
A Logic for Document Spanners∗

Dominik D. Freydenberger

University of Bayreuth, Bayreuth, Germany

Abstract
Document spanners are a formal framework for information extraction that was introduced by
Fagin, Kimelfeld, Reiss, and Vansummeren (PODS 2013, JACM 2015). One of the central models
in this framework are core spanners, which are based on regular expressions with variables that
are then extended with an algebra. As shown by Freydenberger and Holldack (ICDT 2016), there
is a connection between core spanners and ECreg, the existential theory of concatenation with
regular constraints. The present paper further develops this connection by defining SpLog, a
fragment of ECreg that has the same expressive power as core spanners. This equivalence extends
beyond equivalence of expressive power, as we show the existence of polynomial time conversions
between this fragment and core spanners. This even holds for variants of core spanners that
are based on automata instead of regular expressions. Applications of this approach include an
alternative way of defining relations for spanners, insights into the relative succinctness of various
classes of spanner representations, and a pumping lemma for core spanners.

1998 ACM Subject Classification H.2.1 Data Models, H.2.4 Textual databases, Relational
Databases, Rule-Based Databases, F.4.3 Classes Defined by Grammars or Automata, Decision
Problems, F.1.1 Relations Between Models, F.4.m Miscellaneous

Keywords and phrases Information extraction, document spanners, word equations, regex, de-
scriptional complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.13

1 Introduction

Fagin, Kimelfeld, Reiss, and Vansummeren [11] introduced document spanners as a formal
framework for information extraction. Document spanners formalize the query language AQL
that is used in IBM’s SystemT. On an intuitive level, document spanners can be understood
as a generalized form of searching in a text w: In its basic form, search can be understood as
taking a search term u (or a regular expression α) and a word w, and computing all intervals
of positions of w that contain u (or a word from L(α)). These intervals are called spans.
Spanners generalize searching by computing relations over spans of w.

In order to define spanners, [11] introduced regex formulas, which are regular expressions
with variables. Each variable x is connected to a subexpression α, and when α matches a
subword of w, the corresponding span is stored in x (this behaves like the capture groups
that are often used in real world implementation of search-and-replace functionality). Core
spanners combine these regex formulas with the algebraic operators projection, union, join
(on spans), and string equality selection.

Freydenberger and Holldack [12] connected core spanners to ECreg, the existential theory
of concatenation with regular constraints. Described very informally, ECreg is a logic that
combines equations on words (like xaby = ybax) with positive logical connectives, and
regular languages that constrain variable replacement. In particular, [12] showed that every

∗ Supported by Deutsche Forschungsgemeinschaft (DFG) under grant FR 3551/1-1.

© Dominik D. Freydenberger;
licensed under Creative Commons License CC-BY

20th International Conference on Database Theory (ICDT 2017).
Editors: Michael Benedikt and Giorgio Orsi; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Logic for Document Spanners

core spanner can be converted into an ECreg-formula, which can then be used to decide
satisfiability. Furthermore, while every ECreg-formula can be converted into an equisatisfiable
core spanner, the resulting spanner cannot be used to evaluate the formula (as, due to details
of the encoding, the input word w of the spanner needs to encode the formula).

This paper further explores the connection of core spanners and ECreg. As main conceptual
contribution, we introduce SpLog (short for spanner logic), a natural fragment of ECreg that
has the same expressive power as core spanners. In contrast to the PSPACE-complete
combined complexity of ECreg-evaluation, the combined complexity of SpLog-evaluation is
NP-complete, and its data complexity is in NL. As main technical result, we demonstrate
the existence of polynomial time conversions between SpLog and spanner representations (in
both directions), even if the spanners are defined with automata instead of regex formulas.

As a consequence, SpLog can augment (or even replace) the use of regex formulas or
automata in the definition of core spanners. Moreover, this shows that the PSPACE upper
bounds from [12] for deciding satisfiability and hierarchicality of regex formula based spanners
apply to automata based spanners as well. In addition to this, we adapt a pumping lemma
for word equations to SpLog (and, hence, to core spanners). The main result also provides
insights into the relative succinctness of classes of automata based spanners: While there are
exponential trade-offs between various classes of automata, these differences disappear when
adding the algebraic operators.

From a more general point of view, this paper can also be seen as an attempt to connect
spanners to the research on equations on words and on groups (cf. Diekert [7, 6] for surveys),
where ECreg has been studied as a natural extension of word equations. We shall see that
SpLog is a natural fragment of ECreg: On an informal level, SpLog has to express relations on
a word w without using additional working space (which explains the friendlier complexity
of evaluation, in comparison to ECreg). This gives us reason to expect that SpLog can be
applied to other models, like graph databases (as a related example of an application of ECreg

for graph databases, Barceló and Muñoz [1] use a restricted class of ECreg-formulas for which
data complexity is also in NL).

This paper is structured as follows: Section 2 gives the definitions of spanners and of
ECreg, as well as a few preliminary results. Section 3 introduces SpLog and connects it to
spanners. We then examine properties of SpLog: Section 4 discusses how SpLog can be used
to express relations, while Section 5 adapts an EC-inexpressibility result to SpLog. Section 6
concludes the paper. Most of the proofs can be found only in the full version of the paper1.

