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Abstract
Motivated by a growing market that involves buying and selling data over the web, we study
pricing schemes that assign value to queries issued over a database. Previous work studied
pricing mechanisms that compute the price of a query by extending a data seller’s explicit prices
on certain queries, or investigated the properties that a pricing function should exhibit without
detailing a generic construction. In this work, we present a formal framework for pricing queries
over data that allows the construction of general families of pricing functions, with the main goal
of avoiding arbitrage. We consider two types of pricing schemes: instance-independent schemes,
where the price depends only on the structure of the query, and answer-dependent schemes, where
the price also depends on the query output. Our main result is a complete characterization of
the structure of pricing functions in both settings, by relating it to properties of a function over a
lattice. We use our characterization, together with information-theoretic methods, to construct
a variety of arbitrage-free pricing functions. Finally, we discuss various tradeoffs in the design
space and present techniques for efficient computation of the proposed pricing functions.
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1 Introduction

The commodification of data over the last decade has created many unique research challenges,
among them data privacy and pricing of data. In a broad range of application areas, data
today is being collected at an unprecedented scale. This phenomenon has led to a growing
market for so called big data brokers, who sell this data to buyers such as financial firms,
retailers and insurance companies [6, 5].

In this paper, we investigate the problem of query-based data pricing, where the task
is to assign prices to queries over a database, such that the price captures the amount of
information revealed by asking the query. Traditionally, data pricing has been done either by
allowing the buyer to access only certain queries with a fixed price set by the seller, or the
buyer needs to purchase the whole dataset [20]. Although such an approach is conceptually
simple, defining a large set of queries that are representative of the user’s needs is a tall task
for the data seller. Even if this is feasible, such a pricing scheme may allow arbitrage, which
occurs when a data buyer can potentially buy data at a price less than what is set by the
seller. It can also lead to prices that exhibit undesirable behavior.

Previous work in the area of data pricing has identified a set of arbitrage conditions
that any reasonable pricing function should avoid. The fundamental arbitrage condition is

© Shaleen Deep and Paraschos Koutris;
licensed under Creative Commons License CC-BY

20th International Conference on Database Theory (ICDT 2017).
Editors: Michael Benedikt and Giorgio Orsi; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12:2 The Design of Arbitrage-Free Data Pricing Schemes

information arbitrage, first introduced in [16]. Intuitively, a query Q1 that reveals a subset
of the information that is revealed by another query Q2 should be priced at most as much
as Q2. If not, an arbitrage opportunity occurs: a clever buyer can pay the price of Q2 and
then use the result of Q2 to compute Q1 for a lower price. A second arbitrage condition is
bundle arbitrage [20]. Intuitively, asking simultaneously for Q1 and Q2 (as a bundle) should
cost at most the sum of asking separately for each. Both [16, 20] propose pricing functions
that avoid both arbitrage conditions. However, to the best of our knowledge, there exists
no framework that supports a generic construction of pricing functions, and facilitates the
analysis of the various tradeoffs in design choices.

Our Contribution. We address the question of designing arbitrage-free pricing schemes that
assign prices to queries over a database. Our main result is a complete characterization of
the structure of pricing functions for two pricing schemes: answer-dependent prices (APS),
and instance-independent prices (QPS). We use this characterization to construct a variety of
pricing functions, and also discuss the various tradeoffs involved in choosing the right pricing
function. We summarize below our results in more detail.

We first study APS, where the price depends both on the query Q and on the answer of
the query E = Q(D). To characterize such schemes, we define the conflict set, which is the
set of databases such that Q(D) 6= E. We show that any arbitrage-free pricing function is
equivalent to a monotone and subadditive function over the join-semilattice defined by the
conflict sets (Theorems 8 and 9). Equipped with this characterization, we present several
examples of arbitrage-free functions, including the weighted coverage and the weighted set
cover functions. In addition, we show that an answer-dependent pricing function with no
bundle arbitrage leads to unnatural behavior: any query can cost at least half the price of
the whole dataset for some databases. This suggests that there is a tradeoff that any data
seller must take into account when choosing a pricing function.

Second, we examine the structure of QPS, where the pricing function depends only on
the query Q. We prove that any non-trivial instance-independent pricing function must
have weaker arbitrage guarantees compared to an answer-dependent function. To provide a
characterize of functions in QPS, we view the query Q as a partition over the set of possible
databases: our main results is that any arbitrage-free function is equivalent to a monotone
and subadditive function over the elements of the join-semilattice formed from the partitions
(Theorems 24 and 25).

To design pricing functions in QPS, we apply two methods. The first method applies an
appropriate aggregate function to combine the prices of an arbitrage-free answer-dependent
function (Theorem 28). The second method views the database as a random variable (with
some probability distribution over the possible databases), and computes the price as the
information gain of the data buyer after the answer has been revealed (Section 4.4). This
approach is parallel to work on side-channel attacks [13], and quantitative information
flow [14]. By using different entropy measures, such as Shannon entropy, or min-entropy, we
obtain pricing functions that we prove to be arbitrage-free using the machinery we developed.

Third, we show how the proposed pricing functions can be computed efficiently in practical
settings. We discuss two different techniques. The first method restricts the computation of
a pricing function to a small set of databases (instead of all possible databases). The second
method uses approximation techniques to estimate the price within a small margin of error.

Organization. Section 2 presents the key concepts, terminology and notation that we use
throughout the paper. In Section 3, we study the construction and properties of pricing
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functions for the answer-dependent case. Section 4 details the corresponding problem for
instance-independent pricing schemes. Section 5 discusses techniques to compute a pricing
function efficiently. We present the related work and conclude in Sections 6 and 7 respectively.

2 Notation and Framework

In this section, we set up the necessary notation and formally describe the pricing framework.

