
Expressive Power of Entity-Linking Frameworks
Douglas Burdick1, Ronald Fagin2, Phokion G. Kolaitis∗3,
Lucian Popa4, and Wang-Chiew Tan5

1 IBM Almaden Research Center, San Jose, CA, USA
2 IBM Almaden Research Center, San Jose, CA, USA
3 University of California Santa Cruz, Santa Cruz, CA, USA; and

IBM Almaden Research Center, San Jose, CA, USA
4 IBM Almaden Research Center, San Jose, CA, USA
5 Recruit Institute of Technology, Mountain View, CA, USA; and

University of California Santa Cruz, Santa Cruz, CA, USA

Abstract
We develop a unifying approach to declarative entity linking by introducing the notion of an entity
linking framework and an accompanying notion of the certain links in such a framework. In an
entity linking framework, logic-based constraints are used to express properties of the desired link
relations in terms of source relations and, possibly, in terms of other link relations. The definition
of the certain links in such a framework makes use of weighted repairs and consistent answers in
inconsistent databases. We demonstrate the modeling capabilities of this approach by showing
that numerous concrete entity linking scenarios can be cast as such entity linking frameworks for
suitable choices of constraints and weights. By using the certain links as a measure of expressive
power, we investigate the relative expressive power of several entity linking frameworks and obtain
sharp comparisons. In particular, we show that we gain expressive power if we allow constraints
that capture non-recursive collective entity resolution, where link relations may depend on other
link relations (and not just on source relations). Moreover, we show that an increase in expressive
power also takes place when we allow constraints that incorporate preferences as an additional
mechanism for expressing “goodness” of links.

1998 ACM Subject Classification H.2 Database Management

Keywords and phrases Entity linking, entity resolution, constraints, repairs, certain links

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.10

1 Introduction and Summary of Results

Entity linking is the problem of creating links among records representing real-world entities
that are related in certain ways. As an important special case, it includes entity resolution,
which is the problem of identifying or linking “duplicate” entities. Since the pioneering
work of Fellegi and Sunter [11] in 1969, entity linking has been recognized as a fundamental
computational problem that has been investigated by several different research communities.
While much of the work in this area [8, 10, 15, 18] has focused and continues to focus on
the design, implementation, and validation of direct algorithms for entity linking (and, in
particular, for entity resolution), recent investigations have developed declarative approaches
to entity linking that make it possible to separate the specification of entity linking from its
actual implementation (see, for example, [1, 7, 13, 14]).

∗ Part of this work was done while Phokion G. Kolaitis was visiting the Simons Institute for the Theory
of Computing.

© Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wand-Chiew Tan;
licensed under Creative Commons License CC-BY

20th International Conference on Database Theory (ICDT 2017).
Editors: Michael Benedikt and Giorgio Orsi; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Expressive Power of Entity-Linking Frameworks

In [7], we introduced and explored a declarative approach to entity linking that makes use
of logical constraints. Our approach differs from earlier declarative approaches because it uses
link-to-source constraints, instead of source-to-link constraints. Source-to-link constraints
constitute, in effect, rules for creating links from source data in an operational manner. Our
link-to-source constraints spell out conditions that the links must satisfy, independently of
how the links will be created, and thus give rise to solutions of the declarative entity-linking
specification at hand. In [7], we focused on the class of maximum-value solutions as “good”
solutions for entity linking; intuitively, these are the solutions in which links have maximum
“justification” in terms of the constraints and in terms of the source data. Since there can be
multiple maximum-value solutions, we introduced the notion of the certain links, which, by
definition, are the links that appear in every maximum-value solution and, therefore, are the
links that should be kept. We then explored the problem of enumerating all maximum-value
solutions and the problem of computing the certain links. This investigation was carried out
for several different languages expressing link-to-source constraints, including languages that
capture collective entity resolution, where interdependence between link relations is allowed.

The variety and multitude of entity-linking approaches raise the question of developing
methods and tools for comparing such different approaches. A comparative evaluation of the
performance of several different direct algorithms for entity resolution (or entity matching)
has been carried in [16] and [17]. Up to now, however, no methodology has been developed
for comparing, along some axis, different declarative approaches for entity linking. The main
aim of this paper is to develop such a methodology that is centered on the notion of the
expressive power of declarative entity-linking frameworks.

Our first conceptual contribution is to formulate a unifying notion of an entity-linking
framework and an accompanying notion of the certain links in such a framework. This is
achieved by bringing into the picture a notion of weighted repairs of inconsistent databases,
which are a variant of the notion of weighted repairs of inconsistent databases in description
logics studied in [9]. The “good” solutions for entity linking are then identified with
the maximum weight repairs of inconsistent databases with respect to suitable choices of
constraints and weights, while the certain links are defined to be the consistent answers of
atomic link queries with respect to the maximum weight repairs, that is, those links that
are in every maximum weight repair. The inconsistent database whose weighted repairs we
consider gives an upper bound or a domain for the candidate links; it could be provided (e.g.,
handed in from another system), or could be simply based on the Cartesian product of sets
of entities (which we do in many of our definitions and proofs1).

This general approach gives rise to a single formalism for declarative entity linking in
which the constraint language, the sets of constraints allowed, and the weight function that
measures the “strength” of the links are parameters of the definition. We demonstrate the
modeling capabilities of this formalism by showing that it not only contains as special cases
the concrete declarative entity linking scenarios studied in [7], but also can account for new
ones, such as entity linking based on maximum cardinality repairs and entity linking with
constraints that incorporate preferences.

Our second conceptual contribution is to use the certain links as a measure of the
expressive power of an entity linking framework and define what it means for an entity
linking framework to subsume another entity linking framework. This makes it possible to
compare different entity linking frameworks along the axis of their expressive power.

1 Note that this is conceptual and it does not mean that such a Cartesian product needs to be materialized.

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:3

As regards technical results, we first show that, under some mild hypotheses on entity
linking frameworks, it is possible to enumerate with polynomial delay all maximum weight
repairs and to compute the certain links in polynomial time. This general result contains
as special cases several similar results for concrete entity linking scenarios obtained in [7].
Our main technical contribution, however, is to delineate the relative expressive power of
different linking frameworks. Specifically, we show that the entity linking framework of the
maximum-value solutions considered in [7] and the entity linking framework of maximum
cardinality repairs introduced here are of incomparable expressive power, in the sense that
neither of the two can subsume the other. We also show that the entity linking framework
for collective entity resolution where the constraints allow the link relations to depend on
other link relations is strictly more expressive than in the case where constraints do not
allow for interdependence among the link relations. This increase in expressive power takes
place even when the dependencies among the link relations are non-recursive. Finally, we
show that we also gain expressive power by adding preference constraints, which represent
an additional, practical mechanism (see HIL [14]) for specifying the “good” links by letting a
user explicitly, and declaratively, give priority to some types of links over other types of links.
Concretely, we show that there is an entity linking framework with preference constraints
that is not subsumed by the entity linking framework of maximum-value solutions (with no
preference constraints).