2 Preliminaries

Let Σ be a fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we
assume |Σ| ≥ 2. Let Ξ be an infinite alphabet of variables that is disjoint from Σ. We use ε
to denote the empty word. For every word w and every letter a, let |w| denote the length of
w, and |w|a the number of occurrences of a in w. A word x is a subword of a word y if there
exist words u, v with y = uxv. We denote this by x v y; and we write x 6v y if x v y does
not hold. For words x, y, z with x = yz, we say that y is a prefix of x, and z is a suffix of
x. A prefix or suffix y of x is proper if x 6= y. For every k ≥ 0, a k-ary word relation (over
Σ) is a subset of (Σ∗)k. Given a nondeterministic finite automaton (NFA) A (or a regular
expression α), we use L(A) (or L(α)) to denote its language. In NFAs, we allow the use of
ε-transitions (this model is also called ε-NFA in literature).

1 http://ddfy.de/sci/splog.pdf

http://ddfy.de/sci/splog.pdf

D.D. Freydenberger 13:3

The remainder of this section contains the two models that this paper connects: Document
spanners in Section 2.1, and ECreg in Section 2.2.

2.1 Document Spanners
2.1.1 Primitive Spanner Representations
Let w := a1a2 · · · an be a word over Σ, with n ≥ 0 and a1, . . . , an ∈ Σ. A span of w is
an interval [i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ≥ 0. For each span [i, j〉 of w, we define
w[i,j〉 := ai · · · aj−1. That is, each span describes a subword of w by its bounding indices.

I Example 1. Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans of w, but
[10, 11〉 is not. As 3 6= 5, the first two spans are not equal, even though w[3,3〉 = w[5,5〉 = ε.
The whole word w is described by the span [1, 10〉.

Let V ⊂ Ξ be finite, and let w ∈ Σ∗. A (V,w)-tuple is a function µ that maps each
variable in V to a span of w. If context allows, we write w-tuple instead of (V,w)-tuple. A
set of (V,w)-tuples is called a (V,w)-relation. A spanner is a function P that maps every
w ∈ Σ∗ to a (V,w)-relation P (w). Let V be denoted by SVars (P). Two spanners P1 and P2
are equivalent if SVars (P1) = SVars (P2), and P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w to a set of
functions, each of which assigns spans of w to the variables of the spanner. We now examine
a formalism that can be used to define spanners:

I Definition 2. A regex formula is an extension of regular expressions to include variables.
The syntax is specified with the recursive rules α := ∅ | ε | a | (α ∨ α) | (α · α) | (α)∗ | x{α}
for a ∈ Σ, x ∈ Ξ. We add and omit parentheses freely, as long as the meaning remains clear,
and use α+ as shorthand for α · α∗, and Σ as shorthand for

∨
a∈Σ a.

Regex formulas can be interpreted as special case of so-called regex, which extend classical
regular expressions with a repetition operator (see Section 4.3 for a brief and [12] for a
more detailed discussion). This applies to syntax and semantics. In particular, both models
define their syntax with parse trees, which is rather impractical for many of our proofs.
Instead of using this definition, we present one that is based on ref-words (short for reference
words) by Schmid [23]. A ref-word is a word over the extended alphabet (Σ ∪ Γ), where
Γ := {`x, ax | x ∈ Ξ}. Intuitively, the symbols `x and ax mark the beginning and the end
of the span that belongs to the variable x. In order to define the semantics of regex formulas,
we treat them as generators of ref-languages (i. e., languages of ref-words):

I Definition 3. For every regex formula α, we define its ref-language R(α) by R(∅) := ∅,
R(a) := {a} for a ∈ Σ ∪ {ε}, R(α1 ∨ α2) := R(α1) ∪ R(α2), R(α1 · α2) := R(α1) · R(α2),
R(α∗1) := R(α1)∗, and R(x{α1}) := `xR(α1)ax.

Let SVars (α) be the set of all x ∈ Ξ such that x{ } occurs in α. A ref-word r ∈ R(α) is
valid if, for every x ∈ SVars (α), |r|`x

= 1. Let Ref(α) := {r ∈ R(α) | r is valid}. We call α
functional if Ref(α) = R(α), and denote the set of all functional regex formulas by RGX.

In other words, R(α) treats α like a standard regular expression over the alphabet (Σ ∪ Γ),
where x{α1} is interpreted as `xα1ax. Furthermore, Ref(α) contains exactly those words
where each variable x is opened and closed exactly once.

I Example 4. Define regex formulas α := (x{a}y{b}) ∨ (y{a}x{b}), β := x{a} ∨ y{a}, and
γ := x{a}x{a}. Then α is a functional, while β and γ are not (in fact, Ref(α) = Ref(β) = ∅).

ICDT 2017

13:4 A Logic for Document Spanners

Like [11, 12], this paper only examines functional regex formulas. Hence, without loss of
generality, we assume that no variable binding x{ } occurs under a Kleene star ∗.

The definition of R(α) implies that every r ∈ Ref(α) has a unique factorization r =
r1`xr2axr3 for every x ∈ SVars (α). This can be used to define µ(x) (i. e., the span that is
assigned to x). To this purpose, we define a morphism clr : (Σ ∪ Γ)∗ → Σ∗ by clr(a) := a for
all a ∈ Σ, and clr(g) := ε for all g ∈ Γ (in other words, clr projects ref-words to Σ). Then
clr(r1) contains the part of w that precedes µ(x), and clr(r2) contains wµ(x).