2.1 Preliminaries

We fix a relational schema R = (R1, . . . , Rk); we use D to denote a database instance
that uses the schema. We will use I to denote the set of possible database instances. The
set I encodes information about the database that is provided by the data seller, and is
public information known to any data buyer. Further, we allow the set I to be infinite, but
countable. For example, suppose that the schema consists of a single binary relation R(A,B)
and we know that the domain of both attributes is [n] = {1, . . . , n}. Then, I = 2[n]×[n],
which represents equivalently the set of all possible directed graphs on the vertex set [n].

We will view a query Q from some query language L as a deterministic function that
takes as input a database instance D ∈ I and returns an output Q(D). In this paper, we do
not impose any restriction on the query language L, but in the examples we will use and
in some of the design tradeoffs we assume Q is either a conjunctive query (CQ) or a union
of conjunctive queries (UCQ). A query bundle Q = (Q1, . . . , Qn) is a finite set of queries
that is asked simultaneously on the database. We denote by B(L) the set of finite query
bundles from the language L. Given two query bundles Q1,Q2, we denote their union as
Q = Q1,Q2.

Queries as Partitions. It will be handy to provide an alternative viewpoint of a query
bundle Q as a partition over the set of instances I. A partition P = {B1, . . . , Bk} of I is
a set of pairwise disjoint sets Bi ⊆ I, which we call blocks, such that ∪ki=1Bi = I. Given
Q ∈ L, we denote by PQ the partition that is induced by the following equivalence relation:
D ∼ D′ iff Q(D) = Q(D′) and Q ∈ L. In other words, two databases belong in the same
block of the partition if and only if their output for Q is indistinguishable. We use the
standard notation [D]Q to denote the equivalence class in which D belongs; in other words,
[D]Q = {D′ ∈ I | Q(D′) = Q(D)}. For two partitions P1,P2, we say that P1 refines P2,
and write P1 � P2, if every block of P1 is a subset of some block in P2. In other words, P1
is a more fine-grained partition of I than P2.

Lattices and Join-Semilattices. A join-semilattice (L,≤) is a partially ordered set in which
every two elements in L have a unique supremum (called join and denoted as ∨). A lattice
(L,≤) is a partially ordered set in which every two elements in L have both a unique
supremum, and a unique infimum (called meet and denoted ∧). In this paper, we will
consider two different join-semilattices. The first semilattice has elements subsets of I, which
are ordered by subset inclusion ⊆. The second semilattice has elements partitions of I, which
are ordered by the refinement relation �.

Let f : L→ R be a function defined on the elements of the join-semilattice. We say that
f is monotone, or isotone, if whenever A ≤ B, then f(A) ≤ f(B). Moreover, we say that f is
subadditive if for any two elements A,B of the semilattice we have f(A ∨B) ≤ f(A) + f(B).

ICDT 2017
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2.2 The Pricing Framework
In our setting, a data seller offers a database instance D for sale. Data buyers can issue
queries on the database in the form of query bundles Q. For each query Q over the instance
D, the task in hand is to assign a price to the query answer Q(D) that reflects the amount
of information gained by the data buyer. When a price is assigned to a query bundle Q, we
can differentiate between three different pricing strategies, which depend on the parameters
used to compute the price. There are three possible parameters we can use to determine the
price of a query: the query bundle Q, the answer of the query on the database D, denoted
E = Q(D), and the database D itself. The price will obviously depend on which query Q
we issue, but there is a choice of which D,E should be further used to compute the price.
This choice defines three different classes of pricing schemes:

Instance-independent (QPS): the price depends only on Q, in which case the pricing
function is of the form p(Q). The price is independent of the underlying data.
Answer-dependent (APS): the price depends on the answer E = Q(D), so the price is
of the form p(Q, E). In this case, the price depends on the query and the query output.
Data-dependent (DPS): the price depends on the underlying database D, so the pricing
function is of the form p(Q, D).

Any instance-independent scheme can be cast as an answer-dependent scheme, and any
answer-dependent scheme as a data-dependent scheme. The distinction between APS and
DPS was introduced in [20], where the authors use the terminology delayed pricing and
up-front pricing respectively. Notice that both in QPS and APS the prices themselves do not
leak any information about the underlying data D.1 In contrast, a data-dependent pricing
scheme can leak information about the data (for more details see [20]). For this reason, in
this paper we focus on the first two types of pricing schemes: QPS and APS.

The reason we consider query bundles in our setting is that in practice a data buyer will
issue over time a sequence Q1, . . . ,Qm of query bundles on the database. In this case, after
issuing the first i queries, the data buyer should not be charged a price of

∑
i p(Qi, D), but

instead p(Q1, . . . ,Qi, D). Notice here that, even if a user issues only single queries, we still
need to be able to price a query bundle.

2.3 Arbitrage Conditions
Assigning prices to query bundles without any restrictions can lead to the occurrence of
arbitrage opportunities. In [15], the authors presented a single condition that captures
arbitrage. Here, we follow [20], and consider independently two different conditions where
arbitrage may occur.

Information Arbitrage. The first condition captures the intuition that the price of query
bundle must capture the amount of information that an answer reveals about the actual
database D. In particular, if a query bundle Q1 reveals a subset of information than a query
bundle Q2 reveals, the price of Q1 must be less than the price of Q2. If this condition is not
satisfied, it creates an arbitrage opportunity, since a data buyer can purchase Q2 instead,
and use it to obtain the answer of Q1 for a cheaper price.

1 For the case of answer-dependent prices, we must make sure that we reveal the price only if we are
certain that the buyer will be charged for the cost.
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Bundle Arbitrage. The second condition regards the scenario where a data buyer that
wants to obtain the answer for the bundle Q = Q1,Q2 creates two separate accounts, and
uses one to ask for Q1 and the other to ask for Q2. To avoid such an arbitrage situation, we
must make sure that the price of Q is at most the sum of the prices for Q1 and Q2. [20]
uses the terminology separate-account arbitrage to refer to this arbitrage condition.

