should note that we have
not yet shown that Q̄(M) is a valid m-table; for this, we need to prove that Q(R1, . . . , R`) is
an m-proper K̂-relation. Before we do this, we first give a detailed example of applying the
algebraic operations we defined to m-tables.

I Example 11. We illustrate querying over m-tables through an example. Consider the
m-multitable M = ({R,S},Σ,min,max). R is a complete relation (i.e. all annotations are
1), S has missing data, Σ = {T1(D), T2(), T3(A,C,D)}, min = (1, 0, 0) and max = (1, 1,∞).
We present tables R and S in Figures 2a and 2b, respectively, with the initial annotations for
the extended tuples. Observe that we have appended multiple extended tuples to relation S
to represent its missing data. The relational query to be executed on the database is given
in Figure 2c and the results obtained after applying the K̂-relational algebra operators are
presented in Figure 3.

I Lemma 12. Let M = ({R1, . . . , R`},Σ,min,max) be an m-multitable, and Q be a query
in RA+. Denote R′ = Q(R1, . . . , R`). Then
1. R′ is an m-proper K̂-relation
2. QR′ = Q(QR1 , . . . ,QR`

) under both set and bag semantics, i.e., the incomplete database
represented by R′ and the resulting incomplete database after applying query Q are the
same.

I Corollary 13. The RA+ operations defined for m-multitables map m-multitables to m-
multitables, and thus form a well-defined algebra over m-multitables.
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A C D
a1 3 450 1
a2 3 m α1(D)
a3 3 100 α2()
m m m α3(A,C,D) · [D > 100] · [C = 3]

(a) Step 1: S′ = σC=3(S).

A D
a1 450 1
a2 m α1(D)
a3 100 α2()
m m α3(A,C,D) · [D > 100] · [C = 3]

(b) Step 2: S′′ = πA,D(S′).

A C
a1 50 1
a2 400 1
a3 30 1

(c) Step 3: R′ = πA,C(R).

A’ D
a1 450 1
a2 m α1(D)
a3 100 α2()
m m α3(A′, C′, D) · [D > 100] · [C′ = 3]

(d) Step 4.1: S′′ = ρ{A→A′,C→C′}(S′′).

A C A’ D
a1 50 a1 450 1
a2 400 a2 m α1(D)
a3 30 a3 100 α2()
a1 50 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a1]
a2 400 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a2]
a3 30 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a3]

(e) Steps 4.2, 4.3: Result = σA=A′ (R′ × S′′).

A C D label φ

a1 50 450 1 certain T
a2 400 m α1(D) certain T
a3 30 100 α2() possible T
a1 50 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a1] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a1)
a2 400 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a2] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a2)
a3 30 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a3] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a3)

(f) Step 4.4: Projection along with application of SimpleLabel algorithm.

Figure 3 Execution of the query plan over m-tables and obtaining m-labeled tuples.

I Theorem 14. The m-multitables form a strong representation system for positive relational
algebra for both set and bag semantics. Moreover, evaluating a positive relational algebra
query on m-multitables has polynomial data complexity.

We conclude this section by observing that one can apply all the known optimizations
on relational algebra plans when querying m-tables, since the standard algebraic identities
under bag semantics are preserved (see also Appendix, for more details).

5 The Expressive Power of m-tables

In this section, we discuss the expressive power of m-tables. We first compare the expressive-
ness of m-tables to c-tables under both the closed and open world assumption. Then, we
characterize the set of incomplete databases that can be expressed through m-tables. Our
results in this section hold only for the case of set semantics.
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m-tables versus c-tables. Our first result shows that the class of m 6 =-tables inMc can
capture precisely the expressiveness of c-tables under CWA.

I Theorem 15. The c-tables under CWA and the m6 =-tables inMc have the same expressive
power, that is:
1. For every c-table C, there exists an m 6 =-table M ∈Mc such that ModS(M) = ModC(C);
2. For every m 6 =-table M ∈Mc, there exists a c-table C such that ModC(C) = ModS(M).

The detailed proof of this statement is given in the Appendix. As we discussed earlier,
m-tables are strictly more expressive than c-tables under closed world semantics, since
c-tables under CWA cannot express incomplete databases with arbitrarily large instances.

Under the open world assumption, c-tables can express incomplete databases with
arbitrarily large instances.

I Proposition 16. For every c-table C, there exists an m6 =-table M s.t. ModS(M) =
ModO(M).

It turns out that general m-tables are strictly more expressive than c-tables under OWA,
in the sense that there exists an m-table M such that ModS(M) is not expressible through a
c-table under OWA. Indeed, consider the following example.