For α ∈ RGX and w ∈ Σ∗, let Ref(α,w) := {r ∈ Ref(α) | clr(r) = w}. Then every word
of Ref(α,w) encodes one possibility of assigning variables in w that is consistent with α.

I Definition 5. Let α ∈ RGX, w ∈ Σ∗, and V := SVars (α). Every r ∈ Ref(α,w) defines a
(V,w)-tuple µr in the following way: For every x ∈ Vars (α), there exist uniquely defined
r1, r2, r3 with r = r1`xr2axr3. Then µr(x) := [|clr(r1)|+ 1, |clr(r1r2)|+ 1〉. The function JαK
from words w ∈ Σ∗ to (V,w)-relations is defined by JαK(w) := {µr | r ∈ Ref(α,w)}.

I Example 6. Assume that a, b ∈ Σ. We define the functional regex formula

α := Σ∗ · x
{

a · y{Σ∗} · (z{a} ∨ z{b})
}
· Σ∗.

Let w := baaba. Then JαK(w) consists of the tuples ([2, 4〉, [3, 3〉, [3, 4〉), ([2, 5〉, [3, 4〉, [4, 5〉),
([2, 6〉, [3, 5〉, [5, 6〉), ([3, 5〉, [4, 4〉, [4, 5〉), ([3, 6〉, [4, 5〉, [5, 6〉).

As one example of an r ∈ Ref(α,w), consider r = b`xa`yaay`zbazaxa. This yields
µr(x) = [2, 5〉, µr(y) = [3, 4〉, and µr(z) = [4, 5〉.

It is easily seen that the definition of JαK with ref-words is equivalent to the definition
from [11]; and so is the definition of functional regex formulas. Basing the definition of
semantics on ref-words has two advantages: Firstly, treating R(α) as a language over (Σ∪ Γ)
allows us to use standard techniques from automata theory, and secondly, it generalizes well
to two automata models for defining spanners from [11]. We begin with the first model:

I Definition 7. Let V ⊂ Ξ be a finite set of variables, and define ΓV := {`x,ax | x ∈ V }. A
variable set automaton (vset-automaton) over Σ with variables V is a tuple A = (Q, q0, qf , δ),
where Q is the set of states, q0, qf ∈ Q are the initial and the final state, and δ : Q× (Σ ∪
{ε} ∪ ΓV)→ 2Q is the transition function.

We interpret A as a directed graph, where the nodes are the elements of Q, each q ∈ δ(p, a)
is represented with an edge from p to q with label a, where p ∈ Q and a ∈ (Σ∪{ε}∪ΓV). We
extend δ to δ̂ : Q× (Σ ∪ ΓV)∗ → 2Q such that for all p, q ∈ Q and r ∈ (Σ ∪ ΓV)∗, q ∈ δ̂(p, r)
if and only if there is a path from p to q that is labeled with r. We use this to define
R(A) := {r ∈ (Σ ∪ ΓV)∗ | qf ∈ δ̂(q0, r)}.

Let SVars (A) be the set of all x ∈ V such that `x or ax occurs in A. A ref-word r ∈ R(A)
is valid if, for every x ∈ SVars (A), |r|`x

= |r|ax
= 1, and `x occurs to the left of ax. Then

Ref(A), Ref(A,w), and JAK are defined analogously to regex formulas.

Hence, a vset-automaton can be understood as an NFA over Σ that has additional transitions
that open and close variables. When using ref-words, it is interpreted as NFA over the
alphabet (Σ∪Γ), and defines the ref-language R(A); and Ref(A) is the subset of R(A) where
each variable in V is opened and closed exactly once (and the two operations occur in the
correct order). This also demonstrates why our definition is equivalent to the definition
from [11] (there, the condition that every variable has to be opened and closed exactly once
is realized by the definition of the successor relation for configurations). In particular, every
word in Ref(A) encodes an accepting run of A (as defined in [11]).

D.D. Freydenberger 13:5

a

`x

a

`y

a,ax,ay a

`x

a

`y

a,a

Figure 1 A vset-automaton Aset (left) and a vstk-automaton Astk (right). Then Ref(Aset) consist of
ref-words r = ai1`xai2`yai3az1 ai4az2 ai5 , with i1, . . . , i5 ≥ 0, z1, z2 ∈ {x, y} and z1 6= z2. Similarly,
the ref-words from Ref(Astk) are of the form r = ai1`xai2`yai3a ai4a ai5 , with i1, . . . , i5 ≥ 0. The
left a closes y, and the right a closes x.

Although interpreting vset-automata as acceptors of ref-languages is often convenient, it
comes with a caveat. While Ref(A1) = Ref(A2) implies JA1K = JA2K for all A1, A2 ∈ VAset, the
converse does not hold: Consider the two ref-words r1 := `x`yaayax and r2 := `y`xaaxay.
Both define the same a-tuple µ (with µ(x) = µ(y) = [1, 2〉), although r1 6= r2.