We will show in the next sections how to mathematically formalize information arbitrage
and bundle arbitrage for both APS and QPS.

3 Answer-Dependent Pricing

In this section, we study the design of answer-dependent pricing schemes. In an APS the
pricing function takes the form p(Q, E), where Q is a query bundle and E ∈ {Q(D) | D ∈ I}.
Throughout the section, we assume that query bundles belong to some query language L.
We first discuss how to formalize the arbitrage conditions. To formally describe information
arbitrage, we use the notion of data-dependent determinacy.

I Definition 1. We say that Q2 determines Q1 under database D, denoted D ` Q2 � Q1
if for every database D′ such that Q2(D) = Q2(D′), we also have Q1(D′) = Q1(D).

The above definition of determinacy is different from query determinacy [23, 24], since it
is defined with respect to a given database D. It is also easy to see that if D ` Q2 � Q1,
we also have that D′ ` Q2 � Q1 for any database D′ such that Q2(D) = Q2(D′).

I Definition 2 (APS Information Arbitrage). Let Q1,Q2 be two query bundles. We say that
the pricing function p has no information arbitrage if for every database D ∈ I, D ` Q2 � Q1
implies that p(Q2, E2) ≥ p(Q1, E1), where Ei = Qi(D) for i = 1, 2.

This definition of information arbitrage captures both post-processing arbitrage and
serendipitous arbitrage, as these are defined in [20]. For the case of bundle arbitrage, we
formalize it as follows.

I Definition 3 (APS Bundle arbitrage). Let the query bundle Q = Q1,Q2. We say that the
price function p has no bundle arbitrage if for every database D ∈ I, we have p(Q, E) ≤
p(Q1, E1) + p(Q2, E2), where E = Q(D) and Ei = Qi(D) for i = 1, 2.

We say that an answer-dependent pricing function is arbitrage-free if it has no information
arbitrage and no bundle arbitrage.

3.1 How to Find a Pricing Function
In this section, we characterize the family of answer-dependent pricing functions that satisfy
both arbitrage conditions. The critical component is the notion of a conflict set.

3.1.1 Conflict Sets
Consider a query bundle Q ∈ B(L), a database D ∈ I and let E = Q(D). We define

SQ(E) = {D′ ∈ I | Q(D′) = E}, SQ(E) = {D′ ∈ I | Q(D′) 6= E}

In other words, SQ(E) computes the set of databases that “agree” with the view extension
E, and SQ(E) contains the complement set, i.e. the set of databases that “disagree” with
E. Notice that SQ(Q(D)) = [D]Q. We refer to SQ(E) as the conflict set for query Q
and extension E, while we refer to SQ(E) as the agreement set. It is straightforward that
SQ(E) = I \ SQ(E).

ICDT 2017
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{D00, D01, D10} {D00, D01, D11} {D00, D10, D11} {D01, D10, D11}

{D00, D01} {D00, D10} {D00, D11} {D01, D10} {D01, D11} {D10, D11}

{D00} {D01} {D10} {D11}

φ

Figure 1 A simultaneous depiction of the join-semilattices for the four databases in Example 4.

I Example 4. We will use the following scenario as a running example throughout this
section. Suppose that we have a binary relation R(A,B), where attribute A is the key. The
values of the n keys are also publicly known {a1, a2, . . . , an}. Moreover, assume that B can
take two possible values from {0, 1}. It is easy to see that I consists of 2n databases. For
n = 2, let Dij denote the database {(a1, i), (a2, j)}. For example D01 = {(a1, 0), (a2, 1)}.

Consider now the query Q(x) = R(a1, x), which asks for value of attribute B for the tuple
with key A = a1. Assume that the underlying database is D01. The conflict set of Q and
E = Q(D01) consists of all databases D for which (a1, 1) ∈ D, hence SQ(E) = {D10, D11}.

If Q returns a constant answer for every database in I, the conflict set will be the empty
set. On the other hand, if Q reveals the whole database D, the conflict set will be I \ {D}.
We can now define the set of all possible conflict sets for a database D and a given language
L as SLD = {SQ(Q(D)) | Q ∈ B(L)}. The following lemma, which we prove in [8], shows
that SLD forms a join-semilattice under the partial order ⊆, where the join operator is set
union.

I Lemma 5. Let Q = Q1,Q2. For a database D ∈ I, let E1 = Q1(D), E2 = Q2(D), and
E = Q(D). Then, SQ(E) = SQ1(E1) ∪ SQ2(E2).

The diagram in Figure 1 depicts simultaneously the four join-semilattices for each of the
databases in Example 4. We next show in [8] the following lemma that connects the notion
of a conflict set with data-dependent determinacy.

I Lemma 6. Let Q1,Q2 be two query bundles, and D ∈ I be a database. Let Ei = Qi(D)
for i = 1, 2. The following two statements are equivalent:
1. D ` Q2 � Q1
2. SQ2(E2) ⊇ SQ1(E1)

Lemma 6 and Lemma 5 demonstrate that information and bundle arbitrage can be cast
as conditions on the elements of the semilattice of conflict sets.

I Example 7. Continuing Example 4, consider the queries Q1(x) = R(a1, x) and Q2() =
R(x, 1). Let D00 be the underlying database. It is easy to see that D00 ` Q2 � Q1, since
after asking Q2 we learn that the database contains no 1 values for B, and thus it must have
only 0 values. The conflict sets for E1 = Q1(D00), E2 = Q2(D00) are SQ1(E1) = {D11, D10}
and SQ2(E2) = {D01, D10, D11} respectively.
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3.1.2 A Characterization of Arbitrage-Free APS
We can now use the notion of a conflict set to define pricing functions of the form p(Q, E) =
f(SQ(E)), where f : 2I \ {I} → R+ is a set function. It is straightforward to see that
such a pricing function is by construction in APS, since the computation depends only on
Q and E, and not on the database D. For example, if Q returns a constant answer for
every database in I, p(Q, E) = f(∅). On the other hand, if Q reveals the whole database
D, p(Q, E) = f(I \ {D}). We can now show a necessary and sufficient characterization of
answer-dependent functions with no information arbitrage in terms of such a function f .