Note that since the expressive power is measured via the certain links, proving that
a specific entity linking framework is not subsumed by some other specific entity linking
framework is a much more challenging task than simply showing that the constraints defining
the first framework are not logically equivalent to those defining the second framework.
The proofs of our results about the expressive power of entity linking frameworks involve
a combination of special-purpose techniques with techniques from finite model theory. In
particular, the proof of the result concerning the expressive power of entity linking frameworks
with preference constraints uses a locality theorem that is interesting in its own right.

In summary, the conceptual and technical contributions in this paper provide a unifying
approach to declarative entity linking and pave the way for the systematic comparative
evaluation of different entity linking frameworks.

2 Weighted Repairs and Consistent Answers

Let S and L be two disjoint relational schemas, and let R = S ∪L be the union of these two
schemas. If I is an S-instance and J is an L-instance, then 〈I, J〉 denotes the R-instance
that is the union of I and J viewed as sets of facts. Clearly, every R-instance is of the form
〈I, J〉, where I is an S-instance and J is an L-instance. If I is an S-instance and S is a
relation symbol in S, then SI denotes the relation of I interpreting the relation symbol S;
similarly, if J is an L-instance and L is a symbol in L, then LJ denotes the relation of J
interpreting the relation symbol L.

I Definition 1. A weight function on R is a function w that assigns a non-negative weight
w(〈I, J〉, LJ(a1, . . . , an)) for every R-instance 〈I, J〉 and for every fact LJ(a1, . . . , an) of J ,
where L is a relation symbol in L. The weight w(〈I, J〉, LJ(a1, . . . , an)) is called the weight
of the fact LJ(a1, . . . , an) in 〈I, J〉.

Note that, even though only facts in relations interpreting L-symbols have weights, the
weight of such a fact may depend on the entire R-instance 〈I, J〉 and not just on J .

In what follows, we will define the notion of a maximum weight repair of an R-instance
〈I, J〉; this notion is inspired by a similar one introduced by Du, Qi, and Shen [9] in the
context of knowledge-bases with constraints expressed in description logics.

ICDT 2017

10:4 Expressive Power of Entity-Linking Frameworks

I Definition 2. Let Σ be a set of integrity constraints on R, let w be a weight function on
R, and let 〈I, J〉 be an R-instance. A sub-instance 〈I, J ′〉 of 〈I, J〉 is a maximum weight
repair of 〈I, J〉 with respect to Σ and w if 〈I, J ′〉 has the following properties:
1. 〈I, J ′〉 is consistent, i.e., 〈I, J ′〉 satisfies every constraint in Σ.
2. J ′ has maximum weight, i.e., if 〈I, J ′′〉 is a consistent sub-instance of 〈I, J〉, then

Σf∈J′′w(〈I, J ′′〉, f) ≤ Σf∈J′w(〈I, J ′〉, f).
In general, the weight function w may also depend on the set Σ of constraints at hand. If Σ
and w are understood from the context, then we will simply talk about maximum weight
repairs of 〈I, J〉, instead of maximum weight repairs of 〈I, J〉 with respect to Σ and w.

Thus, a maximum weight repair of 〈I, J〉 is a consistent sub-instance 〈I, J ′〉 of 〈I, J〉 whose
total sum of the weights of its L-facts is maximum across all consistent sub-instances 〈I, J ′′〉
of 〈I, J〉. Note that the notion of maximum weight repairs introduced in Definition 2 differs
from the standard notion of subset repairs [2] in two ways: first, in the standard notion,
the repair takes place with respect to the entire schema or, more precisely, we have there
that S = ∅ and R = L; second, in the standard notion, there is no weight function on
the facts. Note also that maximum cardinality subset repairs [21] are the special case of
maximum weight repairs in which S = ∅, R = L, and the weight function assigns weight
1 to each fact. Finally, note that our notion of maximum weight repairs differs also from
the notion of maximum weight repairs introduced in [9] in the following way. In [9], the
weight of each fact f depends on the inconsistent instance 〈I, J〉 under consideration, but
remains the same on all consistent sub-instances of 〈I, J〉 containing f . In contrast, in
Definition 2, the weight of each fact f may differ from instance to instance; thus, we may
have w(〈I, J〉, f) 6= w(〈I, J ′〉, f), where 〈I, J ′〉 is a consistent sub-instance of 〈I, J〉.

Maximum weight repairs give rise to a notion of consistent answers of queries in exactly
the same way subset repairs do.

I Definition 3. Let Σ be a set of integrity constraints on R and let w be a weight function
on R. If q is a query on R, and 〈I, J〉 is an R-instance, then a tuple a is a consistent answer
of q on 〈I, J〉 with respect to Σ and w if a ∈ q(〈I, J ′〉), for every maximum weight repair
〈I, J ′〉 of 〈I, J〉 with respect to Σ and w.

3 Certain Links and Entity-Linking Frameworks

Here, we will focus on maximum weight repairs in declarative scenarios for entity linking,
such as the ones considered in [7]. In such scenarios, S is the schema of source relations,
while L is the schema of link relations, where each link relation is binary. Relation symbols
in S will be referred to as source symbols, while relation symbols in L will be referred to as
link symbols. Some source symbols may be interpreted by built-in relations, that is, such
symbols may have the same interpretation on every allowable source instance. For example,
a source symbol may stand for the substring relation between two strings, or it may stand for
a user-defined predicate, such as similarity of names. If J is an L-instance and (a, b) ∈ LJ
for some link symbol L in L, then we say that (a, b) is a link of L in J . We sometimes write
such a link as the fact LJ(a, b), or L(a, b) when J is clear from the context. We may also
refer to J as a link instance.

I Definition 4. Let S be a schema of source symbols, let L be a schema of link symbols,
let Σ be a set of integrity constraints on R = S ∪ L, and let w be a weight function on
R = S ∪ L. If L is a link symbol in L and 〈I, J〉 is an R-instance, then a certain link of L
on 〈I, J〉 with respect to Σ and w is a consistent answer of the atomic query L(x, y) on 〈I, J〉

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:5

with respect to Σ and w, i.e., a pair (a, b) such that (a, b) ∈ LJ′ , for every maximum weight
repair 〈I, J ′〉 of 〈I, J〉 with respect to Σ and w.

We will also use the notation L(a, b) for a certain link (a, b) of L. It will be clear from
the context if L(a, b) refers to a certain link or to a link LJ(a, b) for some instance J .

Intuitively, in the above definition, we are given an instance 〈I, J〉, not necessarily
consistent with respect to the set Σ of integrity constraints, where J represents an initial set
of link facts. Then, the certain links of L on 〈I, J〉 represent precisely the subset of L-facts
of J that appear in every maximum weight repair of 〈I, J〉. In this paper, we focus on links
that are certain because it is a standard semantics in information integration, including
data exchange and incomplete databases. While other alternatives may be considered (e.g.,
possible links, which are the links that appear in at least one maximum weight repair), we
leave such investigation for future work.

Note that Definition 4 is very general and does not make any assumptions about the class
of integrity constraints that is allowed in Σ or about the weight function w. We also note that
the weight function w is assumed to be defined over instances of R = S ∪ L, independently
of whether these instances are consistent with Σ or not.