Fagin et al. [11] also introduced the variable stack automaton (vstk-automaton). Its
definition is almost identical to vset-automata, the only difference is that instead of using a
distinct symbol ax for every variable x, vstk-automata have only a single closing symbol a,
which closes the variable that was opened most recently (hence the “stack” in “variable
stack automaton”). From now on, assume that Γ also includes a, and extend clr by defining
clr(a) := ε. For every vstk-automaton A, R(A) and SVars (A) are defined as for vset-
automata. We define Ref(A) as the set of all valid r ∈ R(A), where r is valid if, for each
x ∈ SVars (A), `x occurs exactly once in w, and is closed by a matching a. More formally,
r is valid if |r|a =

∑
x∈SVars(A) |r|`x

, and for every x ∈ SVars (A), we have that |r|`x
= 1 and

r can be uniquely factorized into r = r1`xr2ar3, with |r2|a =
∑
x∈SVars(A) |r2|`x

. This unique
factorization allows us to interpret every r ∈ Ref(A) as a µr analogously to vset-automata.

We use VAset and VAstk to denote the set of all vset-automata and all vstk-automata,
respectively. We define VA := VAset ∪ VAstk, and refer to the elements of VA as v-automata.
An example for each type of v-automata can be found in Figure 1.

2.1.2 Spanner Algebras
In order to construct more sophisticated spanners, we introduce spanner operators.

I Definition 8. Let P, P1, P2 be spanners. The algebraic operators union, projection, natural
join and selection are defined as follows.
Union P1 and P2 are union compatible if SVars (P1) = SVars (P2), and their union (P1 ∪ P2)

is defined by SVars (P1 ∪ P2) := SVars (P1) and (P1 ∪ P2)(w) := P1(w) ∪ P2(w), w ∈ Σ∗.
Projection Let Y ⊆ SVars (P). The projection πY P is defined by SVars (πY P) := Y and

πY P (w) := P |Y (w) for all w ∈ Σ∗, where P |Y (w) is the restriction of all µ ∈ P (w) to Y .
Natural join Let Vi := SVars (Pi) for i ∈ {1, 2}. The (natural) join (P1 ./ P2) of P1 and P2

is defined by SVars (P1 ./ P2) := SVars (P1)∪SVars (P2) and, for all w ∈ Σ∗, (P1 ./ P2)(w)
is the set of all (V1 ∪ V2, w)-tuples µ for which there exist µ1 ∈ P1(w) and µ2 ∈ P2(w)
with µ|V1

(w) = µ1(w) and µ|V2
(w) = µ2(w).

Selection Let R ∈ (Σ∗)k be a k-ary relation over Σ∗. The selection operator ζR is parame-
terized by k variables x1, . . . , xk ∈ SVars (P), written as ζRx1,...,xk

. The selection ζRx1,...,xk
P

is defined by SVars
(
ζRx1,...,xk

P
)

:= SVars (P) and, for all w ∈ Σ∗, ζRx1,...,xk
P (w) is the set

of all µ ∈ P (w) for which
(
wµ(x1), . . . , wµ(xk)

)
∈ R.

Note that join operates on spans, while selection operates on the subwords of w that are
described by the spans. Like [11] (also see the brief remark on core spanners below), we
mostly consider the string equality selection operator ζ= . Hence, unless otherwise noted,

ICDT 2017

13:6 A Logic for Document Spanners

AN AF
a,`x,ax a

`x

a

ax

a

Figure 2 Two vset-automata AN and AF , which both define the universal spanner for the single
variable x (cf. [11]) over the alphabet {a}. As R(AN) contains ref-words like aaxa`x or a`xa`x,
AN is not functional. In contrast to this, AF is functional, as it uses its three states to ensure that
its ref-words contain each of `x and ax exactly once, and in the right order.

the term “selection” refers to selection by the k-ary string equality relation. Regarding
the join of two spanners P1 and P2, P1 ./ P2 is equivalent to the intersection P1 ∩ P2 if
SVars (P1) = SVars (P2), and to the Cartesian Product P1 × P2 if SVars (P1) and SVars (P2)
are disjoint. If applicable, we write ∩ and × instead of ./.

We refer to regex formulas and v-automata as primitive spanner representations. A
spanner algebra is a finite set of spanner operators. If O is a spanner algebra and C is a class
of primitive spanner representations, then CO denotes the set of all spanner representations
that can be constructed by (repeated) combination of the symbols for the operators from
O with regex formulas from C. For each spanner representation of the form oρ (or ρ1 o ρ2),
where o ∈ O, we define JoρK = oJρK (and Jρ1 o ρ2K = Jρ1K o Jρ2K). Furthermore, JCOK is the
closure of JCK under the spanner operators in O.

Fagin et al. [11] refer to JRGX{π,ζ
=,∪,./}K as the class of core spanners, as these capture

the core of the functionality of SystemT. Following this, we define core := {π, ζ=,∪, ./}. This
allows us to use more compact notation, like RGXcore, VAcore

set , VAcore
stk , and VAcore.

2.1.3 Some Results on Automata-Based Spanners
This section develops some basic insights on aspects of v-automata, which we later use to
provide further context to the main result in Section 3. While [11] defines RGX as the set
of functional regex formulas, no analogous restriction is used for VAset and VAstk. Using
ref-word terminology, this means that for each α ∈ RGX, all information that is needed to
determine Ref(α,w) can be derived from R(α). We adapt this notion to v-automata, and
call A ∈ VA functional if Ref(A) = R(A). Figure 2 contains examples for (non-)functional
vset-automata (similar observations can be made for vstk-automata). This definition is also
natural under the semantics as defined in [11]: Translated to these semantics, a v-automaton
A is functional if every path from q0 to qf yields an accepting run of A.

