
Answering FO+MOD Queries Under Updates on
Bounded Degree Databases∗

Christoph Berkholz1, Jens Keppeler2, and Nicole Schweikardt3

1 Humboldt-Universität zu Berlin, Berlin, Germany
berkholz@informatik.hu-berlin.de

2 Humboldt-Universität zu Berlin, Berlin, Germany
keppelej@informatik.hu-berlin.de

3 Humboldt-Universität zu Berlin, Berlin, Germany
schweikn@informatik.hu-berlin.de

Abstract
We investigate the query evaluation problem for fixed queries over fully dynamic databases, where
tuples can be inserted or deleted. The task is to design a dynamic algorithm that immediately
reports the new result of a fixed query after every database update.

We consider queries in first-order logic (FO) and its extension with modulo-counting quanti-
fiers (FO+MOD), and show that they can be efficiently evaluated under updates, provided that
the dynamic database does not exceed a certain degree bound.

In particular, we construct a data structure that allows to answer a Boolean FO+MOD query
and to compute the size of the query result within constant time after every database update.
Furthermore, after every update we are able to immediately enumerate the new query result with
constant delay between the output tuples. The time needed to build the data structure is linear
in the size of the database.

Our results extend earlier work on the evaluation of first-order queries on static databases of
bounded degree and rely on an effective Hanf normal form for FO+MOD recently obtained by
Heimberg, Kuske, and Schweikardt (LICS 2016).

1998 ACM Subject Classification H.2.4 [Systems] Relational Databases, Query Processing,
H.2.3 [Languages] Query Languages, F.1.2 [Modes of Computation] Interactive and Reactive
Computation

Keywords and phrases dynamic databases, query enumeration, counting problem, first-order
logic with modulo-counting quantifiers, Hanf locality

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.8

1 Introduction

Query evaluation is a fundamental task in databases, and a vast amount of literature is
devoted to the complexity of this problem. In this paper we study query evaluation on
relational databases in the “dynamic setting”, where the database may be updated by
inserting or deleting tuples. In this setting, an evaluation algorithm receives a query ϕ and
an initial database D and starts with a preprocessing phase that computes a suitable data
structure to represent the result of evaluating ϕ on D. After every database update, the
data structure is updated so that it represents the result of evaluating ϕ on the updated

∗ We acknowledge the financial support by the German Research Foundation DFG under grant
SCHW 837/5-1.

© Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt;
licensed under Creative Commons License CC-BY

20th International Conference on Database Theory (ICDT 2017).
Editors: Michael Benedikt and Giorgio Orsi; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

database. The data structure shall be designed in such a way that it quickly provides the
query result, preferably in constant time (i. e., independent of the database size). We focus
on the following flavours of query evaluation.

Testing: Decide whether a given tuple a is contained in ϕ(D).
Counting: Compute |ϕ(D)| (i.e., the number of tuples that belong to ϕ(D)).
Enumeration: Enumerate ϕ(D) with a bounded delay between the output tuples.

Here, as usual, ϕ(D) denotes the k-ary relation obtained by evaluating a k-ary query ϕ on a
relational database D. For Boolean queries, all three tasks boil down to

Answering: Decide if ϕ(D) 6= ∅.

Compared to the dynamic descriptive complexity framework introduced by Patnaik
and Immerman [17], which focuses on the expressive power of first-order logic on dynamic
databases and has led to a rich body of literature (see [18] for a survey), we are interested in
the complexity of query evaluation. The query language studied in this paper is FO+MOD,
the extension of first-order logic FO with modulo-counting quantifiers of the form ∃imodm xψ,
expressing that the number of witnesses x that satisfy ψ is congruent to i modulo m.
FO+MOD can be viewed as a subclass of SQL that properly extends the relational algebra.

Following [2], we say that a query evaluation algorithm is efficient if the update time
is either constant or at most polylogarithmic (logc n) in the size of the database. As a
consequence, efficient query evaluation in the dynamic setting is only possible if the static
problem (i.e., the setting without database updates) can be solved in linear or pseudo-linear
(n1+ε) time. Since this is not always possible, we provide a short overview on known results
about first-order query evaluation on static databases and then proceed by discussing our
results in the dynamic setting.

First-order query evaluation on static databases. The problem of deciding whether a given
database D satisfies a FO-sentence ϕ is AW[∗]-complete (parameterised by ||ϕ||) and it is
therefore generally believed that the evaluation problem cannot be solved in time f(||ϕ||)||D||c
for any computable f and constant c (here, ||ϕ|| and ||D|| denote the size of the query and
the database, respectively). For this reason, a long line of research focused on increasing
classes of sparse instances ranging from databases of bounded degree [19] (where every domain
element occurs only in a constant number of tuples in the database) to classes that are
nowhere dense [9]. In particular, Boolean first-order queries can be evaluated on classes of
databases of bounded degree in linear time f(||ϕ||)||D||, where the constant factor f(||ϕ||) is
3-fold exponential in ||ϕ|| [19, 7]. As a matter of fact, Frick and Grohe [7] showed that the
3-fold exponential blow-up in terms of the query size is unavoidable assuming FPT 6= AW[∗].

Durand and Grandjean [5] and Kazana and Segoufin [11] considered the task of enumer-
ating the result of a k-ary first-order query on bounded degree databases and showed that
after a linear time preprocessing phase the query result can be enumerated with constant
delay. This result was later extended to classes of databases of bounded expansion [12].
Kazana and Segoufin [12] also showed that counting the number of result tuples of a k-ary
first-order query on databases of bounded expansion (and hence also on databases of bounded
degree) can be done in time f(||ϕ||)||D||. In [6] an analogous result was obtained for classes of
databases of low degree (i. e., degree at most ||D||o(1)) and pseudo-linear time f(||ϕ||)||D||1+ε;
the paper also presented an algorithm for enumerating the query results with constant delay
after pseudo-linear time preprocessing.

Our contribution. We extend the known linear time algorithms for first-order logic on
classes of databases of bounded degree to the more expressive query language FO+MOD.

C. Berkholz, J. Keppeler, and N. Schweikardt 8:3

Moreover, and more importantly, we lift the tractability to the dynamic setting and show
that the result of FO and FO+MOD-queries can be maintained with constant update time.
In particular, we obtain the following results. Let ϕ be a fixed k-ary FO+MOD-query and d
a fixed degree bound on the databases under consideration. Given an initial database D, we
construct in linear time f(||ϕ||, d)||D|| a data structure that can be updated in constant time
f(||ϕ||, d) when a tuple is inserted into or deleted from a relation of D. After each update
the data structure allows to

immediately answer ϕ on D if ϕ is a Boolean query (Theorem 4.1),
test for a given tuple a whether a ∈ ϕ(D) in time O(k2) (Theorem 6.1),
immediately output the number of result tuples |ϕ(D)| (Theorem 8.1), and
enumerate all tuples (a1, . . . , ak) ∈ ϕ(D) with O(k3) delay (Theorem 9.4).

For fixed d, the parameter function f(||ϕ||, d) is 3-fold exponential in terms of the query size,
which is (by Frick and Grohe [7]) optimal assuming FPT 6= AW[∗].

Outline. Our dynamic query evaluation algorithm crucially relies on the locality of FO+MOD
and in particular an effective Hanf normal form for FO+MOD on databases of bounded degree
recently obtained by Heimberg, Kuske, and Schweikardt [10]. After some basic definitions
in Section 2 we briefly state their result in Section 3 and obtain a dynamic algorithm for
Boolean FO+MOD-queries in Section 4. After some preparations for non-Boolean queries
in Section 5, we present the algorithm for testing in Section 6. In Section 7 we reduce the
task of counting and enumerating FO+MOD-queries in the dynamic setting to the problem
of counting and enumerating independent sets in graphs of bounded degree. We use this
reduction to provide efficient dynamic counting and enumeration algorithms in Section 8
and 9, respectively, and we conclude in Section 10. Due to space constraints some technical
proofs are deferred to the full version of the paper [3].