The concrete choices for Σ and w will be incorporated into the notion of entity-linking
frameworks, which we define next, together with the notion of entity-linking specifications.

I Definition 5. Let S be a schema of source symbols, let L be a schema of link symbols,
and let R = S ∪ L.

An entity-linking framework on R is a triple (L,S,W) consisting of a logical language L
on R, a collection S of finite sets of L-formulas, and a collection W of weight functions
such that, for each Σ ∈ S, there is a weight function wΣ on R.
If Σ is a member of S and wΣ is the associated weight function in W, then we say that
the triple (L,Σ, wΣ) is an entity-linking specification in the entity-linking framework
(L,S,W).

Several different logical languages for expressing entity-linking specifications were intro-
duced in [7] and then used to define and study different scenarios for declarative entity linking.
Here, we show that all but one of the scenarios considered in [7] (namely, the scenario of
maximal solutions) are concrete instances of the notion of an entity-linking framework in
Definition 5, by choosing, in each case, the logical language L, the collection S of finite sets
of constraints from L, and the collection W of weight functions. As we shall see, the weight
functions can become progressively more sophisticated. Furthermore, the logical language L
together with the collection S can become progressively richer.

We first focus on the language L0 introduced in [7], consisting of three types of constraints:
Inclusion dependencies of the form L[X] ⊆ S[A] and L[Y] ⊆ T [B], where L is a link
symbol, and S and T are source symbols. We use X and Y to denote the first and the
second attribute of L, while A and B denote attributes in relations S and T , respectively.
Note that S and T could be the same source symbol.
Functional dependencies (FDs) L : X → Y and L : Y → X, where L is a link symbol
and X and Y denote the attributes of L.
Matching constraints of the form:

L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk), (1)

where L is a link symbol, ψ(x, y,u) is a (possibly empty) conjunction of atomic formulas
over S (with the requirement that the universally quantified variables u must occur in

ICDT 2017

10:6 Expressive Power of Entity-Linking Frameworks

ψ), and where αi is of the form ∃zi φi(x, y,u, zi). Each φi is a conjunction of atomic
formulas2 over S along with equalities. We assume that the variables in zi are disjoint
from the variables in ψ and from {x, y}. Also, note that x and y are universally quantified,
but for simplicity of notation we omit their quantifiers.

The intuition behind the use of disjunction in a matching constraint is that it lists all
the possible matching conditions α1, . . ., αk for why a link L(x, y) may exist (provided ψ
holds). If a link L(x, y) exists, then one or more of those conditions must be true. We do not
require a matching constraint to be given for each link; for those links without a matching
constraint, the link relation is implicitly defined by the rest of the constraints.

The inclusion dependencies have the important role of specifying the domain of values
that can be used to populate a link relation. While in general there could be more than
two inclusion dependencies for each link, all the scenarios considered in [7] focused on the
case of exactly two inclusion dependencies and also on the case of exactly one matching
constraint per link symbol. The next definition captures these requirements by introducing
the collection S0; it also introduces an initial instance 〈I, I∗〉 that will be used repeatedly in
the sequel (intuitively, as a superset for the repairs).

I Definition 6. Let S be a schema of source symbols and let L be a schema of link symbols.
We write S0 to denote the collection of all finite sets Σ of L0-formulas such that for
each link symbol L, the set Σ contains one inclusion dependency on L for each of its
attributes, contains zero, one or both functional dependencies on L, and at most one
matching constraint on L.
If I is an S-instance, then we write I∗ to denote the L-instance defined as follows: for
each link symbol L in S, we have that LI∗ = πA(SI)×πB(T I), where A is the attribute of
the source symbol S and B is the attribute of the target symbol T for which L0 contains
the inclusion dependencies L[X] ⊆ S[A] and L[Y] ⊆ T [B].

In the above definition, the instance 〈I, I∗〉 satisfies the inclusion dependencies of L0
on each link symbol, but it need not satisfy the functional dependencies or the matching
constraints of L0.

While other combinations of constraints may also be meaningful (e.g., more than two
inclusion dependencies per link, as mentioned above, or more than one matching constraint
per link), the collection S0 is one of the simplest; it also has a good practical motivation,
since it corresponds to entity linking statements in the HIL language [14].

We next give a concrete example taken from [7] of a set Σ of constraints in S0. We will
make use of this example in the sequel.

I Example 7. In this scenario, we link subsidiaries in one database with parent companies
in another database. Consider the following source schema S:

Subsid(sid, sname, location) Company(cid, cname, hdqrt)
Exec(eid, cid, name, title)

This source schema includes the relation symbols Subsid from the first database, and Company
and Exec from the second database. The link schema L consists of a single link relation
L(sid, cid). The following set Σ of constraints can be used to specify declaratively the
properties of the link relation in terms of the source relations. First, Σ contains two inclusion

2 Note that some of these atomic formulas may involve built-in relations.

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:7

dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the functional dependency
L : sid → cid. While the inclusion dependencies specify where L is allowed to take values
from, the functional dependency gives the additional requirement that the links must be
many-to-one from sid to cid (i.e., every subsidiary must link to at most one parent company).
Additionally, Σ includes the matching constraint:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn)
∨
∃e, n, t (Exec(e, cid, n, t) ∧ contains(t, sn))),

which lists all possible reasons as to why a link may exist. Concretely, if a subsidiary id
(sid) and a company id (cid) are linked, then for every binding of Subsid and Company
source tuples where sid and cid respectively occur, it must be that one of the two matching
conditions holds: (1) there is a similarity in the names, as specified by sn ∼ cn, or (2) there
is some executive working for the company and this executive has a title that contains the
subsidiary’s name.

3.1 Concrete Entity-Linking Frameworks Based on L0

We are now in a position to define several concrete entity-linking frameworks by instantiating
the general concepts introduced above. We first consider three different entity-linking
frameworks obtained from L0 and S0 by using three different types of weight functions.

I Framework 8. The entity-linking framework (L0,S0,W1) of maximum cardinality repairs.
Let 1 be the weight function on R such that 1(〈I, J〉, LJ (a, b)) = 1, for every R-instance

〈I, J〉 and every fact LJ(a, b). Consider the entity-linking framework (L0,S0,W1), where,
for each Σ ∈ S, we have that wΣ = 1.

A maximum weight repair of 〈I, I∗〉 with respect to Σ and 1 is a repair that maximizes
the total cardinality of the link facts. We call such repairs maximum cardinality repairs.

It can be verified that if 〈I, J〉 is such a maximum cardinality repair of 〈I, I∗〉, then J is a
maximal solution for I, as defined in [7]. The converse, however, does not always hold. Like
maximal solutions, the notion of maximum cardinality repairs suffers from the deficiency that
they give rise to “too few" certain links. This can be seen in the following example from [7].

I Example 9. Assume the same schemas and constraints as in Example 7. A source instance
I for S is given below as a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”, “CEO, Citibank N.A.”)