While v-automata in general have to keep track of the used variables, functional v-
automata store this information implicitly in their states. Hence, their evaluation problem
can be solved efficiently:

I Lemma 9. Given w ∈ Σ∗, a functional A ∈ VA, and a (SVars (A), w)-tuple µ, µ ∈ JAK(w)
can be decided in polynomial time.

With a slight modification of standard reachability techniques, we can show the following:

I Proposition 10. Given A ∈ VA, we can decide in polynomial time whether A is functional.

In contrast to Lemma 9, even special cases of evaluating non-functional v-automata are hard:

I Lemma 11. Given A ∈ VA, deciding whether JAK(ε) 6= ∅ is NP-complete.

D.D. Freydenberger 13:7

The proof uses a basic reduction from the Hamiltonian path problem, which is NP-complete
(cf. Garey and Johnson [13]). We discuss the matching upper bound in Section 3.

Obviously, every vset- or vstk-automaton can be transformed into an equivalent functional
automaton, by intersecting with an NFA that accepts the set of all valid ref-words, using the
standard constructions for NFA-intersection. Lemma 11 already suggests that this conversion
is not possible in polynomial time (unless the number of variables is bounded); we also show
matching exponential size bounds:

I Proposition 12. Let fset(k) := 3k, fstk(k) := (k + 2)2k−1, and s ∈ {set, stk}. For every
A ∈ VAs with n states and k variables, there exists an equivalent functional AF ∈ VAs with
n · fs(k) states. For every k ≥ 1, there is an Ak ∈ VAs with one state and k variables, such
that every equivalent functional AF ∈ VAs has at least fs(k) states.

The lower bounds are obtained by treating the v-automata as NFAs, which allows the use
of a fooling set technique by Birget [2]. We briefly compare vset- and vstk-automata: As
shown in [11], JVAstkK ⊂ JVAsetK. The reason for this is that, as vstk-automata always close
the variable that was opened most recently, they can only express hierarchical spanners (a
spanner is hierarchical if its spans do not overlap – for a formal definition, see [11]). While
this behavior can be simulated with vset-automata, a slight modification of the proof of
Proposition 12 shows that this is not possible in an efficient manner:

I Proposition 13. For every k ≥ 1, there is a vstk-automaton Ak with one state and k + 2
edges, such that every vset-automaton A with JAK = JAkK has at least k! states.

Hence, although vstk-automata can express strictly less than vset-automata, they may offer
an exponential succinctness advantage. We revisit this in Section 3.

2.2 Word Equations and ECreg

A pattern is a word α ∈ (Σ ∪ Ξ)∗, and a word equation is a pair of patterns (ηL, ηR), which
can also be written as ηL = ηR. A pattern substitution (or just substitution) is a morphism
σ : (Ξ ∪ Σ)∗ → Σ∗ with σ(a) = a for all a ∈ Σ. Recall that a morphism from a free monoid
A∗ to a free monoid B∗ is a function h : A∗ → B∗ such that h(x · y) = h(x) · h(y) for all
x, y ∈ A∗. Hence, in order to define h, it suffices to define h(x) for all x ∈ A. Therefore, we
can uniquely define a pattern substitution σ by defining σ(x) for each x ∈ Ξ.

A substitution σ is a solution of a word equation (ηL, ηR) if σ(ηL) = σ(ηR). The set of all
variables in a pattern α is denoted by var(α). We extend this to word equations η = (ηL, ηR)
by var(η) := var(ηL) ∪ var(ηR).

The existential theory of concatenation EC is obtained by combining word equations
with ∧, ∨, and existential quantification over variables. Formally, every word equation η
is an EC-formula, and σ |= η if σ is a solution of η. If ϕ1 and ϕ2 are EC-formulas, so are
ϕ∧ := (ϕ1 ∧ ϕ2) and ϕ∨ := (ϕ1 ∨ ϕ2), with σ |= ϕ∧ if σ |= ϕ1 and σ |= ϕ2; and σ |= ϕ∨ if
σ |= ϕ1 or σ |= ϕ2. Finally, for every EC-formula ϕ and every x ∈ Ξ, ψ := (∃x : ϕ) is an
EC-formula, and σ |= ψ if there exists a w ∈ Σ∗ such that σ[x→w] |= ϕ, where the substitution
σ[x→w] is defined by σ[x→w](y) := w if y = x, and σ[x→w](y) := σ(y) if y 6= x.

We also consider the existential theory of concatenation with regular constraints, ECreg.
In addition to word equations, ECreg-formulas can use constraints CA(x), where x ∈ Ξ is a
variable, A is an NFA, and σ |= CA(x) if σ(x) ∈ L(A). As every regular expression can be
directly converted into an equivalent NFA, we also allow constraints Cα(x) that use regular
expressions instead of NFAs. We freely omit parentheses, as long as the meaning of the formula

ICDT 2017

13:8 A Logic for Document Spanners

remains unambiguous. To increase readability, we allow existential quantifiers to range over
multiple variables; i. e., we use ∃x1, x2, . . . , xk : ϕ as a shorthand for ∃x1 : ∃x2 : . . . ∃xk : ϕ.