I Theorem 8. Let p be an answer-dependent pricing function. The following two statements
are equivalent:
1. p has no information arbitrage.
2. p(Q, E) = f(SQ(E)), where f is a monotone function over every semilattice SLD.

We have shown that in order to avoid information arbitrage it suffices to restrict the
function to be monotone. We next demonstrate a similar connection of bundle arbitrage to
the property of subadditivity.

I Theorem 9. Let p(Q, E) = f(SQ(E)) be a pricing function, where f is a set function.
Then, the following two statements are equivalent:
1. p has no bundle arbitrage.
2. f is subadditive over every semilattice SLD.

Both Theorem 8 and Theorem 9 are proved in the full version of the paper [8]. Observe
that if a function f is monotone and subadditive over 2I , it will also be monotone and
subadditive over every semilattice SLD. Hence, as a corollary we can describe a general family
of arbitrage-free pricing functions.

I Corollary 10. Let f be a monotone and subadditive set function f . Then, the function
p(Q, E) = f(SQ(E)) is an answer-dependent pricing function that is arbitrage-free.

3.2 Explicit Constructions of Pricing Functions
We have so far described a general class of functions that are both information and bundle
arbitrage-free. Since any submodular function is also subadditive, any monotone submodular
set function f will also produce a desired pricing function. We give some concrete examples
of arbitrage-free pricing functions below.

I Corollary 11. Suppose that we assign a weight of wD to each D ∈ I, such that
∑
D∈I wD <

∞. Then, the following pricing functions are arbitrage-free:
1. the weighted coverage function:

∑
D:Q(D)6=E wD.

2. the supremum function: supD:Q(D)6=E wD.2
3. the budget-limited weighted coverage function for some B ≥ 0: min{B,

∑
D:Q(D)6=E wD}.

We can construct richer pricing functions by combining the weighted coverage function
with a concave function g. Indeed, we can show that p(Q, E) = g(

∑
D∈SQ(E) wD) is arbitrage-

free for any concave function g. If I is finite, we can assign to each database D ∈ I an equal
weight, in which case we obtain the arbitrage-free function p(Q, E) = g(|SQ(E)|).

2 The supremum becomes equivalent to the max function if I is finite.

ICDT 2017
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I Corollary 12. Suppose that we assign a weight of wD to each D ∈ I, such that
∑
D∈I wD <

∞. Then, the pricing function p(Q, E) = g(
∑
D∈SQ(E) wD) is arbitrage-free for any concave

function g.

Proof. We know that if f(A) is a modular set function and g is concave, then g(f(A)) is a
submodular function. Notice that f(A) =

∑
i∈A wi is a modular function for any choice of

weights wi. J

The pricing functions we have presented thus far are constructed by assigning a weight to
each database in I. Another type of construction starts by specifying a family F of subsets
of I. For each subset S ∈ F , we assign a weight wS . Finally, we pick some real number
B ≥ maxS∈F wS . We define the weighted set cover function f(A) as the cost of the minimum
set cover for A if such a set exists, otherwise f(A) = B.

I Lemma 13. The weighted set cover pricing function is arbitrage-free.

The weighted set cover function generalizes the approach from [15], where explicit prices
are specified for certain views, and the price of the query is computed as the cheapest set
of views that determine the query. Indeed, if we are given explicit price points (Qi, pi) for
i = 1, . . . ,m, we can define the following family of sets: F = {SQi(Qi(D)) | i = 1, . . . ,m},
where each set SQi

(Qi(D)) is assigned a weight of pi. Since D ` Qi1 , . . . ,Qi` � Q is
equivalent to saying that the union of the conflict sets of Qi1 , . . . ,Qi` is a superset of the
conflict set of Q, the minimum set cover for SQ(E) corresponds to the cheapest set of views
that determine Q under database D.

3.2.1 Information Gain as a Pricing Function
A natural mechanism for pricing is to start from a probabilistic point of view and compute
the price as the reduction in uncertainty, or information gain, using some notion of entropy.

Formally, consider an initial probability distribution over the set I of possible databases:
in other words, assign a probability pD to each database D ∈ I. This probability distribution
may reflect public information about the database (for example some value might be more
probable than some other value). Let X be a random variable such that P (X = D) = pD.
Given some entropy measure H(·) of a random variable, such as Shannon entropy or min-
entropy, we can set the price as the information gain: the initial entropy H(X) minus the
entropy of the new distribution, which is now conditioned on the event Q(X) = E. Formally,
we define the price as p(Q, E) = H(X) −H(X | Q(X) = E). We can now plug standard
uncertainty measures to obtain a pricing function. For example, we can use the Shannon
entropy H(X) = −

∑
D∈I pD log(pD), or the min-entropy H∞(X) = − log(maxD pD).

I Lemma 14. There exists a probability distribution pD over I such that the answer-dependent
entropy function has information-arbitrage.

Proof. Consider two sets B ⊆ A ⊆ I, such that A\B = {D0}. Assume that the probabilities
are set as follows: for every D ∈ B we have pD = ε, and pD0 = 1 −mε, where m = |A|.
Define now two queries QA and QB such that SQA

(E) = A and SQB
(E) = B. In this case,

we have:

p(QB , E) = H(D) +
m∑
i=1

1
m

log(1/m) = H(D)− log(m)

p(QA, E) = H(D) +mε log(ε) + (1−mε) log(1−mε)



S. Deep and P. Koutris 12:9

Further, 0 < mε < 1. To create a counterexample, we choose mε = 1
2 , and now we have:

p(QA, E)− p(QB , E) =
= mε log(ε) + (1−mε) log(1−mε) + log(m)

= 1
2 log(ε)− 1

2 + log(m) = 1
2 log(m)− 1

By picking m large enough, we can make this quantity strictly positive, hence violating the
information arbitrage condition. J

The intuition in the above proof is the following: the result for query QA will have
a somewhat small entropy, because D0 is much more probable than the other databases.
However, by asking QB we learn that D0 cannot be the actual database, and now the
probability is equally distributed among the rest of the candidates; hence, the entropy grows!