I Example 17. Let M = (R, {T1(A)}, (0), (∞)), where R(A,B) is a binary K̂-relation that
consists of a single extended tuple (m, 1) with annotation α1(A). Suppose there exists a
c-table C such that ModS(M) = ModO(C). Since the instance {(1, 1)} belongs in ModS(M),
it must also belong in ModO(C). But then {(1, 1), (1, 2)} must also belong in ModO(C);
however, this contradicts that C expresses ModS(M), since (1, 2) cannot belong in any
instance of ModS(M).

To summarize, m-tables can express a strictly larger class of incomplete databases in
comparison to c-tables under both the closed and open world assumption.

Characterizing the Expressiveness. Following [14], we define N = {I | I ⊆ DU , I finite} as
the zero-information incomplete database. Each subset of N forms an incomplete database;
our goal is to characterize the subsets of N which are representable by m-tables. We also
define ZU = {{t} | t ∈ DU} as the incomplete database that represents the set of all relations
with exactly one tuple.

I Definition 18 ([14]). Let L be a query language. An incomplete database I is L-definable
if there exists a query Q ∈ L such that I = Q(ZU ). We further say that a representation
system is L-complete if it can represent any L-definable incomplete database.

We are primarily interested in RA-definable and RA+-definable incomplete databases.
We start by applying a result of [14], which shows that an incomplete database I is RA-
definable if and only if I is representable by a c-table under CWA. Combining this with
Theorem 15, we obtain that m6 =-tables inMc (as c-tables) capture exactly the incomplete
databases that are expressed through an RA query over ZU :

I Corollary 19. m 6 =-tables are RA-complete; every m 6 =-table inMc is RA-definable.

This result characterizes the expressivity of m-tables using ZU as the starting point; it
turns out that a small fragment of m-tables is enough to capture all of RA over ZU . To
understand the true expressive power of m-tables, we need to use N as the starting point.
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I Proposition 20. For every m-table M , there exists a query Q ∈ RA s.t. ModS(M) =
Q(N ).

The above proposition tells us that every m-table can be expressed as a relational query
over N . For the construction in the proof, which is presented in the Appendix, we need the
difference operator to define the appropriate query Q.

I Theorem 21. The set of incomplete databases expressed by free m-tables and by Q(N ),
for Q ∈ RA+, are the same, that is:
1. For every free m-table M , there exists a query Q ∈ RA+ such that ModS(M) = Q(N ).
2. For every Q ∈ RA+, there exists a free m-table M such that ModS(M) = Q(N ).

In other words, free m-tables capture exactly the incomplete databases that can be
constructed by computing a positive relational algebra query over N . As for general m-tables,
we have shown that they describe a subset of the incomplete databases that can be computed
through a relational algebra query over N . It is not clear whether the converse holds, that
is, if every incomplete database I = Q(N ), where Q ∈ RA, can be represented by m-tables.
We leave this as part of future work.

6 Labeling Schemes

Interpreting the semantics of an m-table, and in particular the annotation R(t̂) for each
extended tuple t̂ can be non-trivial. Additionally, given an m-table it is not immediately
clear whether a tuple is certain or possible in the corresponding incomplete database. To
address this issue, we describe a way to interpret an m-table, under set semantics, such that
it tells the user which tuples are certain, and which tuples are possible (and under which
conditions). We would like to emphasize that the labeling in this section is done only under
set semantics.

6.1 Semantics of Labels
We first propose a labeling scheme for missing data. Each tuple t̂, following the structure of
m-tables, will be an extended tuple that takes values from D̂ = D ∪ {m} and every extended
tuple will be associated with one of certain and possible labels. Formally, we define:

I Definition 22 (Labeling). An m-labeled tuple is a triple of the form (t̂, λ, φ) such that:
t̂ : U → D̂ is an extended tuple,
λ ∈ {certain, possible},
φ is a conjunction of expressions (x op y), where x, y ∈ U∪D and op ∈ {=, <,>, 6=,≥,≤}.

An m-labeling scheme is a finite set of m-labeled tuples.

By viewing the attributes in φ as variables, we can view φ as a logical formula over U.
Given an assignment v : U→ D that satisfies φ, we obtain an instantiation v ◦ t̂ of the tuple
t̂, where v(t̂[A]) = v(A) if A ∈ m(t̂), otherwise v(t̂[A]) = t̂[A]. We say that the set of all such
instantiations is the expansion of (t̂, φ) and we denote it as D(t̂, φ). Note that if φ is not
satisfiable, then D(t̂, φ) = ∅. Also, if m(t̂) = ∅ (so t̂ has only constants) and φ = T (i.e. the
boolean formula φ is always true), we simply have D(t̂, φ) = {t̂}.