2 Preliminaries

We write N for the set of non-negative integers and let N>1 := N \ {0} and [n] := {1, . . . , n}
for all n ∈ N>1. By 2M we denote the power set of a set M . For a partial function f we
write dom(f) and codom(f) for the domain and the codomain of f , respectively.

Databases. We fix a countably infinite set dom, the domain of potential database entries.
Elements in dom are called constants. A schema is a finite set σ of relation symbols, where
each R ∈ σ is equipped with a fixed arity ar(R) ∈ N>1. Let us fix a schema σ = {R1, . . . , R|σ|}.
A database D of schema σ (σ-db, for short), is of the form D = (RD1 , . . . , RD|σ|), where each
RDi is a finite subset of domar(Ri). The active domain adom(D) of D is the smallest subset
A of dom such that RDi ⊆ Aar(Ri) for each Ri in σ.

The Gaifman graph of a σ-db D is the undirected simple graph GD = (V,E) with vertex
set V := adom(D), where there is an edge between vertices u and v whenever u 6= v and
there are R ∈ σ and (a1, . . . , aar(R)) ∈ RD such that u, v ∈ {a1, . . . , aar(R)}. A σ-db D is
called connected if its Gaifman graph GD is connected; the connected components of D are
the connected components of GD. The degree of a database D is the degree of its Gaifman
graph GD, i.e., the maximum number of neighbours of a node of GD. Throughout this paper
we fix a number d ∈ N and restrict attention to databases of degree at most d.

Updates. We allow to update a given database of schema σ by inserting or deleting tuples
as follows (note that both types of commands may change the database’s active domain and

ICDT 2017

8:4 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

the database’s degree). A deletion command is of the form deleteR(a1, . . . , ar) for R ∈ σ,
r = ar(R), and a1, . . . , ar ∈ dom. When applied to a σ-db D, it results in the updated σ-db
D′ with RD′ = RD \ {(a1, . . . , ar)} and SD

′ = SD for all S ∈ σ \ {R}.
An insertion command is of the form insertR(a1, . . . , ar) for R ∈ σ, r = ar(R), and

a1, . . . , ar ∈ dom. When applied to a σ-db D in the unrestricted setting, it results in the
updated σ-db D′ with RD′ = RD ∪ {(a1, . . . , ar)} and SD

′ = SD for all S ∈ σ \ {R}. In this
paper, we restrict attention to databases of degree at most d. Therefore, when applying
an insertion command to a σ-db D of degree 6 d, the command is carried out only if the
resulting database D′ still has degree 6 d; otherwise D remains unchanged and instead of
carrying out the insertion command, an error message is returned.

Queries. We fix a countably infinite set var of variables. We consider the extension
FO+MOD of first-order logic FO with modulo-counting quantifiers. For a fixed schema σ,
the set FO+MOD[σ] is built from atomic formulas of the form x1=x2 and R(x1, . . . , xar(R)),
for R ∈ σ and variables x1, x2, . . . , xar(R) ∈ var, and is closed under Boolean connectives
¬, ∧, existential first-order quantifiers ∃x, and modulo-counting quantifiers ∃imodm x, for a
variable x ∈ var and integers i,m ∈ N with m > 2 and i < m. The intuitive meaning of a
formula of the form ∃imodm xψ is that the number of witnesses x that satisfy ψ is congruent i
modulo m. As usual, ∀x, ∨, →, ↔ will be used as abbreviations when constructing formulas.
It will be convenient to add the quantifier ∃>mx, for m ∈ N>1; a formula of the form ∃>mxψ
expresses that the number of witnesses x which satisfy ψ is > m. This quantifier is just
syntactic sugar an does not increase the expressive power of FO+MOD.

The quantifier rank qr(ϕ) of a FO+MOD-formula ϕ is the maximum nesting depth of
quantifiers that occur in ϕ. By free(ϕ) we denote the set of all free variables of ϕ, i.e., all
variables x that have at least one occurrence in ϕ that is not within a quantifier of the form
∃x, ∃>mx, or ∃imodm x. A sentence is a formula ϕ with free(ϕ) = ∅.

An assignment for ϕ in a σ-db D is a partial mapping α from var to adom(D), where
free(ϕ) ⊆ dom(α). We write (D,α) |= ϕ to indicate that ϕ is satisfied when evaluated in
D with respect to active domain semantics while interpreting every free occurrence of a
variable x with the constant α(x). Recall from [1] that “active domain semantics” means
that quantifiers are evaluated with respect to the database’s active domain. In particular,
(D,α) |= ∃xψ iff there exists an a ∈ adom(D) such that (D,α ax) |= ψ, where α ax is the
assignment α′ with α′(x) = a and α′(y) = α(y) for all y ∈ dom(α) \ {x}. Accordingly,
(D,α) |= ∃>mx ψ iff

∣∣{ a ∈ adom(D) : (D,α ax) |= ψ }
∣∣ > m, and (D,α) |= ∃imodm x ψ

iff
∣∣{ a ∈ adom(D) : (D,α ax) |= ψ }

∣∣ ≡ i mod m .
A k-ary FO+MOD query of schema σ is of the form ϕ(x1, . . . , xk) where k ∈ N, ϕ ∈

FO+MOD[σ], and free(ϕ) ⊆ {x1, . . . , xk}. We will often assume that the tuple (x1, . . . , xk) is
clear from the context and simply write ϕ instead of ϕ(x1, . . . , xk) and

(
D, (a1, . . . , ak)

)
|= ϕ

instead of
(
D, a1,...,ak

x1,...,xk

)
|= ϕ, where a1,...,ak

x1,...,xk
denotes the assignment α with α(xi) = ai for all

i ∈ [k]. When evaluated in a σ-db D, the k-ary query ϕ(x1, . . . , xk) yields the k-ary relation

ϕ(D) :=
{

(a1, . . . , ak) ∈ adom(D)k :
(
D, a1,...,ak

x1,...,xk

)
|= ϕ

}
.

Boolean queries are k-ary queries with k = 0. As usual, for Boolean queries we will write
ϕ(D) = no instead of ϕ(D) = ∅, and ϕ(D) = yes instead of ϕ(D) 6= ∅; and we write D |= ϕ

to indicate that (D,α) |= ϕ for any assignment α.

Sizes and Cardinalities. The size ||σ|| of a schema σ is the sum of the arities of its relation
symbols. The size ||ϕ|| of an FO+MOD query ϕ of schema σ is the length of ϕ when

C. Berkholz, J. Keppeler, and N. Schweikardt 8:5

viewed as a word over the alphabet σ ∪ var ∪ N ∪ {=,∧,¬,∃,mod, (,)}. For a k-ary query
ϕ(x1, . . . , xk) and a σ-db D, the cardinality of the query result is the number |ϕ(D)| of tuples
in ϕ(D). The cardinality |D| of a σ-db D is defined as the number of tuples stored in D, i.e.,
|D| :=

∑
R∈σ |RD|. The size ||D|| of D is defined as ||σ|| + |adom(D)| +

∑
R∈σ ar(R)·|RD|

and corresponds to the size of a reasonable encoding of D.

Dynamic Algorithms for Query Evaluation. We adopt the framework for dynamic al-
gorithms for query evaluation of [2]; the next paragraphs are taken almost verbatim from
[2]. Following [4], we use Random Access Machines (RAMs) with O(logn) word-size and a
uniform cost measure to analyse our algorithms. We will assume that the RAM’s memory is
initialised to 0. In particular, if an algorithm uses an array, we will assume that all array
entries are initialised to 0, and this initialisation comes at no cost (in real-world computers
this can be achieved by using the lazy array initialisation technique, cf. e.g. [16]). A further
assumption is that for every fixed dimension k ∈ N>1 we have available an unbounded number
of k-ary arrays A such that for given (n1, . . . , nk) ∈ Nk the entry A[n1, . . . , nk] at position
(n1, . . . , nk) can be accessed in constant time.1

Our algorithms will take as input a k-ary FO+MOD-query ϕ(x1, . . . , xk), a parameter d,
and a σ-db D0 of degree 6 d. For all query evaluation problems considered in this paper, we
aim at routines preprocess and update which achieve the following.