In the above, ‘Citigroup Inc” and “CIT Group Inc” are two different parent companies, and “Citibank
N.A.” is the name of a true subsidiary of “Citigroup Inc”, while “CIT Bank” is the name of a true
subsidiary of “CIT Group Inc”. The goal of entity linking is to identify links such as L(s1, c1) and
L(s2, c2).

It can be seen that, given our set Σ of constraints, there are exactly four maximum cardinality
repairs for 〈I, I∗〉, namely 〈I, Ji〉, i = 1, 4, where the Ji’s are as follows:

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}

ICDT 2017

10:8 Expressive Power of Entity-Linking Frameworks

It is assumed here that the name similarity predicate ∼ evaluates to true for all pairs of subsidiary
name and company name occurring in our instance I (thus, “Citibank N.A.” ∼ “Citigroup Inc” but
also “Citibank N.A.” ∼ “CIT Group Inc”, and so on).

It follows that the set of certain links of L on 〈I, I∗〉 w.r.t. Σ and 1 is empty: there is no
link that appears in all four maximum cardinality repairs and, hence, no link qualifies as a certain
link. However, some links are clearly stronger than others. In particular, the link L(s1, c1) relating
“Citibank N.A.” to “Citigroup Inc.” satisfies both the ∼ predicate and the Exec-based matching
constraint, while the other links satisfy only the ∼ predicate. Intuitively, there is evidence that
suggests that L(s1, c1) is a strong link that should be differentiated from the other links. However,
the constant weight function 1 does not provide such differentiation.

The above example illustrates the need for more refined notions of weights on links.

I Framework 10. The entity-linking framework (L0,S0,V0) of maximum-value solutions.
For each Σ ∈ S0, consider the following weight function wΣ. Given an R-instance 〈I, J〉

and a fact LJ(a, b), we distinguish the following cases:
1. If L(a, b) does not satisfy the inclusion dependencies, then wΣ(〈I, J〉, LJ(a, b)) = 0.

Otherwise:
(a) If Σ contains no matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = 1.
(b) If Σ contains a matching constraint for L (which, by the definition of S0, is the only

such matching constraint) and if (a, b) does not satisfy the right-hand side of the
matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = 0.

(c) If Σ contains a matching constraint for L and if (a, b) satisfies the right-hand side of
the matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = Val(LJ(a, b)), as defined
in Section 5.2 of [7]. The precise definition of Val is as follows.

First, let us recall that the matching constraint for L has the form (1). Assume that
there is no instantiation u0 of the vector of universally quantified variables u such
that I |= ψ(a, b,u0). This means that the matching constraint for L(a, b) is satisfied
for vacuous reasons. As in the earlier case of no matching constraint, we take the
value of the link to be 1. In all other cases, we let the value of the link be:

Val(LJ(a, b)) = min
u0

(
∑
αi,z0

1). (2)

In the above, u0 ranges over all the distinct instantiations of the vector of universally
quantified variables u such that I |= ψ(a, b,u0). We take the minimum, over all
such u0, of the strength with which the source instance I satisfies the disjunction
α1 ∨ . . . ∨ αk. This strength is defined as a sum that gives a value of 1 for every
distinct combination of a disjunct αi such that I satisfies αi(a, b,u0), and distinct
instantiation z0 of the vector z of existentially quantified variables of αi that makes
the satisfaction of αi hold. (Recall that αi is, in general, of the form ∃z φi(x, y,u, z).)
In the case when αi is satisfied and the existentially quantified variables are missing,
then we count only 1.
We can see that, intuitively, the sum in formula (2) calculates the strength of a link by
counting the number of satisfied disjuncts together with the evidence (i.e., the number
of existential witnesses). Taking the minimum guarantees that we take the weakest
strength among all u0.

We remark that the weights wΣ(〈I, J〉, LJ(a, b)) do not actually depend on J .
If we revisit the earlier Example 9, we have that Val(LJ1(s1, c1)) = 2, since LJ1(s1, c1)

satisfies both disjuncts in the matching constraint, while Val(LJ1(s2, c1)) = 1. Thus, the
total weight of the link instance J1 is 3. Similarly, the other link instance containing L(s1, c1),

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:9

namely J2, also has weight 3. The remaining link instances J3 and J4 have weight of 2.
Hence, 〈I, J1〉 and 〈I, J2〉 are the two maximum weight repairs of 〈I, I∗〉 in this example. It
follows that there is precisely one certain link of L on 〈I, I∗〉 w.r.t. Σ and the weight function
wΣ, namely L(s1, c1). This is in contrast with the earlier case of maximum cardinality repairs,
where we had no certain links.

Consider the above entity-linking framework (L0,S0,V0). It is easy to verify that if I is
an S-instance, then the following statements are equivalent for an L-instance J :
1. 〈I, J〉 is a maximum weight repair of 〈I, I∗〉 with respect to Σ and wΣ.
2. J is a maximum-value solution for I with respect to Σ, as defined in [7].

It follows that the entity-linking framework (L0,S0,V0) coincides with the entity-linking
scenario given by L0(⊕) in [7].

I Framework 11. The entity-linking frameworks (L0,S0,Vw) of maximum-value solutions
with weighted disjuncts.

For each matching constraint L(x, y)→ ∀u(ψ(x, y,u)→ α1∨ . . .∨αk) of L0 and for each
disjunct αi ::= ∃z φi(x, y,u, z), let wφi

(x, y,u, z) be a function that returns non-negative
numbers. Intuitively, with each disjunct that returns true or false, we also have a function
that computes a weight for that disjunct. This collection of functions wφi

gives rise to a
weight function Vw that is computed as in the case of V0 except that in formula (2) we replace
the number 1 by wφi

(a, b,u0, z0).
Note that each different collection of functions wφi

gives rise to a different entity-linking
framework (L0,S0,Vw). This family of frameworks captures the entity-linking scenarios
given by L0(⊕,w), which, as discussed in [7], is of special interest because of its connection
to probabilistic methods for entity resolution, including those based on Markov Logic Networks
(MLNs) [22].

Next, we state a general theorem for enumerating all maximum weight repairs with
polynomial delay and for computing the certain links in polynomial time. Several results in
[7], including Theorem 5.4, are special cases of this theorem.

I Theorem 12. Let (L0,S0,W) be an entity-linking framework such that for each Σ ∈ S0,
for each S-instance I, for each sub-instance J of I∗, and for each fact LJ (a, b), we have that
wΣ(〈I, I∗〉, LI∗(a, b)) = wΣ(〈I, J〉, LJ(a, b)). Then the following statements are true.
1. There is a polynomial-delay algorithm that, given an S-instance I, enumerates the max-

imum weight repairs of 〈I, I∗〉.
2. There is a polynomial-time algorithm that, given an S-instance I, computes the certain

links of 〈I, I∗〉 with respect to Σ and wΣ.

Note that the hypothesis of Theorem 12 is satisfied by the preceding three entity-linking
frameworks. In particular, in all three frameworks, the weight of a link fact does not depend
on the link instance J in which it appears. The proof of Theorem 12 is essentially the same as
the proof of Theorem 5.4 in [7], where the problem is reduced to computing and enumerating
maximum-weight matchings in undirected weighted bipartite graphs.