The set free(ϕ) of free variables of an ECreg-formula ϕ is defined by free(η) = var(η),
free(ϕ1∧ϕ2) := free(ϕ1∨ϕ2) := free(ϕ1)∪ free(ϕ2), and free(∃x : ϕ) := free(ϕ)−{x}. Finally,
we define free(C) = ∅ for every constraint C. (While one could also argue in favor of
free(C(x)) = {x}, choosing ∅ simplifies the definitions in Section 3). For all ϕ ∈ ECreg, let
JϕK := {σ | σ |= ϕ}. Two formulas ϕ1, ϕ2 ∈ ECreg are equivalent if free(ϕ1) = free(ϕ2) and
Jϕ1K = Jϕ2K. We write this as ϕ1 ≡ ϕ2. For increased readability, we use ϕ(x1, . . . , xk) to
denote free(ϕ) = {x1, . . . , xk}. Building on this, we also use (w1, . . . , wk) |= ϕ(x1, . . . , xk) to
denote σ |= ϕ for the substitution σ that is defined by σ(xi) := wi, 1 ≤ i ≤ k.

I Example 14. Consider the EC-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ) and the
ECreg-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ ∧ CΣ+(z)) . Then σ |= ϕ1 if and only if
σ(x) and σ(y) have σ(z) as common prefix. If, in addition to this, σ(z) 6= ε, then σ |= ϕ2.

Every EC-formula can be converted into a single word equation (cf. Karhumäki, Mignosi, and
Plandowski [18]), and every ECreg-formula into a single word equation with rational constraints
(cf. Diekert [6]). For conjunctions, the construction is easily explained: Choose distinct
letters a, b ∈ Σ. Hmelevskii’s pattern pairing function is defined by 〈α, β〉 := αaβaαbβb.
Then (αL = αR) ∧ (βL = βR) holds if and only if 〈αL, βL〉 = 〈αR, βR〉. The construction
for disjunctions is similar, but more involved (and, in general, converting a formula with
alternating disjunctions and conjunctions leads to an exponential size increase).

Satisfiability for ECreg is PSPACE-complete; but even for EC, showing the upper bound
is by no means trivial (cf. [6, 8]). Note that negation is left out intentionally: Even the
EC-fragment ∀∃3 (one universal over three existential variables) is undecidable (Durnev [9]).

3 SpLog: A Logic for Spanners

As shown by Freydenberger and Holldack [12], every element of RGXcore can be converted into
an ECreg-formula, and every word equation with regular constraints (and, hence, every ECreg-
formula) can be converted to RGXcore. While the latter results in a spanner that is satisfiable
if and only if the formula is satisfiable, the input word of the spanner needs to encode the
whole word equation (see the comments after Example 14). Hence, the spanner can only
simulate satisfiability, but not evaluation. To overcome this problem, we introduce SpLog
(short for spanner logic), a fragment of ECreg that directly corresponds to core spanners:

I Definition 15. A formula ϕ ∈ EC is called safe if the following two conditions are met:
1. If (ϕ1 ∨ ϕ2) is a subformula of ϕ, then free(ϕ1) = free(ϕ2).
2. Every constraint CA(x) occurs only as part of a subformula (ψ∧CA(x)), with x ∈ free(ψ).
Let W ∈ Ξ. The set of all SpLog-formulas with main variable W, SpLog(W), is the set of all
safe ϕ ∈ ECreg such that
1. all word equations in ϕ are of the form W = ηR, with ηR ∈ ((Ξ− {W}) ∪ Σ)∗,
2. for every subformula ψ of ϕ, W ∈ free(ψ).
We also define the set of all SpLog-formulas by SpLog :=

⋃
W∈Ξ SpLog(W), and we use

SpLogrx to denote the fragment of SpLog that exclusively defines constraints with regular
expressions instead of NFAs.

Less formally, for every ϕ ∈ SpLog(W), the main variable W appears on the left side of
every equation (and is never bound with a quantifier). The requirement that ϕ is safe
ensures that each variable corresponds to a subword of W. When declaring the free variables

D.D. Freydenberger 13:9

of a SpLog-formula, we slightly diverge from our convention for ECreg-formulas, and write
ϕ(W;x1, . . . , xk) to denote a formula with main variable W, and free(ϕ) = {W, x1, . . . , xk}.

I Example 16. Let ϕ1(W;x) := ∃y, z1, z2 : (W = yy ∧W = z1xz2 ∧ CΣ+(x)). Then ϕ1 is
a SpLog(W)-formula, and σ |= ϕ1 iff. σ(W) is a square and contains σ(x) as a nonempty
subword. In contrast to this, ϕ2(W;x, y) := (W = xx ∨W = yyy) is not a SpLog-formula, as
it is not safe (intuitively, if e. g. σ(W) = σ(x)2, then σ |= ϕ2, even if σ(y) 6v σ(W)). Further
examples for SpLog-formulas can be found in Section 4.

Before we examine conversions between SpLog and various representations of core spanners,
we introduce a result that provides us with a convenient shorthand notation:

I Lemma 17. Let ϕ ∈ SpLog(W), x ∈ free(ϕ) − {W}, and let ψ ∈ SpLog(x) such that W
does not occur in ψ. We can compute in polynomial time a χ ∈ SpLog(W) with χ ≡ (ϕ ∧ ψ).