Upon input of ϕ(x1, . . . , xk) and D0, preprocess builds a data structure D which rep-
resents D0 (and which is designed in such a way that it supports the evaluation of ϕ on
D0). Upon input of a command update R(a1, . . . , ar) (with update ∈ {insert, delete}), calling
update modifies the data structure D such that it represents the updated database D. The
preprocessing time tp is the time used for performing preprocess; the update time tu is the
time used for performing an update. In this paper, tu will be independent of the size of the
current database D. By init we denote the particular case of the routine preprocess upon
input of a query ϕ(x1, . . . , xk) and the empty database D∅ (where RD∅ = ∅ for all R ∈ σ).
The initialisation time ti is the time used for performing init. In all dynamic algorithms
presented in this paper, the preprocess routine for input of ϕ(x1, . . . , xk) and D0 will carry
out the init routine for ϕ(x1, . . . , xk) and then perform a sequence of |D0| update operations
to insert all the tuples of D0 into the data structure. Consequently, tp = ti + |D0| · tu.

In the following, D will always denote the database that is currently represented by the
data structure D.

To solve the enumeration problem under updates, apart from the routines preprocess
and update, we aim at a routine enumerate such that calling enumerate invokes an
enumeration of all tuples (without repetition) that belong to the query result ϕ(D). The
delay td is the maximum time used during a call of enumerate

until the output of the first tuple (or the end-of-enumeration message EOE, if ϕ(D) = ∅),
between the output of two consecutive tuples, and
between the output of the last tuple and the end-of-enumeration message EOE.

To test if a given tuple belongs to the query result, instead of enumerate we aim at a
routine test which upon input of a tuple a ∈ domk checks whether a ∈ ϕ(D). The testing
time tt is the time used for performing a test. To solve the counting problem under updates,
instead of enumerate or test we aim at a routine count which outputs the cardinality
|ϕ(D)| of the query result. The counting time tc is the time used for performing a count.

1 While this can be accomplished easily in the RAM-model, for an implementation on real-world computers
one would probably have to resort to replacing our use of arrays by using suitably designed hash functions.

ICDT 2017

8:6 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

To answer a Boolean query under updates, instead of enumerate, test, or count we aim
at a routine answer that produces the answer yes or no of ϕ on D. The answer time ta is
the time used for performing answer. Whenever speaking of a dynamic algorithm, we mean
an algorithm that has routines preprocess and update and, depending on the problem at
hand, at least one of the routines answer, test, count, and enumerate.

Throughout the paper, we often adopt the view of data complexity and suppress factors
that may depend on the query ϕ or the degree bound d, but not on the database D. E.g.,
“linear preprocessing time” means tp 6 f(ϕ, d) · ||D0|| and “constant update time” means
tu 6 f(ϕ, d), for a function f with codomain N. When writing poly(n) we mean nO(1).

3 Hanf Normal Form for FO+MOD

Our algorithms for evaluating FO+MOD queries rely on a decomposition of FO+MOD queries
into Hanf normal form. To describe this normal form, we need some more notation.

Two formulas ϕ and ψ of schema σ are called d-equivalent (in symbols: ϕ ≡d ψ) if
ϕ(D) = ψ(D) for all σ-dbs D of degree 6 d. For a σ-db D and a set A ⊆ adom(D) we write
D[A] to denote the restriction of D to the domain A, i.e., RD[A] = {a ∈ RD : a ∈ Aar(R)},
for all R ∈ σ. For two σ-dbs D and D′ and two k-tuples a = (a1, . . . , ak) and a′ = (a′1, . . . , a′k)
of elements in adom(D) and adom(D′), resp., we write

(
D, a

) ∼= (
D′, a′

)
to indicate that

there is an isomorphism2 π from D to D′ that maps ai to a′i for all i ∈ [k].
The distance distD(a, b) between two elements a, b ∈ adom(D) is the minimal length (i.e.,

the number of edges) of a path from a to b in D’s Gaifman graph GD (if no such path exists,
we let distD(a, b) = ∞; note that distD(a, a) = 0). For r > 0 and a ∈ adom(D), the r-ball
around a in D is the set ND

r (a) := {b ∈ adom(D) : distD(a, b) 6 r}. For a σ-db D and a
tuple a = (a1, . . . , ak) we let ND

r (a) :=
⋃
i∈[k] N

D
r (ai). The r-neighbourhood around a in D

is defined as the σ-db ND
r (a) := D[ND

r (a)].
For r > 0 and k > 1, a type τ (over σ) with k centres and radius r (for short: r-type with

k centres) is of the form (T, t), where T is a σ-db, t ∈ adom(T)k, and adom(T) = NT
r (t).

The elements in t are called the centres of τ . For a tuple a ∈ adom(D)k, the r-type of a in
D is defined as the r-type with k centres

(
ND
r (a), a

)
.

For a given r-type with k centres τ = (T, t) it is straightforward to construct a first-order
formula sphτ (x) (depending on r and τ) with k free variables x = (x1, . . . , xk) which expresses
that the r-type of x is isomorphic to τ , i.e., for every σ-db D and all a = (a1, . . . , ak) ∈
adom(D)k we have

(
D, a

)
|= sphτ (x) ⇐⇒

(
ND
r (a), a

) ∼= (
T, t
)
. The formula sphτ (x) is

called a sphere-formula (over σ and x); the numbers r and k are called locality radius and
arity, resp., of the sphere-formula.

A Hanf-sentence (over σ) is a sentence of the form ∃>mx sphτ (x) or ∃imodm x sphτ (x),
where τ is an r-type (over σ) with 1 centre, for some r > 0. The number r is called
locality radius of the Hanf-sentence. A formula in Hanf normal form (over σ) is a Boolean
combination3 of sphere-formulas and Hanf-sentences (over σ). The locality radius of a
formula ψ in Hanf normal form is the maximum of the locality radii of the Hanf-sentences
and the sphere-formulas that occur in ψ. The formula is d-bounded if all types τ that occur
in sphere-formulas or Hanf-sentences of ψ are d-bounded, i.e., T is of degree 6 d, where
τ = (T, t). Our query evaluation algorithms for FO+MOD rely on the following result by
Heimberg, Kuske, and Schweikardt [10].

2 An isomorphism π : D → D′ is a bijection from adom(D) to adom(D′) with (b1, . . . , br) ∈ RD ⇐⇒
(π(b1), . . . , π(br)) ∈ RD′

for all R ∈ σ, for r := ar(R), and for all b1, . . . , br ∈ adom(D).
3 Throughout this paper, whenever we speak of Boolean combinations we mean finite Boolean combinations.

C. Berkholz, J. Keppeler, and N. Schweikardt 8:7

I Theorem 3.1 ([10]). There is an algorithm which receives as input a degree bound d ∈ N
and a FO+MOD[σ]-formula ϕ, and constructs a d-equivalent formula ψ in Hanf normal form
(over σ) with the same free variables as ϕ. For any d > 2, the formula ψ is d-bounded and
has locality radius 6 4qr(ϕ), and the algorithm’s runtime is 2d2O(||ϕ||+||σ||)

.

The first step of all our query evaluation algorithms is to use Theorem 3.1 to transform a
given query ϕ(x) into a d-equivalent query ψ(x) in Hanf normal form. The following lemma
summarises easy facts that are useful for evaluating the sphere-formulas that occur in ψ.