3.2 Collective Entity-Linking Frameworks
We now consider a language Lc that is richer than L0 and allows for link relations to appear
in the right-hand side of matching constraints. Thus, the language Lc allows us to express
what is usually called collective entity linking [5], that is, the process of creating or specifying
multiple inter-dependent links.

ICDT 2017

10:10 Expressive Power of Entity-Linking Frameworks

Concretely, in Lc, the matching constraint for a link symbol L has the same form

L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk)

as in L0, with the difference that in each disjunct αi ::= ∃z φi(x, y,u, z), the formula φi can
now be a conjunction of source and link atomic formulas, along with equalities. Thus, the
matching constraint for L is allowed to refer to other link symbols (possibly, including L
itself). As an example, which we give shortly, in Lc one can express matching constraints to
specify both publication links and venue links, where the matching constraint for publication
links may depend on the links between venues, and the matching constraint for venue links
may depend on the links between publications.

Based on the language Lc, we can define two entity-linking frameworks, one that does
not allow for recursion among the links, and one that does allow for recursion.

I Framework 13. The entity-linking framework (Lc,S1,V1) for recursion-free collective
entity linking.

In this framework, S1 is the collection of all finite sets of constraints from Lc, such that
for each link symbol L, the set Σ contains the two inclusion dependencies on L, it contains
zero, one or two functional dependencies on L, and at most one matching constraint on L.
Additionally, we require that there is no recursion through the links. Thus, for each Σ in
S1, there is implicitly a hierarchy of link symbols, and a matching constraint for L may call
only links that are strictly lower in the hierarchy than L. Additionally, V1 is the collection of
weight functions that associates with each Σ in S1 a weight function wΣ defined in the same
way as in the entity-linking framework (L0,S0,V0).

I Framework 14. The entity-linking framework (Lc,S2,V2) for recursive collective entity
linking is defined in the same way as (Lc,S1,V1) except that S2 allows recursion through the
links.

I Example 15. Consider a bibliographic example from [7], where we link papers (from
one database) with articles (from another database), while also linking the corresponding
venues. The source schema S consists of Paper(pid, title, venue, year) and Article(ano, title,
journal, year). Here, pid is a unique id assigned to Paper records, while venue could
be a conference, a journal, or some other place of publication. The Article relation
represents publications that appeared in journals, and ano is a unique id assigned to such
records. The link schema L consists of two relations: PaperLink (pid, ano) and VenueLink
(venue, journal). The first relation is intended to link paper ids from Paper with article
numbers from Article, when they represent the same publication. The second relation is
intended to relate journal values that occur in Article (e.g., “ACM TODS”) to journal
values that occur under the venue field in Paper (e.g., “TODS”).

A possible entity linking specification in the framework (Lc,S2,V2) is (Lc,Σ, wΣ), where
Σ contains the following two matching constraints:

VenueLink(ven, jou) → (ven ∼1 jou)
∨ ∃pid, t1, y1, ano, t2, y2 (Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)
∧ PaperLink(pid, ano))

PaperLink(pid, ano) →
∀t1, ven, y1, t2, jou, y2 (Paper(pid, t1, ven, y1)∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2))
∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou)))

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:11

The first constraint specifies that we may link a venue with a journal only if their string
values are similar (via some similarity predicate ∼1), or if there are papers and articles that
have been published in the respective venue and journal and that are linked via PaperLink.
The second constraint specifies that we may link a paper with an article only if their titles
are similar (via a similarity predicate ∼2) and their years of publication match exactly, or if
their titles are similar and their venues of publications are linked via VenueLink.

Additionally, Σ includes two functional dependencies on PaperLink: pid→ ano, ano→
pid, to reflect that each paper id in Paper must match to at most one article number in
Article, and vice-versa. We do not require any functional dependencies on VenueLink; thus,
we could have multiple venue strings in Paper matching with a journal string in Article,
and vice-versa. We also include in Σ the expected inclusion dependencies from the link
attributes to the corresponding source attributes (e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching
constraint for PaperLink, we obtain a different entity linking specification that is in the
recursion-free collective entity-linking framework (Lc,S1,V1).

We point out that the entity-linking framework (Lc,S1,V1) coincides with the entity-
linking scenario given by L1(⊕) in [7], while entity-linking framework (Lc,S2,V2) coincides
with the entity-linking scenario given by L2(⊕) in [7].

For the above two entity-linking frameworks, it is important to note that the weight
functions depend on the link instance in a crucial way. In particular, the hypothesis of the
preceding Theorem 12, stating that the weight of a link fact only depends on I∗ and not on
the link instance J , is no longer satisfied. In fact, as shown in [7] (Theorem 7.3), Theorem
12 fails even for (Lc,S1,V1), unless NP = coNP.

4 Comparing the Expressive Power of Entity-Linking Frameworks

The notion of certain links makes it possible to compare the expressive power of entity-linking
frameworks. In the next definition, we first introduce the notion of certain-link equivalence
between entity-linking specifications. This notion is of interest as a tool to compare entity-
linking specifications in a way other than logical equivalence (which may be too strict for
entity linking purposes). The second part of the definition then makes use of certain-link
equivalence to define a notion of subsumption between entity-linking frameworks.

I Definition 16. Let S be a schema of source symbols, let L be a schema of link symbols,
let R = S ∪ L. Assume that F = (L,S,W) and F ′ = (L′,S ′,W ′) are two entity-linking
frameworks on R.

Let E = (L,Σ, wΣ) be an entity-linking specification in F , and let E ′ = (L′,Σ′, wΣ′) be
an entity-linking specification in F ′. We say that E and E ′ are certain-link equivalent if
for every link symbol L in L and every R-instance 〈I, J〉, we have that the certain links
of L on 〈I, J〉 with respect to Σ and wΣ coincide with the certain links of L on 〈I, J〉
with respect to Σ′ and wΣ′ .
We say that F is subsumed by F ′, denoted F � F ′, if for every entity-linking specification
E of F there is an entity-linking specification E ′ of F ′ such that E and E ′ are certain-link
equivalent. Otherwise, we say that F is not subsumed by F ′, and write F 6� F ′.
We say that F is strictly subsumed by F ′ if F � F ′, but F ′ 6� F .

We note that a weaker notion of subsumption was considered implicitly in [7] for concrete
entity linking scenarios. In this weaker notion, certain-link equivalence holds for repairs of
the instance 〈I, I∗〉 instead of arbitrary instances 〈I, J〉. In effect, Theorem 6.2 in [7] asserts

ICDT 2017

10:12 Expressive Power of Entity-Linking Frameworks

that linear MLNs, an important special case of MLNs, are subsumed under this weaker
notion of subsumption by an entity linking framework of maximum-value solutions with
weighted disjuncts, where the matching constraints are in the existential fragment ∃L0 of
the language L0.

We note that for of all our subsumption results (Theorems 17, 18, 19, and 23), whenever
we prove failure of subsumption, we actually prove it in a stronger sense, by showing that it
fails even under the weaker notion.