The information gain, even though it seems a natural candidate, is not a well-behaved
pricing function for APS, since it exhibits both information and bundle arbitrage (see
Lemma 14 for such an example of information arbitrage). As we will see in Section 4 though,
we can use information gain to construct arbitrage-free functions for QPS. In the case where
the probabilities pD are all equal, the information gain based on Shannon entropy has no
information arbitrage (but can still exhibit bundle arbitrage) as shown in [8].

I Lemma 15. If the probability distribution pD over I is uniform, the information gain
based on Shannon entropy has no information arbitrage.

3.3 A Tradeoff for Arbitrage-Free APS
I Example 16. Continuing Example 4, consider the query Q(x) = R(a, x) and the pricing
function p2(Q, E) = log(|SQ(E)|). Notice that, independent of the actual database D, the
conflict set has always size 2n−1. In this case, p2(Q,E) = n− 1. Notice that the price for
learning the whole database is log(2n − 1), which means that for learning a single tuple we
pay almost as much as the whole database.

We will show here that the above example is not a random occurrence, and that the
requirement that a pricing function has no bundle arbitrage gives rise to the phenomenon of
assigning high prices (w.r.t. to the price of the whole dataset) to queries that reveal only a
small amount of information.

I Lemma 17. Let p(Q, E) = f(SQ(E)) be an answer-dependent pricing function where f
is monotone and subadditive over 2I . Then, for every non-constant query Q ∈ B(L) there
exists a database D ∈ I such that p(Q,Q(D)) is at least half the price of D.

To see that the bundle-arbitrage requirement cause the problem, consider the function
p(Q, E) = log(|I|) − log(|SQ(E)|), for which we showed that it exhibits no information
arbitrage, but can still have bundle arbitrage. Continuing our example, we can see that
p(Q,E) = log(2n)−log(2n−1) = 1; thus, learning about one of the n tuples is priced reasonably
to 1/n of the price of the whole database. Our analysis demonstrates an important tradeoff in
the design space of answer-dependent pricing functions: ensuring no bundle arbitrage implies
that the pricing function will charge disproportionately high prices for little information.

It is also instructive to note that while Lemma 17 guarantees that existence of database
D ∈ I that behaves badly, it does not say anything about the number of such databases. In
fact, for our example we can show that for query Q at least half of the databases in I will
exhibit this undesirable behavior.

ICDT 2017



12:10 The Design of Arbitrage-Free Data Pricing Schemes

4 Instance-Independent Pricing

We study here the structure of instance-independent pricing schemes. In a QPS, the pricing
function is of the form p(Q), depending only on the query. We first formalize the conditions
under which the pricing function has no information arbitrage and no bundle arbitrage.

I Definition 18. We say that Q2 determines Q1, denoted Q2 � Q1, if for every database
database D′ and D′′, Q2(D′) = Q2(D′′) implies Q1(D′) = Q1(D′′).

In contrast to answer-dependent pricing functions, where we used a notion of determinacy
that depends on the database, here we use the standard notion of information-theoretic
determinacy.3 We can now describe the formal definition for information arbitrage.

I Definition 19 (QPS Information Arbitrage). The pricing function p has no information
arbitrage if for any two query bundles Q1,Q2 such that Q2 � Q1, we have p(Q2) ≥ p(Q1).

I Definition 20 (QPS Bundle arbitrage). Let the query bundle Q = Q1,Q2. We say that
the pricing function p has no bundle arbitrage if we have p(Q) ≤ p(Q1) + p(Q2).

4.1 Serendipitous Arbitrage
Consider two query bundles Q1 and Q2 such that Q1 6� Q2, but for some D ∈ I, D `
Q1 � Q2. For example, consider the boolean query Q1() = R(x, y) over the binary relation
R(A,B). Let Q2(x, y) = R(x, y). Clearly, for all databases D other than the empty database,
D ` Q1 6� Q2. However, for the database D0 = ∅, note that D0 ` Q1 � Q2. In this
case, if p(Q1) > p(Q2), the data buyer would have an arbitrage opportunity. However, this
opportunity would arise by chance, since the buyer does not know the underlying database
and thus does not know that asking for Q2 can lead to learning Q1 for a lower price. We call
this phenomenon serendipitous arbitrage [20]. Our definition of QPS information arbitrage
does not capture serendipitous arbitrage. The next result demonstrates a second tradeoff in
the design space of pricing functions: any non-trivial QPS will exhibit serendipitous arbitrage.
We prove in [8]

I Theorem 21. Let L = UCQ. If a QPS exhibits no serendipitous arbitrage, then the price
of any non-constant query bundle Q is equal to the price of asking for the whole database.

4.2 How to Find a Pricing Function
To characterize the structure of instance-independent pricing functions, we exploit the fact
that we can equivalently view a query as a partition of the set of possible databases I.

4.2.1 The Partition Lattice
Fix some query language L. Recall that for a query bundle Q ∈ B(L), PQ is the partition
that is induced by the following equivalence relation: D ∼ D′ iff Q(D) = Q(D′).