Let I be an incomplete database, and let pos(I) =
⋃
I∈I I denote the set of all possible

tuples in I. Recall that for t ∈ DU , we say that t is certain in I if for every I ∈ I we have
t ∈ I; and that t is possible in I if there exists I ∈ I such that t ∈ I. We next generalize
the definitions of certainty and possibility for extended tuples. We say that (t̂, φ) is certain
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in I if for every I ∈ I we have D(t̂, φ) ∩ I 6= ∅. We also say that (t̂, φ) is possible in I if
D(t̂, φ) ⊆ pos(I). Observe that if t̂ takes only values from D and φ = T, then the above
definitions collapse to the standard definitions of possible and certain tuples.

We will focus on m-labeling schemes with the following property: for any (t̂, certain, φ), we
have that φ = T. In other words, every extended tuple with label certain has no constraints
on its possible values. In this case we simplify the notation of an m-labeled tuple to (t̂, certain)
and its expansion to D(t̂): we call this a simple m-labeling scheme.

I Definition 23 (Soundness). Let I be an incomplete database, and S a simple m-labeling
scheme. S is c-sound w.r.t. I if for every (t̂, certain, φ) ∈ S, (t̂, φ) is certain in I. S is
p-sound w.r.t. I if for every (t̂, possible, φ) ∈ S, (t̂, φ) is possible in I.

If S is both c-sound and p-sound, we simply say that S is sound. A sound labeling scheme
is a conservative under-approximation of an incomplete database.

I Definition 24 (Completeness). Let I be an incomplete database, and S a simple m-
labeling scheme. S is c-complete w.r.t. I if for every (t̂,T) that is certain in I, there exists
(t̂′, certain) ∈ S such that D(t̂′) ⊆ D(t̂). S is p-complete w.r.t. I if for every t ∈ pos(I), there
exists (t̂, λ, φ) ∈ S such that t ∈ D(t̂, φ).

Analogous to the definition of soundness, a complete labeling scheme is a conservative
over-approximation of an incomplete database. A sound and complete labeling scheme
captures exactly both the generalized possible and certain tuples.

I Example 25. Suppose we are given any incomplete database I for the relation R(A,B,C).
Consider the m-labeling scheme S that consists only of a single tuple: ((m,m,m), possible,T).
We first claim that this is a c-sound labeling. This trivially holds, since S contains no
extended tuples with a certain tuple. We also claim that S is p-complete. Indeed, the
expansion of ((m,m,m),T) is D(A,B,C), and thus any tuple in pos(I) will also belong in
D((m,m,m),T). This construction implies that we can always construct a trivial c-sound
and p-complete labeling scheme for any incomplete database.

As we will see shortly, it is computationally hard to construct a sound and complete
m-labeling for every incomplete database and RA+ query. However, we will show that a
sound and complete simple m-labeling is possible for a particular case of incomplete databases
that are defined through m-tables. We should emphasize here that an m-labeling scheme is
not a representation system of I, since we cannot reconstruct I from S.

6.2 A Simple Label Inference Algorithm
We describe a simple procedure that, given an m-table M , constructs a c-sound and p-
complete simple m-labeling scheme for ModS(M). We can use this procedure, together
with the completeness of m-tables for RA+, to construct a c-sound and p-complete simple
m-labeling for Q(I) over an incomplete database I that is represented by an m-table.

The algorithm SimpleLabel is given in Algorithm 1. The intuition for the inference
procedure is that, an extended tuple t̂ is certain only in the case where there exists a monomial
that has no constraints in E , and further, the lower bounds on the cardinalities of αi’s (mini’s)
are at least 1 (line 5).

If the tuple is labeled as possible, we compute the formula φ in lines 10-13 by taking
the conjunction of the expressions in E . Figure 3 shows the resulting labels after applying
SimpleLabel on the final result of the running example of Section 4.
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Algorithm 1 SimpleLabel.
1: S ← ∅
2: for each t̂ ∈ R s.t. R(t̂) 6= 0 do
3: Let R(t̂) =

∑n
k=1

∏
ik
αik (Aik ) ·

∏mk

j=1 θj
4: for k = 1, . . . , n do
5: if ∃ik s.t. minik = 0 or mk > 0 then
6: λ← possible
7: else
8: λ← certain
9: end if
10: φ← T
11: for all θj = [x op y] do
12: φ← φ ∧ (x op y)
13: end for
14: S ← S ∪ {(t̂, λ, φ)}
15: end for
16: end for
17: return S

I Proposition 26. Given an m-table M , SimpleLabel computes in polynomial time (data
complexity) a c-sound and p-complete simple m-labeling scheme S w.r.t. to ModS(M).

From the previous proposition, we see that SimpleLabel provides conservative labeling,
i.e., if a tuple is marked as certain, then it is definitely so, but all certain tuples may not be
identified. Even though SimpleLabel does not produce sound and complete labelings, we
can prove several interesting properties if we restrict the expressive power of m-tables.