The next two theorems say that the entity-linking framework (L0,S0,V0) of maximum-
value solutions and the entity-linking framework (L0,S0,W1) of maximum cardinality repairs
are incomparable in expressive power, in that neither subsumes the other.

I Theorem 17. The entity-linking framework (L0,S0,V0) of maximum-value solutions is
not subsumed by the entity-linking framework (L0,S0,W1) of maximum cardinality repairs.

Proof. (Hint) Our entity-linking specification in (L0,S0,V0) that is not certain-link equival-
ent to any entity-linking specification in (L0,S0,W1) has one link symbol L, the matching
constraint L(x, y) → R(x, y) ∨ S(x, y) ∨ T (x, y), the FD L : X → Y , and the inclusion
dependencies L[X| ⊆ D and L[Y | ⊆ D. J

I Theorem 18. The entity-linking framework (L0,S0,W1) of maximum cardinality repairs
is not subsumed by the entity-linking framework (L0,S0,V0) of maximum-value solutions.

Proof. (Hint) Our entity-linking specification in (L0,S0,W1) that is not certain-link equi-
valent to any entity-linking specification in (L0,S0,V0) has one link symbol L, the matching
constraint L(x, y)→ R(x, y) ∨ S(x, y), the FD L : X → Y , and the inclusion dependencies
L[X| ⊆ D1 and L[Y | ⊆ D2. J

By definition, the entity-linking framework (L0,S0,V0) is subsumed by the entity-linking
framework (Lc,S1,V1). The next theorem says that this subsumption is strict. This means
that allowing for link relations to appear on the right-hand side of matching constraints gives
strictly more expressive power than not allowing this, even when the dependencies among
the link relations are non-recursive.

I Theorem 19. The entity-linking framework (L0,S0,V0) of maximum-value solutions is
strictly subsumed by the entity-linking framework (Lc,S1,V1) for recursion-free collective
entity linking.

Proof. (Hint) Our entity-linking specification in (Lc,S1,V1) that is not certain-link equivalent
to any entity-linking specification in (L0,S0,V0) has two link symbols L1 and L2, ,the
matching constraints L1(x, y)→ (S(x, y)→ (L2(x, y) ∧R(x, y)) and L2(x, y)→ (P (x, y)→
T (x, y)) and the inclusion dependencies L1[X| ⊆ D, L1[Y | ⊆ D, L2[X] ⊆ D, and L2[Y] ⊆ D.
There are no FDs. J

5 Adding Preference Constraints

In this section, we introduce a family of entity-linking frameworks (L0,S0,PΠ) that is
parameterized by a set of Π preference constraints. This family of frameworks can be seen
as an extension of the entity-linking framework (L0,S0,V0), where we use a more refined
collection of weight functions that also take into account preferences among the link facts.

We first introduce the language of preference constraints from which Π is drawn. The
main motivation for such preference constraints is that they allow a user to specify explicitly

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:13

whether some link facts should be considered stronger than other link facts. Such preference
constraints are given independently of, and in addition to, the set Σ of constraints in S0,
and will be used to further differentiate among conflicting links (i.e., pairs of link facts that
violate one or both of the functional dependencies on a link relation).

A preference constraint has the following general form:

L(x, y) ∧ L(x′, y′) ∧ α(x, y) ∧ ¬α(x′, y′)→ L(x, y) ≥ L(x′, y′) (3)

In the above, L can be any of the link symbols in L while α(x, y) can be any predicate of the
form ∃z φ(x, y, z), where φ is a conjunction of source atomic formulas along with equalities.

I Example 20. Consider a variation of the earlier Example 7 linking subsidiaries with
companies, where the set Σ of constraints is as follows. The functional and inclusion
dependencies are as before. However, the matching constraint is simplified, for the purposes
of this example, so that it now requires only the similarity of the subsidiary name and
company name:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn) .

We now consider, additionally, a set Π consisting of a single preference constraint, which
uses an Exec-based condition to differentiate among links:

L(sid, cid) ∧ L(sid′, cid′)
∧ ∃e, n, t, sn, loc (Exec(e, cid, n, t) ∧ Subsid(sid, sn, loc) ∧ contains(t, sn))
∧¬∃e, n, t, sn, loc (Exec(e, cid′, n, t) ∧ Subsid(sid′, sn, loc) ∧ contains(t, sn))
→ L(sid, cid) ≥ L(sid′, cid′)

Thus, whenever we have two links relating a subsidiary with a company, if one of the links
satisfies the fact that the company has an executive whose title contains the subsidiary name,
while the other link does not satisfy such fact, we prefer the first link over the second link.

Note that a user has the freedom, in general, to choose which conditions to push into
the matching constraints of Σ and which ones into the preference constraints of Π. This is
manifested, in this example, via the fact that the executive information is used in a preference
constraint whereas before it was used as part of a matching constraint.

The notion of a consistent instance when there are preference constraints continues to
be the same as that of a consistent instance with respect to an entity-linking specification
in (L0,S0,V0) where there are no preference constraints. Thus, the set Π of preference
constraints plays no role in defining consistent instances under (L0,S0,PΠ). However, Π
plays an important role in defining the weight functions for the links, as we see next.

We are now ready to formally define (L0,S0,PΠ). First, we recall from Section 3 the
instance 〈I, I∗〉, which for a given source instance I, represents a superset for the repairs
that we consider. Thus, I∗ represents the domain for all the links that may appear in link
relations.

I Framework 21. The family of entity-linking frameworks (L0,S0,PΠ) with preference
constraints.

For every fixed finite set Π of preference constraints, we define an entity-linking framework
(L0,S0,PΠ), by assigning to each Σ ∈ S0 a weight function wΣ,Π that depends on both Σ
and Π. Given an R-instance 〈I, J〉 and a fact LJ(a, b), we define wΣ,Π(〈I, J〉, LJ(a, b)) to
be wΣ,Π(〈I, I∗〉, LI∗(a, b)), which in turn is defined as follows.

ICDT 2017

10:14 Expressive Power of Entity-Linking Frameworks

For each link symbol L, and source instance I, we first compute a preference relation
≥L on I∗ on conflicting links of L, by evaluating each preference constraint of the form
(3) that involves L. Concretely, whenever (x0, y0) and (x′0, y′0) are pairs in I∗ such that
L(x0, y0) and L(x′0, y′0) are conflicting (i.e., together violate one or both of the functional
dependencies on L), and such that α(x0, y0) is true in I but α(x′0, y′0) is not true in I, we
set L(x0, y0) ≥L L(x′0, y′0). In general, ≥L can have cycles. For example, we can have two
distinct pairs l = L(x0, y0) and l′ = L(x′0, y′0) such that l ≥L l′ and l′ ≥L l. Such situation
may arise when a user gives (at least) two preference constraints for L, the evaluation of
which leads to opposite preferences for the particular links.

We then turn ≥L into an acyclic relation >L as follows. First, we take the transitive
closure ≥∗L of ≥L. Then, we set l >L l′ whenever l ≥∗L l′ but it is not the case that l′ ≥∗L l.
Intuitively, l >L l′ means that l is strictly preferred to l′. It can be verified that, for each L,
the relation >L (or rather its inverse <L) forms a strict partial order. We may also drop the
subscript L and use the notation > or (≥) whenever L is understood from the context. We
may refer to > as the preference relation.