Proof. Let x1, x2 be new variables and define χ := ϕ ∧ ∃x1, x2 :
(
(W = x1 · x · x2) ∧ ψ̂

)
,

where ψ̂ is obtained from ψ by replacing every equation x = ηR with W = x1 · ηR · x2. Given
W = x1 · x · x2, these equations define the same relations as the x = ηR. As W does not
occur in ψ, χ ≡ (ϕ ∧ ψ) holds. J

This allows us to combine SpLog-formulas with different main variables.
When comparing the expressive power of spanners and SpLog, we need to address one

important difference of the two models: While SpLog is defined on words, spanners are
defined on spans of an input word. Apart from slight modifications to adapt it to SpLog, the
following definition for the conversion of spanners to formulas was introduced in [12]:

I Definition 18. Let P be a spanner and let ϕ ∈ SpLog(W) with free(ϕ) = {W} ∪ {xP , xC |
x ∈ SVars (P)}. We say that ϕ realizes P if, for all substitutions σ, σ |= ϕ holds if and
only if there is a µ ∈ P (σ(W)) such that, for each x ∈ SVars (P), σ(xP) = σ(W)[1,i〉 and
σ(xC) = σ(W)[i,j〉, where [i, j〉 = µ(x).

The intuition behind this definition is that every span [i, j〉 of w is characterized by its
content w[i,j〉, and by w[1,i〉, the prefix of w that precedes the span. Hence, every variable x
of the spanner is represented by two variables xC and xP , which store the content and the
prefix, respectively. Moreover, the main variable of the SpLog-formula corresponds to the
input word of the spanner. Next, we consider conversions in the other direction:

I Definition 19. Let ϕ ∈ SpLog(W). A spanner P with SVars (P) = free(ϕ)− {W} realizes
ϕ if, for all substitutions σ, σ |= ϕ holds if and only if there is a µ ∈ P (σ(W)) such that
σ(W)µ(x) = σ(x) for all x ∈ SVars (P).

Again, the main variable of the SpLog-formula corresponds to the input word of the spanner.
Note that it is possible to define realizability in a stricter way: Instead of requiring that
µ ∈ P (σ(W)) holds for one µ with σ(W)µ(x) = σ(x) for all x ∈ SVars (P), we could require
µ ∈ P (σ(W)) for all such µ. But such a spanner can directly be constructed from a spanner P
that satisfies Definition 19, by joining P with a universal spanner (cf. [11]), and using string
equality selections (for the matter of this paper, this will not affect the complexity, as consider
spanners with string equality relations).´

Let C1 be a class of spanner representations (or SpLog-formulas), and let C2 be a class
of SpLog-formulas (or spanner representations). We say that there is a polynomial size
conversion from C1 to C2 if there is an algorithm that, given a ρ1 ∈ C1, computes a ρ2 ∈ C2
such that ρ2 realizes ρ1, and the size of ρ2 is polynomial in the size of ρ1. If the algorithm
also works in polynomial time, we say that there is a polynomial time conversion. First, we
use Lemma 11 to obtain a negative result on conversions to SpLog:

ICDT 2017

13:10 A Logic for Document Spanners

I Lemma 20. P = NP, if there is a polynomial time conversion from VAset or VAstk to SpLog.

This result is less problematic than it might appear, as it can be overcome with a very minor
relaxation of the definition of polynomial time conversions: We say that a SpLog-formula ϕ
realizes a spanner P modulo ε if ϕ realizes a spanner P̂ with P (w) = P̂ (w) for all w ∈ Σ+. In
other words, ϕ realizes P on all inputs, except ε (where the behavior is undefined). Likewise,
a polynomial time conversion modulo ε computes formulas that realize the spanners modulo ε.
We now state the central result of this paper:

I Theorem 21. There are polynomial time conversions
1. from RGXcore to SpLogrx, and from SpLogrx to RGXcore,
2. from SpLog to VAcore

set and to VAcore
stk ,

3. modulo ε from VAcore
set and VAcore

stk to SpLog.

Recall that SpLogrx is the fragment of SpLog that uses only regular expressions to define
constraints. The conversion from RGXcore to SpLogrx is almost identical to the conversion
from RGXcore to ECreg that was presented in [12]. The most technically challenging part is
the conversion of non-functional v-automata to SpLog, which requires a gadget that acts as
a synchronization mechanism inside the formula. This is realized by sets of variables that
map to either ε or the first letter of W, which is the main reason that the construction only
works modulo ε. For most applications, P (ε) can be considered a pathological edge case: As
P (w) can be understood as searching in w, P (ε) corresponds to a search in ε. But even if
we insist on correctness on ε, we are still able to observe polynomial size conversions:

I Corollary 22. There are polynomial size conversions from VAcore to SpLog.

As discussed in Section 2.1.3, there are exponential blowups when moving from general to
functional v-automata, as well as from vstk- to vset-automata. Another consequence of
Theorem 21 is that this does not hold if we extend the automata with the core-algebra:

I Corollary 23. Given ρ ∈ VAcore, we can compute an equivalent ρf ∈ VA{π,ζ
=,∪,×}

set or
ρf ∈ VA{π,ζ

=,∪,×}
stk , where ρf is of polynomial size and every v-automaton in ρf is functional.

Again, due to Lemma 11, computing an equivalent ρf in polynomial time would imply
P = NP; but we can compute in polynomial time a ρf that is equivalent modulo ε.

This also demonstrates that ./ can be simulated by a combination of × and ζ=, in addition
to showing that the algebra compensates the aforementioned disadvantages in succinctness.
While we leave open whether there are polynomial size conversions from SpLog to RGXcore,
or from VAcore to SpLogrx or RGXcore, we observe that, due to Theorem 21, all these questions
are equivalent to asking how efficiently SpLogrx can simulate NFAs.