I Lemma 3.2. Let d > 2 and let D be a σ-db of degree 6 d. Let r > 0, k > 1, and
a = (a1, . . . , ak) ∈ adom(D).
(a)

∣∣ND
r (a)

∣∣ 6 k
∑r
i=0 d

i 6 kdr+1.
(b) Given D and a, the r-neighbourhood ND

r (a) can be computed in time
(
kdr+1)O(||σ||).

(c) ND
r (a1, a2) is connected if and only if distD(a1, a2) 6 2r + 1.

(d) If ND
r (a) is connected, then ND

r (a) ⊆ ND
r+(k−1)(2r+1)(ai), for all i ∈ [k].

(e) Let D′ be a σ-db of degree 6 d and let b = (b1, . . . , bk) ∈ adom(D′).
It can be tested in time (kdr+1)O(||σ||+kdr+1) 6 2O(||σ||k2d2r+2) whether(
ND
r (a), a

) ∼= (
ND′

r (b), b
)
.

The time bound stated in part (e) of Lemma 3.2 is obtained by a brute-force approach.
When using Luks’ polynomial time isomorphism test for bounded degree graphs [15], the
time bound of Lemma 3.2(e) can be improved to

(
kdr+1)poly(d||σ||). However, the asymptotic

overall runtime of our algorithms for evaluating FO+MOD-queries won’t improve when using
Luks algorithm instead of the brute-force isomorphism test of Lemma 3.2(e).

4 Answering Boolean FO+MOD Queries Under Updates

In [7], Frick and Grohe showed that in the static setting (i.e., without database updates),
Boolean FO-queries ϕ can be answered on databases D of degree 6 d in time 2d2O(||ϕ||)

·||D||.
Our first main theorem extends their result to FO+MOD-queries and the dynamic setting.

I Theorem 4.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a Boolean FO+MOD[σ]-query ϕ, and a σ-db D0 of degree 6 d, and computes within
tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated in time tu = f(ϕ, d)
and allows to return the query result ϕ(D) with answer time ta = O(1). The function f(ϕ, d)
is of the form 2d2O(||ϕ||)

.
If ϕ is a d-bounded Hanf-sentence of locality radius r, then f(ϕ, d) = 2O(||σ||d2r+2), and

the initialisation time is ti = O(||ϕ||).

Proof. W.l.o.g. we assume that all the symbols of σ occur in ϕ (otherwise, we remove from
σ all symbols that do not occur in ϕ). In the preprocessing routine, we first use Theorem 3.1
to transform ϕ into a d-equivalent sentence ψ in Hanf normal form; this takes time 2d2O(||ϕ||)

.
The sentence ψ is a Boolean combination of d-bounded Hanf-sentences (over σ) of locality
radius at most r := 4qr(ϕ). Let ρ1, . . . , ρs be the list of all types that occur in ψ. Thus, every
Hanf-sentence in ψ is of the form ∃>kx sphρj (x) or ∃imodm x sphρj (x) for some j ∈ [s] and
k, i,m ∈ N with k > 1, m > 2, and i < m. For each j ∈ [s] let rj be the radius of ρj . Thus,
ρj is an rj-type with 1 centre (over σ).

For each j ∈ [s] our data structure will store the number A[j] of all elements a ∈ adom(D)
whose rj-type is isomorphic to ρj , i.e., (ND

rj (a), a) ∼= ρj . The initialisation for the empty

ICDT 2017

8:8 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

database D∅ lets A[j] = 0 for all j ∈ [s]. In addition to the array A, our data structure stores
a Boolean value Ans where Ans = ϕ(D) is the answer of the Boolean query ϕ on the current
database D. This way, the query can be answered in time O(1) by simply outputting Ans.
The initialisation for the empty database D∅ computes Ans as follows. Every Hanf-sentence of
the form ∃>kx sphρj (x) in ψ is replaced by the Boolean constant false. Every Hanf-sentence
of the form ∃imodm x sphρj (x) is replaced by true if i = 0 and by false otherwise. The
resulting formula, a Boolean combination of the Boolean constants true and false, then is
evaluated, and we let Ans be the obtained result. The entire initialisation takes time at most
ti = f(ϕ, d) = 2d2O(||ϕ||)

. If ϕ is a Hanf-sentence, we even have ti = O(||ϕ||).
To update our data structure upon a command updateR(a1, . . . , ak), for k = ar(R) and

update ∈ {insert, delete}, we proceed as follows. The idea is to remove from the data structure
the information on all the database elements whose rj-neighbourhood (for some j ∈ [s]) is
affected by the update, and then to recompute the information concerning all these elements
on the updated database.

Let Dold be the database before the update is received and let Dnew be the database
after the update has been performed. We consider each j ∈ [s]. All elements whose rj-
neighbourhood might have changed, belong to the set Uj := ND′

rj (a), where D′ := Dnew if
the update command is insert R(a), and D′ := Dold if the update command is delete R(a).

To remove the old information from A[j], we compute for each a ∈ Uj the neighbourhood
Ta := NDold

rj (a), check whether (Ta, a) ∼= ρj , and if so, decrement the value A[j].
To recompute the new information for A[j], we compute for all a ∈ Uj the neighbourhood

T ′a := NDnew
rj (a), check whether (T ′a, a) ∼= ρj , and if so, increment the value A[j].

Using Lemma 3.2 we obtain for each j ∈ [s] that |Uj | 6 kdrj+1. For each a ∈ Uj ,
the neighbourhoods Ta and T ′a can be computed in time

(
drj+1)O(||σ||), and testing for

isomorphism with ρj can be done in time
(
drj+1)O(||σ||+drj+1). Thus, the update of A[j] is

done in time k·
(
drj+1)O(||σ||+drj+1)

6 2d2O(||ϕ||)

(note that k 6 ||σ|| 6 ||ϕ|| and rj 6 4qr(ϕ) 6
2O(||ϕ||))).

After having updated A[j] for each j ∈ [s], we recompute the query answer Ans as follows.
Every Hanf-sentence of the form ∃>kx sphρj (x) in ψ is replaced by the Boolean constant
true if A[j] > k, and by the Boolean constant false otherwise. Every Hanf-sentence of
the form ∃imodm x sphρj (x) is replaced by true if A[j] ≡ i mod m, and by false otherwise.
The resulting formula, a Boolean combination of the Boolean constants true and false,
then is evaluated, and we let Ans be the obtained result. Thus, recomputing Ans takes time
poly(||ψ||).

In summary, the entire update time is tu = f(ϕ, d) = 2d2O(||ϕ||)

. In case that ϕ is a
d-bounded Hanf-sentence of locality radius r, we even have tu = k·

(
dr+1)O(||σ||+dr+1)

6

2O(||σ||d2r+2). This completes the proof of Theorem 4.1. J

In [7], Frick and Grohe obtained a matching lower bound for answering Boolean FO-
queries of schema σ = {E} on databases of degree at most d := 3 in the static setting. They
used the (reasonable) complexity theoretic assumption FPT 6= AW[∗] and showed that if
this assumption is correct, then there is no algorithm that answers Boolean FO-queries ϕ
on σ-dbs D of degree 6 3 in time 222o(||ϕ||)

· poly(||D||) in the static setting (see Theorem 2
in [7]). As a consequence, the same lower bound holds in the dynamic setting and shows
that in Theorem 4.1, the 3-fold exponential dependency on the query size ||ϕ|| cannot be
substantially lowered (unless FPT = AW[∗]):

C. Berkholz, J. Keppeler, and N. Schweikardt 8:9

I Corollary 4.2. Let σ := {E} and let d := 3. If FPT 6= AW[∗], then there is no dynamic
algorithm that receives a Boolean FO[σ]-query ϕ and a σ-db D0, and computes within
tp 6 f(ϕ)· poly(||D0||) preprocessing time a data structure that can be updated in time tu 6 f(ϕ)
and allows to return the query result ϕ(D) with answer time ta 6 f(ϕ), for a function f with
f(ϕ) = 222o(||ϕ||)

.