I Lemma 22. Let Q1,Q2 ∈ L be two query bundles. The following are equivalent:
1. Q1 � Q2
2. PQ1 � PQ2 , i.e. PQ1 refines PQ2

3 Here we should note that there exists a slight difference, since the databases we consider can come only
from I, and not be any database.
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The refinement relation defines a partial order on the set ΠLI of all partitions of I induced
by any bundle Q ∈ B(L). An equivalent way to define the partial order is through the
distinction set of a partition dit(P) =

⋃
B,B′∈P:B 6=B′ B ×B′. Intuitively, the distinction set

contains all pairs of elements that are not in the equivalence relation. It is straightforward
to see that dit(PQ) = {(D′, D′′) ∈ I × I | Q(D′) 6= Q(D′′)}. Furthermore, P1 � P2 if and
only if dit(P1) ⊇ dit(P2) and thus one can use the inclusion of the distinction sets to define
a partial order on the partitions.

The partial order induced by � on ΠLI forms a join-semilattice. The bottom element of
the semilattice is the partition {I}, which corresponds to a query that returns a constant
answer. The top element is the partition where each block is a singleton set: this corresponds
to a query that informs about the whole database. The join P1 ∨P2 is a new partition whose
blocks are the non-empty intersections of any two blocks from P1,P2. The lemma below
proves that the algebraic structure we defined is indeed a semilattice.

I Lemma 23. Let Q = Q1,Q2, where Q1,Q2 ∈ B(L). Then, PQ = PQ1 ∨ PQ2 .

If we define the partial order as the inclusion of distinction sets, dit(PQ) = dit(PQ1 ∨
PQ2) = dit(PQ1) ∪ dit(PQ2), the join operator is simply the union of the distinction sets.

4.2.2 A Characterization of Arbitrage-Free QPS
We now consider the family of instance-independent pricing functions of the form p(Q) =
f(PQ), where f : ΠLI → R+ is a function that maps a partition to the positive real numbers.

I Theorem 24. Let p be an instance-independent pricing function. Then, the two statements
are equivalent:
1. p has no information arbitrage.
2. p(Q) = f(PQ), where f is a monotone function over ΠLI .

I Theorem 25. Let p(Q) = f(PQ) be an instance-independent pricing function, where f is
a function over ΠLI . Then, the two statements are equivalent:
1. p has no bundle arbitrage.
2. f is subadditive over ΠLI .

I Corollary 26. Let f be a monotone and subadditive function over ΠLI . Then, p(Q) = f(PQ)
is an instance-independent pricing function that has no bundle or information arbitrage.

Alternatively, we could also define the pricing function as p(Q) = f(dit(PQ)). Using the
same type of arguments, we can show:

I Corollary 27. Let f be a monotone and subadditive set function. Then, p(Q) = f(dit(PQ))
is an instance-independent pricing function that has no bundle or information arbitrage.

4.3 Construction of Pricing Functions From Answer-Dependent Prices
We show first how we can design an instance-independent pricing function p(Q) starting from
an answer-dependent function p(Q, E). Given a query bundle Q, the idea is to construct
a vector of all prices p(Q,Q(D)) for all databases D ∈ I. Formally, we define the price
vector ~p(Q) = 〈p(Q,Q(D)) | D ∈ I〉. Then we can obtain an instance-independent pricing
function by computing another function g : R|I|+ → R+ over the above vector, such that
p(Q) = g(~p(Q)). The next lemma describes the conditions for g under which the arbitrage-free
property carries over.
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I Lemma 28. Let p(Q, E) be an arbitrage-free pricing function. If g is a monotone and
subadditive function, then p(Q) = g(~p(Q)) is an arbitrage-free instance-independent function.

We next present an application of Lemma 28 to obtain arbitrage-free pricing functions.

I Lemma 29. Let f be a monotone and subadditive set function. Let wD be a non-negative
weight wD to each D ∈ I, and denote wB =

∑
D∈B wD. Then, the pricing functions

p1(Q) = maxB∈PQ{f(I \B)} and p2(Q) =
∑
B∈PQ

wB · f(I \B) are arbitrage-free.

I Example 30. Consider the function p2 with equal weights wD = 1 and the set function
f(A) = |A|. The resulting arbitrage-free function is p(Q) =

∑
B∈PQ

|B|(|I|−|B|) = |dit(PQ)|,
which sets the price to be the size of the distinction set.

If
∑
D wD = 1 for p2, one can interpret the weights as a probability distribution over the

set of databases I. In this case, we can write p2(Q) = EB∈PQ [f(I \B)], where each block
B has probability wB. In other words, the pricing function is the expected price over all
answer-dependent prices. The converse of Lemma 28 does not hold: it is possible for p(Q) to
be arbitrage-free, and for some database D it may not be the case. As we will see next, this
allows us to construct arbitrage-free functions that are based on measures of uncertainty.

4.4 Construction of Pricing Functions From Uncertainty Measures
In this section, we describe arbitrage-free pricing functions that do not originate from answer-
dependent functions. To construct such functions, we switch to a probabilistic view of the
problem and then apply information-theoretic tools that are used to measure uncertainty.
For the remainder of this section, we assume that each database D is associated with a
probability pD. We denote by X the random variable such that P (X = D) = pD and let
pE =

∑
D:Q(D)=E pD. The detailed proofs in this section are presented in [8].