The weight of a link fact l in I∗ is then defined recursively:

wΣ,Π(〈I, I∗〉, l) = wΣ(〈I, I∗〉, l) +
∑
l>l′

wΣ,Π(〈I, I∗〉, l′),

where wΣ is the weight function associated with Σ in the entity-linking framework (L0,S0,V0)
of maximum-value solutions. Thus, the weight of l is obtained by adding up wΣ(〈I, I∗〉, l),
which is calculated solely based on Σ as defined for (L0,S0,V0), with the total aggregated
weight of all the links that l dominates (via the preference relation >). In the special case when
there are no preference constraints, the weight of a link l falls back to wΣ(〈I, I∗〉, l). Thus,
for each Π, the entity-linking framework (L0,S0,PΠ) is an extension of the entity-linking
framework (L0,S0,V0).

Note that, by definition, the weight of a link is relative to 〈I, I∗〉, on which we evaluated
the preference constraints, but independent of any particular sub-instance 〈I, J〉. Thus, the
hypothesis of Theorem 12 holds, by definition.

I Example 22. Recall the specification in Example 20. First, it is immediate to see that this
is an example of an entity-linking specification in the entity-linking framework (L0,S0,PΠ),
for the given set Π of preference constraints. Moreover, let us assume the same source
instance I as in Example 9. The link L(s1, c1) strictly dominates the link L(s1, c2) (by the
fact that c1 satisfies the Exec condition for s1 in the preference constraint, while c2 does not).
Since no other strict domination holds, we have that wΣ,Π(〈I, I∗〉, LI∗(s1, c1)) = 2, while the
weight of any other link is 1. As a consequence, among the four maximal cardinality repairs
for 〈I, I∗〉 that we have seen earlier, we have that 〈I, J1〉 and 〈I, J2〉 have weight 3, while
〈I, J3〉 and 〈I, J4〉 have weight 2. Thus, 〈I, J1〉 and 〈I, J2〉 are the maximum weight repairs
with respect to Σ and wΣ,Π. As a result, we also obtain that L(s1, c1) is the sole certain link,
in this example.

As we noted above, the hypothesis of Theorem 12 holds for (L0,S0,PΠ) and so we obtain,
as a corollary, a polynomial-delay algorithm for the enumeration of maximum weight repairs
and a polynomial-time algorithm for the computation of the certain links.

It is clear that every entity-linking framework (L0,S0,V0) (Framework 10) can be
simulated by using an entity-linking framework involving preferences (Framework 21) by
simply taking the set Π of preferences to be empty. The next theorem says that, in fact, we
gain expressive power by allowing preference constraints. This is our main technical result.

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:15

I Theorem 23. There is a finite set Π of preference constraints such that the corresponding
framework (L0,S0,PΠ) is not subsumed by the entity-linking framework (L0,S0,V0) of
maximum-value solutions.

A key tool in the proof of Theorem 23 is a locality theorem that is interesting in its
own right, and that we use multiple times in the proof of Theorem 23. We first need some
preliminaries. For each entry a in a fact in an instance I, define N0(a) to be {a}. Inductively,
define Ni+1(a) to consist of Ni(a) along with each c such that there is a′ in Ni(a) where a′
and c are both entries in some fact in I. Thus Nr(a) consists of those entries of I within
distance r of a in the Gaifman graph [20] of I. Let Nr(a, b) be Nr(a) ∪Nr(b). We may refer
to Nr(a, b) as an r-neighborhood.

I Theorem 24 (Locality Theorem). Let E be an entity-linking specification in (L0,S0,V0),
with link symbol L. Then there is r, depending only on E, such that for every source instance
I, if I � Nr(a1, b1) and I � Nr(a2, b2) are isomorphic under an isomorphism f with f(a1) = a2
and f(b1) = b2, then the weights of the links L(a1, b1) and L(a2, b2) in E are the same.

By I � Nr(ai, bi) we mean the usual notion of the restriction of I to the domain Nr(ai, bi).
The proof of the Locality theorem makes use of the Gaifman locality theorem for first-order
logic [12], and extensions of that theorem to logics with counting by Libkin [19]. Our proof
of the Locality Theorem depends on a certain uniformity in the choice of r.

Sketch of the proof of Theorem 23. Our entity-linking specification E in the framework
(L0,S0,PΠ) has one link symbol L, the matching constraint L(x, y) → R(x, y), both FDs
on L, and the inclusion dependencies L[X| ⊆ R[X] and L[Y | ⊆ R[Y]. We define a family
of source instance Kr and a set of preference constraints such that we get two long chains
L(0, 1) > L(2, 3) > L(4, 5) > · · · > L(m,m+ 1) and L(0, 1′) > L(2′, 3′) > L(4′, 5′) > · · · >
L(n′, (n+ 1)′) of strict preferences, where m > n (so the first chain is longer than the second).
It is shown that L(0, 1) has so much weight that it is a certain link for E . However, given an
entity-linking specification E ′ in the entity-linking framework (L0,S0,V0) of maximum-value
solutions, when we select r based on E ′, the source instance K = Kr is designed so that
the neighborhoods K � Nr(0, 1) and K � Nr(0, 1′) are isomorphic, and so by the Locality
Theorem, L(0, 1) and L(0, 1′) have the same weight in E ′.

Assume, by way of contradiction, that there is an entity-linking specification E ′ in the
entity-linking framework (L0,S0,V0) that is certain-link equivalent to E . By considering an
instance with only one fact R(0, 1), we show that E ′ has the same inclusion dependencies as
E . We show that E ′ has both FDs on L with the following argument. Assume first that E ′
does not have the FD L : Y → X. Since L(0, 1′) has the same weight in E ′ as L(0, 1), in
particular L(0, 1′) satisfies the matching constraint for E ′. Now L(0, 1′) is not a certain link
in E ′, since it is not a certain link in E . So let 〈K,N〉 be a maximum weight repair of 〈K,K∗〉
that does not contain L(0, 1′). Then of course N contains the certain link L(0, 1). Form N ′

by replacing L(0, 1) in N by L(0, 1′). Now N ′ satisfies the only possible FD L : X → Y ,
and it satisfies the inclusion dependencies and matching constraint. Furthermore, N ′ has
the same weight as N , since L(0, 1) and L(0, 1′) have the same weight, and so 〈K,N ′〉 is a
maximum weight repair. But this is a contradiction, since 〈K,N ′〉 is a maximum weight
repair that does not contain the certain link L(0, 1). Now define the instance U(K), where
(a, b) is a tuple of a relation of K if and only if (b, a) is a tuple of the corresponding relation
of U(K), and where a and b are new values. The proof that the FD L : X → Y holds for
E ′ is the same, except rather than replacing the certain link L(0, 1) in a maximum weight
repair of 〈K,K∗〉 by L(0, 1′), we instead replace the certain link L(1, 0) in a maximum weight
repair of 〈U(K), (U(K))∗〉 by L(1′, 0).