5 Technical Lemmas on Types and Spheres Useful for Handling
Non-Boolean Queries

For our algorithms for evaluating non-Boolean queries it will be convenient to work with a
fixed list of representatives of d-bounded r-types, provided by the following straightforward
lemma.

I Lemma 5.1. There is an algorithm which upon input of a schema σ, a degree bound d > 2,
a radius r > 0, and a number k > 1, computes a list Lσ,dr (k) = τ1, . . . , τ` (for a suitable
` > 1) of d-bounded r-types with k centres (over σ), such that for every d-bounded r-type τ
with k centres (over σ) there is exactly one i ∈ [`] such that τ ∼= τi. The algorithm’s runtime
is 2(kdr+1)O(||σ||) . Furthermore, upon input of a d-bounded r-type τ with k centres (over σ),
the particular i ∈ [`] with τ ∼= τi can be computed in time 2(kdr+1)O(||σ||) .

Throughout the remainder of this paper, Lσ,dr (k) will always denote the list provided
by Lemma 5.1. The following lemma will be useful for evaluating Boolean combinations of
sphere-formulas.

I Lemma 5.2. Let σ be a schema, let r > 0, k > 1, d > 2, and let Lσ,dr (k) = τ1, . . . , τ`.
Let x = (x1, . . . , xk) be a list of k pairwise distinct variables. For every Boolean combination
ψ(x) of d-bounded sphere-formulas of radius at most r (over σ), there is an I ⊆ [`] such that
ψ(x) ≡d

∨
i∈I sphτi(x).

Furthermore, given ψ(x), the set I can be computed in time poly(||ψ||) · 2(kdr+1)O(||σ||) .

The lemma’s proof is based on the following observations. Negations can be eliminated
by the equivalence ¬ sphτj (x) ≡d

∨
i∈[`]\{j} sphτi(x). To eliminate conjunctions, observe

that for i 6= i′ the formula sphτi(x) ∧ sphτi′ (x) is unsatisfiable. Thus, by the distributive
law we obtain for all m > 1 and all I1, . . . , Im ⊆ [`] that∧
j∈[m]

(∨
i∈Ij

sphτi(x)
)
≡d

∨
i1∈I1

· · ·
∨

im∈Im

(
sphτi1 (x)∧· · ·∧ sphτim (x)

)
≡d

∨
i∈I

sphτi(x)

for I := I1 ∩ · · · ∩ Im.

For evaluating a Boolean combination ψ(x) of sphere-formulas and Hanf-sentences on a
given σ-db D, an obvious approach is to first consider every Hanf-sentence χ that occurs
in ψ, to check if D |= χ, and replace every occurrence of χ in ψ with true (resp., false) if
D |= χ (resp., D 2 χ). The resulting formula ψ′(x) is then transformed into a disjunction
ψ′′(x) :=

∨
i∈I sphτi(x) by Lemma 5.2, and the query result ψ(D) = ψ′′(D) is obtained as

the union of the query results sphτi(D) for all i ∈ I.
While this works well in the static setting (i.e., without database updates), in the dynamic

setting we have to take care of the fact that database updates might change the status of
a Hanf-sentence χ in ψ, i.e., an update operation might turn a database D with D |= χ

into a database D′ with D′ 2 χ (and vice versa). Consequently, the formula ψ′′(x) that is
equivalent to ψ(x) on D might be inequivalent to ψ(x) on D′.

ICDT 2017

8:10 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

To handle the dynamic setting correctly, at the end of each update step we will use the
following lemma (the lemma’s proof is an easy consequence of Lemma 5.2).

I Lemma 5.3. Let σ be a schema. Let s > 0 and let χ1, . . . , χs be FO+MOD[σ]-sentences.
Let r > 0, k > 1, d > 2, and let Lσ,dr (k) = τ1, . . . , τ`. Let x = (x1, . . . , xk) be a list of k
pairwise distinct variables. For every Boolean combination ψ(x) of the sentences χ1, . . . , χs
and of d-bounded sphere-formulas of radius at most r (over σ), and for every J ⊆ [s] there is
a set I ⊆ [`] such that

ψJ(x) ≡d
∨
i∈I

sphτi(x),

where ψJ is the formula obtained from ψ by replacing every occurrence of a sentence χj with
true if j ∈ J and with false if j 6∈ J (for every j ∈ [s]).
Given ψ and J , the set I can be computed in time poly(||ψ||) · 2(kdr+1)O(||σ||) .

To evaluate a single sphere-formula sphτ (x) for a given r-type τ with k centres (over σ),
it will be useful to decompose τ into its connected components as follows. Let τ = (T, t)
with t = (t1, . . . , tk). Consider the Gaifman graph GT of T and let C1, . . . , Cc be the vertex
sets of the c connected components of GT . For each connected component Cj of GT , let
tj be the subsequence of t consisting of all elements of t that belong to Cj , and let kj be
the length of tj . Since (T, t) is an r-type with the k centres, we have T = N T

r (t), and thus
c 6 k and kj > 1 for all j ∈ [c]. To avoid ambiguity, we make sure that the list C1, . . . , Cc is
sorted in such a way that for all j < j′ we have i < i′ for the smallest i with ti ∈ Cj and the
smallest i′ with ti′ ∈ Cj′ .

For each Cj consider the r-type with kj centres ρj =
(
T [Cj], tj

)
. Let νj be the unique

integer such that ρj is isomorphic to the νj-th element in the list Lσ,dr (kj), and let τj,νj be
the νj-th element in this list.

It is straightforward to see that the formula sphτ (x) is d-equivalent to the formula

conn-sphτ (x) :=
∧
j∈[c]

sphτj,νj (xj) ∧
∧
j 6=j′

¬ distkj ,kj′

62r+1(xj , xj′), (1)

where xj is the subsequence of x obtained from x in the same way as tj is obtained from t,
and distkj ,kj′

62r+1(xj , xj′) is a formula of schema σ which expresses that for some variable y in xj
and some variable y′ in xj′ the distance between y and y′ is 6 2r+1. I.e., for a = (a1, . . . , akj)
and b = (b1, . . . , bkj′) we have (a, b) ∈ distkj ,kj′

62r+1(D) ⇐⇒ distD(a; b) 6 2r+1, where

distD(a; b) 6 2r+1 means that distD(ai, bi′) 6 2r+1 for some i ∈ [kj] and i′ ∈ [kj′]. (2)

Using the Lemmas 3.2 and 5.1, the following lemma is straightforward.

I Lemma 5.4. There is an algorithm which upon input of a schema σ, numbers r > 0, k > 1,
and d > 2, and an r-type τ with k centres (over σ) computes the formula conn-sphτ (x), along
with the corresponding parameters c and kj, νj, xj, τj,νj for all j ∈ [c].
The algorithm’s runtime is 2(kdr+1)O(||σ||) .

We define the signature of τ to be the tuple sgn(τ) built from the parameters c and(
kj , νj , {µ ∈ [k] : xµ belongs to xj}

)
j∈[c] obtained from the above lemma. The signature

sgnD(a) of a tuple a in a database D (w.r.t. radius r) is defined as sgn(ρ) for ρ :=
(
ND
r (a), a

)
.

Note that a ∈ sphτ (D) ⇐⇒ sgnD(a) = sgn(τ).

C. Berkholz, J. Keppeler, and N. Schweikardt 8:11

6 Testing Non-Boolean FO+MOD Queries Under Updates

This section is devoted to the proof of the following theorem.

I Theorem 6.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated in
time tu = f(ϕ, d) and allows to test for any input tuple a ∈ domk whether a ∈ ϕ(D) within
testing time tt = O(k2). The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

For the proof, we use the lemmas provided in Section 5 and the following lemma.