Shannon Entropy. The first measure of uncertainty we apply is the most commonly used
form of entropy, and was proposed in [20] as a pricing function. In the answer-dependent
context, we defined the price as the information gain after the output E has been revealed.
Since in this setting the price is independent of the output, we define the price as the expected
information gain over all possible outcomes. Formally:

pH(Q) = H(X)−
∑
E

pE ·H(X | Q(X) = E) (1)

Equivalently, we can also express the price as

pH(Q) = H(X)−H(X | Q(X)) = I(X; Q(X)) = H(Q(X))−H(Q(X) | X) = H(Q(X))

where I(X;Y ) is the mutual information between the random variables X and Y . [20]
proves that pH is both bundle and information arbitrage-free, using the subadditivity of
entropy and the data-processing inequality respectively. It is instructing to write pH as
pH(Q) = −

∑
S∈PQ

pS · log pS =
∑
D pD · p(Q,Q(D)) where p(Q, E) = − log (pE) is now an

answer-dependent pricing function. Notice that p(Q, E) has no information arbitrage, and
thus by applying Lemma 28 we get an alternative proof that pH is information arbitrage-free.
However, p(Q, E) can have bundle arbitrage, and thus we cannot apply Lemma 28 to show
the subadditivity property as well: entropy is subadditive only in expectation. This example
demonstrates that the converse of Lemma 28 does not hold.
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Tsallis Entropy. For a real number q > 1, the Tsallis entropy [27], or q-entropy, of a
random variable X is defined as Sq(X) = 1

q−1 ·
(
1−

∑
x P (X = x)q−1). Tsallis entropy is a

generalization of Shannon entropy, since limq→1 Sq(X) = H(X). We define the price as the
Tsallis entropy of Q(X):

pT (Q) = Sq(Q(X)) =
∑
S∈PQ

pS
q − 1 · (1− p

q−1
S ) (2)

I Lemma 31. The pricing function pT defined in Equation (2) is arbitrage-free for q > 1.

Guessing Entropy. The guessing entropy measures the average number of successive guesses
required by an optimum strategy until we correctly guess the value of the random variable X
(in our case the underlying database D). The guessing entropy was first introduced in [21],
and subsequently used in [13] in the context of measuring leakage in side-channel attacks. To
compute the guessing entropy of X, suppose that we have ordered the databases in decreasing
order of their probabilities, i.e. such that p(X = Di) ≥ p(X = Dj) whenever i ≤ j. Then,
we define the guessing entropy as G(X) =

∑
i i · pDi

. The price is now defined as the initial
entropy minus the expected conditional guessing entropy G(X | Q(X) = E):

pG(Q) = G(X)−
∑
E

pE ·G(X | Q(X) = E) (3)

I Lemma 32. The pricing function pG defined in Equation (3) is arbitrage-free.

Min-Entropy. We apply here the notion of min-entropy, as it was introduced in [26] to
quantify information flow. Themin-entropy of a random variable isH∞(X) = − log(maxx P (X =
x)). The conditional min-entropy is defined as H∞(X | Y ) = − log(

∑
y P (Y = y) ·

maxx P (X = x | Y = y)). Then, we can construct the price of a query as follows:

pM (Q) = H∞(X)−H∞(X | Q(X)) = − log(max
D

pD) + log
(∑

E

max
D:Q(D)=E

pD

)
(4)

I Lemma 33. The pricing function pM defined in Equation (4) has no information arbitrage.

The min-entropy is not in general bundle arbitrage-free, as we show in the full version of
the paper [8]. However, it becomes so when the initial distribution is uniform. Let n = |I|, in
which case pD = 1/n for each database. Then, it is straightforward to see that the resulting
function is the logarithm of the number of sets in the partition PQ.

pMU (Q) = log(n) + log(|PQ|/n) = log(|PQ|) (5)

I Lemma 34. The pricing function pMU (Q) defined in Equation (5) is arbitrage-free.

β-Success Rate. This information measure, first introduced in [4], captures the expected
success of guessing the database D with β tries. We will consider here only the case where
the probability distribution is uniform, in which case the pricing functions becomes:

pβ(Q) = log

 ∑
S∈PQ

min{β, |S|}

 (6)

Observe that for β = 1 we have pβ(Q) = pMU (Q), hence this generalizes uniform min-entropy.
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Table 1 The price of a query bundle Q according to various entropy measures for the case of
uniform probability distributions. We denote n = |I|.

Shannon Entropy pH(Q) = 1
n

∑
B∈PQ

|B| log |B|

Guessing Entropy pG(Q) = 1
2n

(
n2 −

∑
B∈PQ

|B|2
)

Min-Entropy pMU (Q) = log |PQ|

Tsallis Entropy pT (Q) = 1
q−1

(
1−

∑
B∈PQ

( |B|
n

)q−1
)

β-Success Rate pβ(Q) = log
(∑

B∈PQ
min{β, |B|}

)

I Lemma 35. The pricing function pβ(Q) defined in Equation (6) is arbitrage-free.

We should finally mention that several other entropy measures have been discussed in
the broader literature. The Renyi entropy [25] is a generalization of both the Shannon
entropy and the min-entropy. However, it is not subadditive, and thus not applicable as
an arbitrage-free pricing function. Worst-case entropy measures [13] can also be applied to
measure information leakage, but they are also prone to bundle arbitrage.

5 Computing the Pricing Function

So far we have studied how to construct pricing functions for both APS and QPS. In this
section, we focus on the complexity of computing a pricing function.

5.1 Support Sets
We first start by discussing an generic approach that can construct efficiently computable
arbitrage-free pricing functions for any query language L that can be computed efficiently.
The key idea behind our construction is to define the pricing function on a smaller set C ⊆ I
of our choice, which we call support. The next two lemmas show that this restriction still
provides arbitrage-free answer-dependent and instance-independent pricing functions.

I Lemma 36. Let C ⊆ I. If f is a monotone and subadditive set function, the pricing
function p(Q, E) = f(SQ(E) ∩ C) is arbitrage-free.

Given a partition P of the set I, we define the restriction of P to C, denoted P ∩ C, as
the set {B ∩ C | B ∈ P, B ∩ C 6= ∅}.

I Lemma 37. Let C ⊆ I. If f is a monotone and subadditive function on the partition
semilattice, the pricing function p(Q) = f(PQ ∩ C) is arbitrage-free.

The above results provide us with a method to design an efficient arbitrage-free pricing
function for a query language L. We start by choosing a support C ⊆ I. To compute
the pricing function, we first compute SQ(E) ∩ C for answer-dependent (or PQ ∩ C for
instance-independent). The observation is that we can achieve this by evaluating the query
bundle Q only on the databases D ∈ C. Hence, the running time of computing the price
does not depend on |I|, but on |C| and the complexity of evaluating the query bundle Q.