I Lemma 27. Let M = ({R},Σ,min,max) be an m-table such that, for every i = 1, . . . , N
we have maxi =∞. Then, SimpleLabel produces a p-sound m-labeling scheme.

This lemma tells us that whenever there is no upper bound on the size of the relations in
Σ, we can efficiently construct a p-sound and p-complete labeling scheme, and thus capture
exactly the possible tuples.

I Lemma 28. Let M = ({R},Σ,min,max) be an m-table such that, for every i = 1, . . . , N
we have mini = 0. Then, SimpleLabel produces a c-certain m-labeling scheme.

Lemma 28 is the analogue of Lemma 27: if the size of each relation in Σ is lower bounded
by 0, then we obtain a c-certain and c-sound m-labeling and thus compute exactly the certain
answers. Combining the two lemmas:

I Theorem 29. If M = ({R},Σ) is a free m-table, then SimpleLabel produces a sound
and complete m-labeling scheme w.r.t. ModS(M).

6.3 Certainty and Possibility in m-tables

I Proposition 30. Let M be a free m6 =-table. Then, the following tasks can be completed
in polynomial time data complexity: (1) tuple certainty, (2) tuple possibility, and (3) tuple
q-possibility and q-certainty for q ∈ RA+.
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Regarding arbitrary m6 =-tables, in the Appendix, we show why SimpleLabel fails to
produce a p-sound labeling scheme when the upper cardinality constraints are different than
∞, and why it fails to obtain a c-certain labeling when the lower cardinality constraints
are different than 0. We conclude with two results on the complexity of tuple certainty and
possibility for general m6 = tables.

I Proposition 31. Tuple possibility in m6 =-tables is NP-complete (data complexity).

I Proposition 32. Tuple certainty in m6 =-tables is coNP-complete (data complexity).

7 Related Work

Incomplete databases have been extensively studied in various contexts; we refer the reader
to [1, 25] for a survey and to [22] for a broad perspective on this area.

Numerous models for uncertain information are discussed and compared in [14]. Condi-
tional tables (c-tables) [16, 17] are considered one of the most expressive representation system
for representing incomplete databases. The RAprop model [24] has also been shown to be closed,
complete and as expressive as c-tables. We have provided a detailed comparison of m-tables
with c-tables in Section 3 and we have shown that m-tables are strictly more expressive than
c-tables (and thus than the RAprop as well). In [2, 3], the focus is on providing complexity
and decidability results for querying over incomplete databases and we have utilized results
from [2] to show complexity results for obtaining certain answers with m-tables.

The use of many-valued logic to handle missing information has been proposed in [6, 9, 26];
this is complementary to our work, and adding multi-valued logic into m-tables should be
interesting future work. Our definitions of certain and possible answers are similar to the
certain answers defined in [6, 23]; however, the notion of certainty and possibility in our work
is defined for extended tuples that represent a set of tuples and not just for single tuples. In
this context, our work is also related to the partial results work of [19], where the idea is to
execute a given query on an incomplete database in the usual way, and then provide insights
into the possible anomalies of the result tuples by labeling the tuples and attribute values
with potential errors. They do not focus on developing a formal framework to provide all
possible results and they lack a systematic approach to obtain labels for ‘partial’ results.

Querying over incomplete databases under the open world assumption has been explored
in [21] and [8]. In both these pieces of work, the focus is on decidability results on whether
complete queries can be obtained over possibly incomplete data, with constraints on the
missing data. However, our focus is on obtaining a representation system that provides all
possible results, while trying to label certain answers.

An extended tuple with all ‘m’ values is similar to the idea proposed in [10], where they
introduce a tuple with all attribute values as ‘open’ to represent an unknown number of
missing tuples. However, their work does not extend beyond the ‘open’ value; their focus is
not on obtaining a representation system or to identify certain answers.

Queries over data integrated (DI) sources have a similar scenario where, frequently, some
subset of the information will be uncertain or not available [7, 11, 20, 21]. Solution approaches
proposed in this context use schema information of the sources to improve the answers. Our
work can be seen as complementary to the work done in this area and our work is applicable
in DI scenarios as well.
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8 Conclusion

In this paper, we proposed a new representation system called m-tables, which can represent
various forms of missing data and generalizes many existing representation systems. We
showed that m-tables form a closed and strong representation system for both set and bag
semantics, and are strictly more expressive than c-tables. Further, we propose a simple
labeling algorithm that labels tuples as certain or possible by interpreting the annotations of
the m-table. One immediate line for future work is to extend m-table semantics to aggregate
and group by operations. Another interesting direction is to use the annotations and labeling
scheme to “repair” a result when missing data becomes available in the future.
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