I Lemma 6.2. There is a dynamic algorithm that receives a schema σ, a degree bound d > 2,
numbers r > 0 and k > 1, an r-type τ with k centres (over σ), and a σ-db D0 of degree 6 d,
and computes within tp = 2(kdr+1)O(||σ||) · ||D0|| preprocessing time a data structure that can be
updated in time tu = 2(kdr+1)O(||σ||) and allows to test for any input tuple a ∈ domk whether
a ∈ sphτ (D) within testing time tt = O(k2).

Proof sketch. The preprocessing routine starts by using Lemma 5.4 to compute the formula
conn-sphτ (x), along with the according parameters c and kj , νj , xj , τj,νj for each j ∈ [c].
This is done in time 2(kdr+1)O(||σ||) . We let sgn(τ) be the signature of τ (defined directly
after Lemma 5.4). Recall that conn-sphτ (x) ≡d sphτ (x), and recall from equation (1) the
precise definition of the formula conn-sphτ (x). Our data structure will store the following
information on the database D:

the set Γ of all tuples b ∈ adom(D)k′ where k′ 6 k and ND
r (b) is connected, and

for every j ∈ [c] and every kj-tuple b ∈ Γ, the unique number νb such that ρb :=
(
ND
r (b), b

)
is isomorphic to the νb-th element in the list Lσ,dr (kj).

We want to store this information in such a way that for any given tuple b ∈ domk′
it can

be checked in time O(k) whether b ∈ Γ. To ensure this, we use a k′-ary array Γk′ that is
initialised to 0, and where during update operations the entry Γk′ [b] is set to 1 for all b ∈ Γ
of arity k′. In a similar way we can ensure that for any given j ∈ [c] and any b ∈ Γ of arity
kj , the number νb can be looked up in time O(k).

The test routine upon input of a tuple a computes the signature sgnD(a) of a in D, tests
whether sgnD(a) = sgn(τ) and outputs “yes” if this is the case and “no” otherwise. Using
the information stored in our data structure, all this can be done in time O(k2). The bound
on the update time follows from the fact that the insertion or deletion of a tuple affects only
a small number of entries in the data structure. J

Theorem 6.1 is now obtained by combining Theorem 3.1, Lemma 6.2, Theorem 4.1, and
Lemma 5.3.

Proof of Theorem 6.1. For k = 0, the theorem immediately follows from Theorem 4.1.
Consider the case where k > 1. As in the proof of Theorem 4.1, we assume w.l.o.g. that all
the symbols of σ occur in ϕ. We start the preprocessing routine by using Theorem 3.1 to
transform ϕ(x) into a d-equivalent query ψ(x) in Hanf normal form; this takes time 2d2O(||ϕ||)

.
The formula ψ is a Boolean combination of d-bounded Hanf-sentences and sphere-formulas
(over σ) of locality radius at most r := 4qr(ϕ), and each sphere-formula is of arity at most k.
Let χ1, . . . , χs be the list of all Hanf-sentences that occur in ψ.

We use Lemma 5.1 to compute the list Lσ,dr (k) = τ1, . . . , τ`. In parallel for each i ∈ [`],
we use the algorithm provided by Lemma 6.2 for τ := τi. Furthermore, for each j ∈ [s], we

ICDT 2017

8:12 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

use the algorithm provided by Theorem 4.1 upon input of the Hanf-sentence ϕ := χj . In
addition to the components used by these dynamic algorithms, our data structure also stores

the set J := {j ∈ [s] : D |= χj},
the particular set I ⊆ [`] provided by Lemma 5.3 for ψ(x) and J , and
the set K = {sgn(τi) : i ∈ I}, where for each type τ , sgn(τ) is the signature of τ defined
directly after Lemma 5.4.

The test routine upon input of a tuple a = (a1, . . . , ak) proceeds in the same way as in the
proof of Lemma 6.2 to compute in time O(k2) the signature sgnD(a) of the tuple a. For every
i ∈ [`] we have a ∈ sphτi(D) ⇐⇒ sgnD(a) = sgn(τi). Thus, a ∈ ϕ(D) ⇐⇒ sgnD(a) ∈ K.
Therefore, the test routine checks whether sgnD(a) ∈ K and outputs “yes” if this is the case
and “no” otherwise. To ensure that this test can be done in time O(k2), we use an array
construction for storing K (similar to the one for storing Γ in the proof of Lemma 6.2).

The update routine runs in parallel the update routines for all the used dynamic data
structures. Afterwards, it recomputes J by calling the answer routine for χj for all j ∈ [s].
Then, it uses Lemma 5.3 to recompute I. The set K is then recomputed by applying
Lemma 5.4 for τ := τi for all i ∈ I. It is straightforward to see that the overall runtime of
the update routine is tu = 2d2O(||σ||)

. This completes the proof of Theorem 6.1. J

7 Representing Databases by Coloured Graphs

To obtain dynamic algorithms for counting and enumerating query results, it will be con-
venient to work with a representation of databases by coloured graphs that is similar to
the representation used in [6]. For defining this representation, let us consider a fixed d-
bounded r-type τ with k centres (over a schema σ). Use Lemma 5.4 to compute the formula
conn-sphτ (x) (for x = (x1, . . . , xk)) and the according parameters c and kj , νj , xj , τj,νj , and
let sgn(τ) be the signature of τ . To keep the notation simple, we assume w.l.o.g. that
x1 = x1, . . . , xk1 , x2 = xk1+1, . . . , xk1+k2 etc.

Recall that sphτ (x) is d-equivalent to the formula

conn-sphτ (x) :=
∧
j∈[c]

sphτj,νj (xj) ∧
∧
j 6=j′

¬ distkj ,kj′

62r+1(xj , xj′).

To count or enumerate the results of the formula sphτ (x) we represent the database D by a
c-coloured graph GD. Here, a c-coloured graph G is a database of the particular schema

σc := {E,C1, . . . , Cc},

where E is a binary relation symbol and C1, . . . , Cc are unary relation symbols. We define
GD in such a way that the task of counting or enumerating the results of the query sphτ (x)
on the database D can be reduced to counting or enumerating the results of the query

ϕc(z1, . . . , zc) :=
∧
j∈[c]

Cj(zj) ∧
∧
j 6=j′

¬E(zj , zj′) (3)

on the c-coloured graph GD. The vertices of GD correspond to tuples over adom(D) whose
r-neighbourhood is connected; a vertex has colour Cj if its associated tuple a is in sphτj,νj (D);
and an edge between two vertices indicates that distD(a; b) 6 2r+1, for their associated
tuples a and b. The following lemma allows to translate a dynamic algorithm for counting
or enumerating the results of the query ϕc(z1, . . . , zc) on c-coloured graphs into a dynamic
algorithm for counting or enumerating the result of the query sphτ (x) on D.

C. Berkholz, J. Keppeler, and N. Schweikardt 8:13

I Lemma 7.1. Suppose that the counting problem (the enumeration problem) for ϕc(z) on
σc-dbs of degree at most d′ can be solved by a dynamic algorithm with initialisation time
ti(c, d′), update time tu(c, d′), and counting time tc(c, d′) (delay td(c, d′)). Then for every
schema σ and every d > 2 the following holds.

(1) Let r > 0, k > 1, τ a d-bounded r-type with k centres, and fix d′ := d2k2(2r+1)

and t̃x := maxkc=1 tx(c, d′) for tx ∈ {ti, tu, tc, td}. The counting problem (the enumeration
problem) for sphτ (x) on σ-dbs of degree at most d can be solved by a dynamic algorithm
with counting time t̃c (delay O(t̃dk)), update time t′u 6 t̃ud

O(k2r+k||σ||) + 2O(||σ||k2d2r+2), and
initialisation time t̃i.

(2) The counting problem (the enumeration problem) for k-ary FO+MOD-queries ϕ(x)
on σ-dbs of degree at most d can be solved with counting time O(1) (delay O(t̂dk)), update
time (t̂u + t̂c)2d

2O(||ϕ||)

, and initialisation time t̂i2d
2O(||ϕ||)

where t̂x = maxkc=1 tx
(
c, d2O(||ϕ||))

for tx ∈ {ti, tu, tc, td}.