I Example 38. Consider any set C ⊆ I. Then p(Q, E) = log |{D ∈ C | Q(D) 6= E}| is an
arbitrage-free pricing function. Similarly, p(Q) = log |PQ ∩ C| is also arbitrage-free.



S. Deep and P. Koutris 12:15

The advantage of using support sets to construct pricing functions is that they provide
us with a generic method that is independent of the language L. On the other hand, the size
and choice of the support C is a challenging problem. We can always choose C to contain
a single database. The evaluation of the price will be very efficient, but any query will be
assigned only one of two prices, and thus the pricing function will not be very successful in
measuring the value of the data. If we instead choose a very large support, this leads to
expensive and impractical price computation. We leave as an open research question how to
choose a good support C that is suitable for a practical implementation.

5.2 The Complexity of Entropy-Based Pricing

In a practical setting, the set I will be given implicitly. For example, I can be the infinite
set of all databases, or the set of all subsets of a given database D0, I = {D | D ⊆ D0}.
One might think that since the problem of determinacy (either query or data-dependent) is
hard even for the class of conjunctive queries, computing an arbitrage-free pricing function
is always hard. However, as we showed in the previous section about support sets, it is
always possible to construct non-trivial pricing schemes that circumvent the computation of
determinacy and thus can be computed efficiently. Here we will focus on the computational
complexity for the pricing functions we introduced that are based on entropy.

The task necessary to compute an answer-dependent pricing function such as p(Q, E) =
log(|SQ(E)|), or any of the instance-independent functions in Table 1 is the following: given
a view extension E and Q, compute |SQ(E)|, which is the number of databases in I such
that Q(D) = E. If I can be succinctly expressed as I = {D | D ⊆ D0}, the task relates
to the area of probabilistic databases. Indeed, we can view D0 as a tuple-independent
probabilistic database where each tuple has the same probability 1/2. Then, we can write
|SQ(E)| = P (Q(D0) = E) · |I|. Unfortunately, computing the probability P (Q(D0) = E)
is in general a #P -hard problem (w.r.t. the size of D0), even for the class of conjunctive
queries [7]. However, the task is known to be in polynomial time for certain types of queries.
For instance, in Example 4, where Q is a selection query over a single table, the size of the
conflict set can be computed exactly in polynomial time. We should note here that the
problem of checking whether SQ(E) is empty or not is equivalent to the problem of view
consistency, which is shown to be NP-hard for the class of conjunctive queries [1] when I
ranges over all databases.

Even if |SQ(E)| can be computed exactly, the number of blocks in the partition PQ may
still be exponentially large, which would make computing the Shannon or Guessing entropy
intractable. In this case, we can write the information gain as p(Q) = −

∑
D∈I log |[D]Q|,

and construct an estimator of the price that samples independently m databases from I and
outputs their average: p̃(Q) = 1

m

∑m
i=1 log |[Di]Q|. In [14, 3], the authors show that such an

estimator can achieve an additive δ-approximation of the price with a number of samples that
is polynomial in 1/δ, log(|I|). We say that a pricing function is ε-approximately arbitrage-free
if the arbitrage conditions are violated within an additive ε. It is straightforward to see that
p̃ results in a (3δ)-approximately arbitrage-free pricing scheme. This implies that we can
compute in polynomial time an approximation of the entropy function that is as close to
arbitrage-free as we would like to.
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6 Related Work

The problem of data pricing has been studied from a wide range of perspectives, including
online markets and privacy [10, 22]. [12] examined a variety of issues involved in pricing
of information products and presented an economic approach to design of optimal pricing
mechanism for online services. [2] introduced the challenge of developing pricing functions in
the context of cloud-based environments, where users can pay for queries without buying
the entire dataset. This work also outlines various research challenges, such as enabling
fine-grained pricing and developing efficient and fair pricing models for cloud-based markets.

The first formal framework for query-based data pricing was introduced by Koutris et
al. [15]. The authors define the notion of arbitrage, and provide a framework that takes a set
of fixed prices for views over the data identified by seller, and extends these price points to a
pricing function over any query. The authors also show that evaluation of the prices can be
done efficiently in polynomial time for specific classes of conjunctive queries and a restricted
set of views that include only selections. Subsequently, the authors demonstrated how the
framework can be implemented into a prototype pricing system called QueryMarket [16, 17].
Further work [18] discusses the pricing and complexity of pricing for the class of aggregate
queries. The work by Lin and Kifer [20] proposes several possible forms of arbitrage violations
and integrates them into a single framework. The authors allow the queries to be randomized,
and propose two potential pricing functions that are arbitrage-free across all forms.

Data pricing is tightly connected to differential privacy [9]. Ghosh and Roth [11] study the
buying and selling of data by considering privacy as an entity. Their framework compensates
the seller for the loss of privacy due to selling of private data. A similar approach to pricing
in the context of privacy is discussed in [19].

We should finally mention the close connection of query pricing to the measurement of
information leakage in programs. In [13], the authors apply information-theoretic measures,
including various entropy measures, to compute the leakage of information from a side-
channel attack that attempts to gain access to secret information. [14] uses similar ideas to
quantify the flow of information in programs, and proposes various approximation techniques
to efficiently compute them.

7 Conclusion

In this paper, we explore in depth the design space of arbitrage-free pricing functions.
We present a characterization of the structure for both answer-dependent and instance-
independent pricing functions, and propose several constructions. Our work opens several
exciting research questions, including testing which pricing functions behave well in practical
settings, and exploring the various tradeoffs when deploying a pricing scheme.

Acknowledgements. We would like to thank Aws Albarghouthi for pointing out the close
connection of our work to quantitative information flow and information leakage in side-
channel attacks.
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