ICDT 2017

10:16 Expressive Power of Entity-Linking Frameworks

We explicitly find the set M of certain links for I = K ∪ U(K) in E and prove, using the
FDs and inclusion dependencies for E ′, that 〈I,M〉 is the unique maximum weight repair
for 〈I, I∗〉 in E ′. Let M ′ consist precisely of all of the links of E that are not links in M .
We prove, again using the Locality Theorem, that there is a one-to-one correspondence
between the links ` of M and the links `′ of M ′, where ` and `′ have the same weight in
E ′. In particular, each link of M ′ satisfies the entity-linking specification of E ′. Further,
since M ′ also satisfies both FDs and the inclusion dependencies, it follows that 〈I,M ′〉 is a
maximum weight repair. But this is a contradiction, since 〈I,M〉 is the unique maximum
weight repair. J

6 Concluding Remarks

In this paper, we introduced and explored a unifying approach to entity linking. This
approach, which is based on the notion of an entity linking framework and the notion of
the certain links in such a framework, provides a single formalism for modeling different
entity linking scenarios and for comparing them using the certain links as a measure of their
expressive power. To this effect, we defined a notion of certain-link equivalence that allows
us to compare entity-linking specifications, in a way other than logical equivalence (which
may be too strict for entity linking purposes). We then made use of certain-link equivalence
to define what it means for an entire entity-linking framework to subsume another one. We
established a number of technical results that delineate the comparative expressive power
of several concrete entity linking frameworks. Our concrete focus in this paper was on
the comparison of the entity linking framework of maximum-value solutions with entity
linking frameworks (1) that involve maximum cardinality repairs, (2) that allow recursion-free
collective entity linking, and (3) that incorporate preferences among links.

A next step in this investigation is to understand the expressive power of recursive
collective entity linking. Specifically, we conjecture that the framework (Lc,S2,V2) of
recursive collective entity linking cannot be subsumed by the framework (Lc,S1,V1) of
non-recursive collective entity linking. Another next step has to do with Markov Logic
Networks (MLNs), which were first studied in [22]. As stated earlier, it follows from results
in [7] that linear MLNs are subsumed by an entity linking framework of maximum-value
solutions with weighted disjuncts, where the constraints are in the existential fragment ∃L0
of the language L0. It is an open problem if more general MLNs (i.e., not necessarily linear)
can be subsumed by an entity linking framework of maximum-value solutions with weighted
disjuncts for some suitable choice of weights and constraints from L0 or from the more
general language Lc.

In a different direction, we note that our unifying approach to entity linking is flexible
enough to allow assigning probabilities to links in a natural way. Specifically, we can define
the probability Pr(L(a, b)) of a link L(a, b) to be the number of maximum weight repairs
containing L(a, b) divided by the total number of maximum weight repairs. Thus, a link
L(a, b) is certain if and only if Pr(L(a, b)) = 1. The introduction of probabilities in entity
linking frameworks raises several algorithmic questions, including the question of enumerating
the links whose probability is above a fixed threshold, say, enumerating all links L(a, b) such
that Pr(L(a, b)) ≥ 0.75. Furthermore, it may be possible to establish tight connections
between our approach and other approaches in entity linking and entity resolution, such
as Probabilistic Soft Logic (PSL) [3, 4, 6], that derive links with scores based on weighted
first-order formulas. By utilizing such connections, one may also be able to transfer the
formalism of preference constraints, which fits naturally in our declarative approach, into PSL

D. Burdick, R. Fagin, Ph. G. Kolaitis, L. Popa, and W.-C. Tan 10:17

(or into MLN as well). In general, we may obtain more powerful entity linking approaches
that combine declarative, logic-based specification with probabilistic reasoning and with
explicit user preference constraints.

References
1 Arvind Arasu, Christopher Re, and Dan Suciu. Large-Scale Deduplication with Constraints

using Dedupalog. In ICDE, pages 952–963, 2009.
2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent Query Answers in

Inconsistent Databases. In PODS, pages 68–79, 1999.
3 Stephen H. Bach. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A

Scalable Approach to Structured Prediction. PhD thesis, University of Maryland, 2015.
4 Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-Loss Markov

Random Fields and Probabilistic Soft Logic. CoRR, abs/1505.04406, 2015.
5 Indrajit Bhattacharya and Lise Getoor. Collective Entity Resolution in Relational Data.

TKDD, 1(1), 2007.
6 Matthias Bröcheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic Similarity Logic.

In UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, Catalina Island, CA, USA, July 8-11, 2010, pages 73–82, 2010.

7 Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan.
A Declarative Framework for Linking Entities. ACM Trans. Database Syst., 41(3):17, 2016.
Preliminary version appeared in ICDT, pages 25–43, 2015.

8 Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference Reconciliation in Complex
Information Spaces. In SIGMOD, pages 85–96, 2005.

9 Jianfeng Du, Guilin Qi, and Yi-Dong Shen. Weight-Based Consistent Query Answering
over Inconsistent SHIQ Knowledge Bases. Knowl. Inf. Syst., 34(2):335–371, 2013.

10 Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate Record
Detection: A Survey. IEEE TKDE, 19(1):1–16, 2007.

11 Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage. J. Am. Statistical Assoc.,
64(328):1183–1210, 1969.

12 Haim Gaifman. On Local and Non-Local Properties. Proc. Herbrand Symp. - Logic Col-
loquium ’81, 1982.

13 Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-Augustin
Saita. Declarative Data Cleaning: Language, Model, and Algorithms. In VLDB, pages
371–380, 2001.

14 Mauricio A. Hernández, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, and
Ryan Wisnesky. HIL: A High-Level Scripting Language for Entity Integration. In EDBT,
pages 549–560, 2013.

15 Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem for Large
Databases. In SIGMOD, pages 127–138, 1995.

16 Hanna Köpcke and Erhard Rahm. Frameworks for Entity Matching: A Comparison. Data
Knowl. Eng., 69(2):197–210, 2010.

17 Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of Entity Resolution Ap-
proaches on Real-World Match Problems. PVLDB, 3(1):484–493, 2010.

18 Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record Linkage: Similarity Measures
and Algorithms. In SIGMOD, pages 802–803, 2006.

19 Leonid Libkin. Logics with Counting and Local Properties. ACM Transactions on Com-
putational Logic, 1(1):33–59, 2000.

20 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

ICDT 2017

10:18 Expressive Power of Entity-Linking Frameworks

21 Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of Consistent Query Answering
in Databases Under Cardinality-Based and Incremental Repair Semantics. In ICDT, pages
179–193, 2007.

22 Matthew Richardson and Pedro Domingos. Markov Logic Networks. Machine Learning,
62(1-2):107–136, 2006.

	Introduction and Summary of Results
	Weighted Repairs and Consistent Answers
	Certain Links and Entity-Linking Frameworks
	Concrete Entity-Linking Frameworks Based on Lzero
	Collective Entity-Linking Frameworks

	Comparing the Expressive Power of Entity-Linking Frameworks
	Adding Preference Constraints
	Concluding Remarks