Proof sketch. The first part is a simple reduction from conn-sphτ (x) to ϕc and can be
found in the full version of the paper. The second part for k = 0 follows immediately from
Theorem 4.1. Consider the case where k > 1. W.l.o.g. we assume that all the symbols of σ
occur in ϕ (otherwise, we remove from σ all symbols that do not occur in ϕ). We start the
preprocessing routine by using Theorem 3.1 to transform ϕ(x) into a d-equivalent query ψ(x)
in Hanf normal form; this takes time 2d2O(||ϕ||)

. The formula ψ is a Boolean combination of
d-bounded Hanf-sentences and sphere-formulas (over σ) of locality radius at most r := 4qr(ϕ),
and each sphere-formula is of arity at most k. Note that for d′ := d2k2(2r+1) as used in the
first part it holds that d′ = d2O(||ϕ||) . Let χ1, . . . , χs be the list of all Hanf-sentences that
occur in ψ (recall that s 6 2d2O(||ϕ||)

).

We use Lemma 5.1 to compute the list Lσ,dr (k) = τ1, . . . , τ` (note that ` 6 2d2O(||ϕ||)

).
In parallel for each i ∈ [`], we use the dynamic algorithm for sphτi(x) provided from the
lemma’s part (1). Furthermore, for each j ∈ [s], we use the dynamic algorithm provided by
Theorem 4.1 upon input of the Hanf-sentence ϕ := χj . In addition to the components used
by these dynamic algorithms, our data structure also stores

the set J := {j ∈ [s] : D |= χj},

the particular set I ⊆ [`] provided by Lemma 5.3 for ψ(x) and J , and

the cardinality n = |ϕ(D)| of the query result.

The count routine simply outputs the value n in time O(1). The enumerate routine
runs the enumerate routine on sphτi(D) for every i ∈ I. Note that this enumerates, without
repetition, all tuples in ϕ(D), because by Lemma 5.3, ϕ(D) is the union of the sets sphτi(D)
for all i ∈ I, and this is a union of pairwise disjoint sets. The update routine runs in parallel
the update routines for all used dynamic data structures. Afterwards, it recomputes J by
calling the answer routine for χj for all j ∈ [s]. Then, it uses Lemma 5.3 to recompute
I. The number n is then recomputed by letting n =

∑
i∈I ni, where ni is the result of the

count routine for τi. It is straightforward to verify that the overall runtime of the update
routine is bounded by (t̂u + t̂c)2d

2O(||ϕ||)

. J

ICDT 2017

8:14 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

8 Counting Results of FO+MOD Queries Under Updates

This section is devoted to the proof of the following theorem.

I Theorem 8.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to return the cardinality |ϕ(D)| of the query result within
time O(1). The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

The theorem follows immediately from Lemma 7.1 and the following dynamic counting
algorithm for the query ϕc(z).

I Lemma 8.2. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes |ϕc(G)| with dO(c2) initialisation time,
O(1) counting time, and dO(c2) update time.

Proof. Recall that ϕc(z1, . . . , zc) =
∧
i∈[c] Ci(zi) ∧

∧
j 6=j′ ¬E(zj , zj′). For all j, j′ ∈ [c]

with j 6= j′ consider the formula θj,j′(z1, . . . , zc) := E(zj , zj′) ∧
∧
i∈[c] Ci(zi). Furthermore,

let α(z1, . . . , zc) :=
∧
i∈[c] Ci(zi). Clearly, for every σc-db G we have

α(G) = CG1 × · · · × CGc ,

ϕc(G) = α(G) \
(⋃
j 6=j′

θj,j′(G)
)
, and hence, |ϕc(G)| = |α(G)| −

∣∣∣ ⋃
j 6=j′

θj,j′(G)
∣∣∣.

By the inclusion-exclusion principle we obtain for J := {(j, j′) : j, j′ ∈ [c], j 6= j′} that∣∣∣ ⋃
j 6=j′

θj,j′(G)
∣∣∣ =

∑
∅6=K⊆J

(−1)|K|−1
∣∣∣ ⋂
(j,j′)∈K

θj,j′(G)
∣∣∣ =

∑
∅6=K⊆J

(−1)|K|−1 ∣∣ϕK(G)
∣∣

for the formula ϕK(z1, . . . , zc) :=
∧
i∈[c] Ci(zi) ∧

∧
(j,j′)∈K E(zj , zj′).

Our data structure stores the following values:
|CGi |, for each i ∈ [c], and n1 := |α(G)| =

∏
i∈[c] |C

G
i |,

|ϕK(G)|, for each K ⊆ J with K 6= ∅, and
n2 :=

∑
∅6=K⊆J(−1)|K|−1

∣∣ϕK(G)
∣∣ and n3 := n1 − n2.

Note that n3 = |ϕc(G)| is the desired size of the query result. Therefore, the count routine
can answer in time O(1) by just outputting the number n3.

It remains to show how these values can be initialised and updated during updates of G.
The initialisation for the empty graph initialises all the values to 0. In the update routine,
the values for |CGi | and n1 can be updated in a straightforward way (using time O(c)). For
each K ⊆ J , the update of |ϕK(G)| is provided within time dO(c2) by the following Claim 8.3,
whose proof can be found in the full version of the paper.

I Claim 8.3. For every K ⊆ J , the cardinality |ϕK(G)| of a σc-db G of degree at most d can
be updated within time dO(c2) after dO(c2) · |G0| preprocessing time.

Once we have available the updated numbers |ϕK(G)| for all K ⊆ J , the value n2 can
be computed in time O(|2J |) 6 2O(c2). And n3 is then obtained in time O(1). Altogether,
performing the update routine takes time at most dO(c2). The preprocess routine initialises
all values for the empty graph and then uses |G0| update steps to insert all the tuples of G0
into the data structure. This completes the proof of Lemma 8.2. J

C. Berkholz, J. Keppeler, and N. Schweikardt 8:15

9 Enumerating Results of FO+MOD Queries Under Updates

In this section we prove (and afterwards, improve) the following theorem.

I Theorem 9.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to enumerate ϕ(D) with d2O(||ϕ||) delay.

The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

The theorem follows immediately from Lemma 7.1 and the following dynamic enumeration
algorithm for the query ϕc(z).

I Lemma 9.2. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes within tp = dpoly(c) · |G0| preprocessing
time a data structure that can be updated in time dpoly(c) and allows to enumerate the query
result ϕc(G) with O(c3d) delay.

Proof. For a σc-db G and a vertex v ∈ adom(G) we let NG(v) be the set of all neighbours of
v in G. I.e., NG(v) is the set of all w ∈ adom(G) such that (v, w) or (w, v) belongs to EG .

The underlying idea of the enumeration procedure is the following greedy strategy. We
cycle through all vertices u1 ∈ CG1 , u2 ∈ CG2 \NG(u1), u3 ∈ CG3 \

(
NG(u1) ∪NG(u2)

)
, . . . ,

uc ∈ CGc \
⋃
i6c−1 N

G(ui) and output (u1, . . . , uc). This strategy does not yet lead to a
constant delay enumeration, as there might be vertex tuples (u1, . . . , ui) (for i < c) that
do extend to an output tuple (u1, . . . , uc), but where many possible extensions are checked
before this output tuple is encountered. We now show how to overcome this problem and
describe an enumeration procedure with O(c3d) delay and update time dpoly(c).

Note that for every J ⊆ [c] we have
∣∣⋃

j∈J N
G(uj)

∣∣ 6 cd. Hence, if a set CGi contains
more than cd elements, we know that every considered tuple has an extension ui ∈ CGi that is
not a neighbour of any vertex in the tuple. Let I := {i ∈ [c] : |CGi | 6 cd} be the set of small
colour classes in G and to simplify the presentation we assume without loss of generality that
I = {1, . . . , s}. In our data structure we store the current index set I and the set

S :=
{

(u1, . . . , us) ∈ CG1 × · · · × CGs : (uj , uj′) /∈ EG , for all j 6= j′
}

(4)

of tuples on the small colours. Note that a tuple (u1, . . . , us) ∈ CG1 × · · · ×CGs extends to an
output tuple (u1, . . . , uc) ∈ ϕc(G) if and only if it is contained in S. As |S| 6 (cd)c, it is not
hard to see that we can recompute the sets I and S in time dpoly(c) after every update. The
enumeration procedure is given in Algorithm 1.

It is straightforward to see that this procedure enumerates ϕc(G). Let us analyse the delay.
Since for all i > s we have that

∣∣CGi ∣∣ > cd, it follows that every call of Enum(u1, . . . , ui)
leads to at least one recursive call of Enum(u1, . . . , ui, ui+1). Furthermore, there are at most
cd iterations of the loop in line 7 that do not lead to a recursive call. As every test in line 8
can be done in time O(c), it follows that the time spans until the first recursive call, between
the calls, and after the last call are bounded by O(c2d). As the recursion depth is c, the
overall delay between two output tuples is bounded by O(c3d). J

By using similar techniques as in [6], we can obtain the following improved version of
Lemma 9.2 where the delay is independent of the degree bound d.

ICDT 2017

8:16 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

Algorithm 1 Enumeration procedure.
1: for all (u1, . . . , us) ∈ S do Enum(u1, . . . , us).
2: Output the end-of-enumeration message EOE.
3:
4: function Enum(u1, . . . , ui)
5: if i = c then output the tuple (u1, . . . , uc).
6: else
7: for all ui+1 ∈ CGi+1 do
8: if ui+1 /∈

⋃i
j=1 N

G(uj) then Enum(u1, . . . , ui, ui+1).

I Lemma 9.3. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes within tp = dpoly(c) · |G0| preprocessing
time a data structure that can be updated in time dpoly(c) and allows to enumerate the query
result ϕc(G) with O(c2) delay.

Proof idea. We proceed in a similar way as in the proof of Lemma 9.2. But in order to
enumerate the tuples with onlyO(c2) delay, we replace the loop in lines 7–8 of Algorithm 1 by a
precomputed “skip” function that allows to iterate through all elements in CGi+1\

⋃i
j=1 N

G(uj)
with O(c) delay. This technique has been introduced for static databases in [6]. It turns
out that it is possible to maintain the additional information with dpoly(c) update time. For
details we refer the reader to the full version of the paper. J

By Lemma 7.1, this directly improves the delay in Theorem 9.1 from d2O(||ϕ||) to O(k3)
and leads to the following theorem.

I Theorem 9.4. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to enumerate ϕ(D) with O(k3) delay. The function f(ϕ, d)
is of the form 2d2O(||ϕ||)

.

10 Conclusion

Our main results show that in the dynamic setting (i.e., allowing database updates), the
results of k-ary FO+MOD-queries on bounded degree databases can be tested and counted
in constant time and enumerated with constant delay, after linear time preprocessing and
with constant update time. Here, “constant time” refers to data complexity and is of size
poly(k) concerning the delay and the time for testing and counting. The time for performing
a database update is 3-fold exponential in the size of the query and the degree bound, and is
worst-case optimal.

The starting point of our algorithms is to decompose the given query into a query in
Hanf normal form, using a recent result of [10]. This normal form is only available for the
setting with a fixed maximum degree bound d, i.e., the setting considered in this paper.

Recently, Kuske and Schweikardt [13] introduced a new kind of Hanf normal form for a
variant of first-order logic with counting that contains and extends Libkin’s logic FO(Cnt) [14]
and Grohe’s logic FO+C [8]. As an application it is shown in [13] that the present paper’s
techniques can be lifted from FO+MOD to full first-order logic with counting.

C. Berkholz, J. Keppeler, and N. Schweikardt 8:17

An obvious future task is to investigate to which extent further query evaluation results
that are known for the static setting can be lifted to the dynamic setting. More specifically:
Are there efficient dynamic algorithms for evaluating (i.e., answering, testing, counting, or
enumerating) results of first-order queries on other sparse classes of databases (e.g. planar,
bounded treewidth, bounded expansion, nowhere dense) or databases of low degree, lifting
the “static” results accumulated in [12, 9, 6] to the dynamic setting?

References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995. URL: http://webdam.inria.fr/Alice/.

2 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries
under updates. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’17, 2017. To appear.

3 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD queries
under updates on bounded degree databases. CoRR, abs/1702.08764, 2017. URL: http:
//arxiv.org/abs/1702.08764.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms (3. ed.). MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

5 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded
degree are computable with constant delay. ACM Trans. Comput. Log., 8(4), 2007. doi:
10.1145/1276920.1276923.

6 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA,
June 22-27, 2014, pages 121–131, 2014. doi:10.1145/2594538.2594539.

7 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.
01.007.

8 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Struc-
ture Theory. Lecture Notes in Logic. Association for Symbolic Logic in
conjunction with Cambridge University Press, to appear. Preliminary ver-
sion available at https://www.lii.rwth-aachen.de/de/13-mitarbeiter/professoren/
39-book-descriptive-complexity.html.

9 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties
of nowhere dense graphs. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 89–98, 2014. doi:10.1145/2591796.2591851.

10 Lucas Heimberg, Dietrich Kuske, and Nicole Schweikardt. Hanf normal form for first-
order logic with unary counting quantifiers. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS’16, New York, NY, USA, July 5-8, 2016,
pages 277–286, 2016. doi:10.1145/2933575.2934571.

11 Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded
degree. Logical Methods in Computer Science, 7(2), 2011. doi:10.2168/LMCS-7(2:20)
2011.

12 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of
structures with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA,
June 22–27, 2013, pages 297–308, 2013. doi:10.1145/2463664.2463667.

ICDT 2017

http://webdam.inria.fr/Alice/
http://arxiv.org/abs/1702.08764
http://arxiv.org/abs/1702.08764
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1145/1276920.1276923
http://dx.doi.org/10.1145/1276920.1276923
http://dx.doi.org/10.1145/2594538.2594539
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1016/j.apal.2004.01.007
https://www.lii.rwth-aachen.de/de/13-mitarbeiter/professoren/39-book-descriptive-complexity.html
https://www.lii.rwth-aachen.de/de/13-mitarbeiter/professoren/39-book-descriptive-complexity.html
http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1145/2933575.2934571
http://dx.doi.org/10.2168/LMCS-7(2:20)2011
http://dx.doi.org/10.2168/LMCS-7(2:20)2011
http://dx.doi.org/10.1145/2463664.2463667

8:18 Answering FO+MOD Queries Under Updates on Bounded Degree Databases

13 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting: At least, weak
Hanf normal forms always exist and can be computed! Unpublished manuscript, 2017.

14 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

15 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

16 Bernard M. E. Moret and Henry D. Shapiro. Algorithms from P to NP: Volume 1: Design
& Efficiency. Benjamin-Cummings, 1991.

17 Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. J.
Comput. Syst. Sci., 55(2):199–209, 1997. doi:10.1006/jcss.1997.1520.

18 Thomas Schwentick and Thomas Zeume. Dynamic complexity: recent updates. SIGLOG
News, 3(2):30–52, 2016. doi:10.1145/2948896.2948899.

19 Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1006/jcss.1997.1520
http://dx.doi.org/10.1145/2948896.2948899

	Introduction
	Preliminaries
	Hanf Normal Form for FO+MOD
	Answering Boolean FO+MOD Queries Under Updates
	Technical Lemmas on Types and Spheres Useful for Handling Non-Boolean Queries
	Testing Non-Boolean FO+MOD Queries Under Updates
	Representing Databases by Coloured Graphs
	Counting Results of FO+MOD Queries Under Updates
	Enumerating Results of FO+MOD Queries Under Updates
	Conclusion