Another question that we leave open is whether JSpLogK = JECregK (see Section 4.4). But
we are able to state an important difference between the two logics: While evaluation of
ECreg-formulas is PSPACE-hard, this does not hold for SpLog (assuming NP 6= PSPACE):

I Corollary 24. Given ϕ ∈ SpLog and a substitution σ, deciding σ |= ϕ is NP-complete. For
every fixed ϕ ∈ SpLog, given a substitution σ, deciding σ |= ϕ is in NL.

Finally, we remark that Theorem 21 also shows that the PSPACE upper bounds of deciding
satisfiability and hierarchicality for RGXcore that were observed in [12] also apply to VAcore

set
and VAcore

stk . The same holds for the uppers bound for combined and data complexity.

D.D. Freydenberger 13:11

4 Expressing Relations in SpLog

This section examines how SpLog expresses relations and languages: Section 4.1 lays the
formal groundwork by introducing selectability of relations in SpLog (and connecting it to
core spanners), Section 4.2 contains an extended example, Section 4.3 provides an efficient
conversion of a subclass of regex to SpLog, and Section 4.4 defines and applies a normal form.

4.1 Selectable Relations
One of the topics of Fagin et al. [11] is which relations can be used for selections in core
spanners, without increasing the expressive power. This translates to the question which
relations can be used in the definition of SpLog-formulas. For ECreg, this question is simple:
If, for any k-ary relation R, there is an ECreg-formula ϕR such that ~w |= ϕR holds if and
only if ~w ∈ R, we know that we can use ϕR in the construction of ECreg-formulas. In
contrast to this, the special role of the main variable makes the situation a little bit more
complicated for SpLog. Fortunately, [11] already introduced an appropriate concept for core
spanners, that we can directly translate to SpLog: A k-ary word relation R is selectable by
core spanners if, for every ρ ∈ RGXcore and every sequence of variables ~x = (x1, . . . , xk) with
x1, . . . , xk ∈ SVars (ρ), the spanner JζR~x ρK is expressible in RGXcore.

Analogously, we say that R is SpLog-selectable if for every ϕ ∈ SpLog and every sequence
of variables ~x = (x1, . . . , xk) with x1, . . . , xk ∈ free(ϕ) − {W}, there is a ϕR~x ∈ SpLog with
free(ϕ) = free(ϕR~x), and σ |= ϕR~x if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. Before we
consider some examples, we prove that these two definitions are equivalent not only to each
other, but also to a more convenient third definition:

I Lemma 25. For every relation R ⊆ (Σ∗)k, k ≥ 1, the following conditions are equiva-
lent:
1. R is selectable by core spanners,
2. R is SpLog-selectable,
3. there is a ϕ(W ;x1, . . . , xk) ∈ SpLog with σ |= ϕ if and only if (σ(x1), . . . , σ(xk)) ∈ R.

The equivalence of the two notions of selectability is one of the features of SpLog: When
defining core spanners, one can use SpLog to define relations that are used in selections. As
the proof is constructive and uses Theorem 21, this does not even affect efficiency. Before
we discuss how the equivalent third condition in Lemma 25 can be used to simplify this
even further, we consider a short example. As shown by Fagin et al. [11], the relation v is
selectable by core spanners. We reprove this by showing that it is SpLog-selectable:

I Example 26. The subword relation Rv := {(x, y) | x v y} is selected by the SpLog-formula
ϕv(W;x, y) := ∃z1, z2, y1, y2 : ((W = z1y1xy2z2) ∧ (W = z1yz2)). If this is not immediately
clear, note that the formula implies z1y1xy2z2 = z1yz2, which can be reduced to y1xy2 = y.

This allows us to use x v y as a shorthand in SpLog-formulas. We also use v to address two
inconveniences that arise when strictly observing the syntax of SpLog-formulas: Firstly, the
need to introduce additional variables that might affect readability (like z1, z2 in Example 26),
and, secondly, the basic form that equations have the main variable W on the left side.
Together with Lemma 17 and the third condition of Lemma 25, the selectability of v allows
us more compact definitions of SpLog-selectable relations: Instead of dealing with a single
main variable, we can combine multiple SpLog-functions with different main variables. Hence,
when using SpLog to define a relation over a set of variables V , we may assume that the

ICDT 2017

13:12 A Logic for Document Spanners

formula is of the form (
∧
x∈V x v W) ∧ ϕ, and specify only ϕ. When the main variable is

clear, we also omit it, as seen in the following examples:

I Example 27. Using the aforementioned simplifications, we can write the formula from
Example 26 as ϕv(x, y) := ∃y1, y2 : (y = y1 ·x ·y2). Similarly, we can select the prefix relation
with the formula ϕpref (x, y) := ∃z : y = xz. Both are shorthands for SpLog(W)-formulas.

As mentioned above, this allows us to extend the syntax of SpLog with x v y. Other
extensions are x 6= ε and x 6= y: For x 6= ε, we can use ϕ 6=ε(x) := (x vW) ∧ (CΣ+(x)). For
the more general x 6= y, we consider the following SpLog(W)-formula:

ϕ6=(x, y) :=
((
∃x2 : (x = yx2) ∧ (x2 6= ε)

)
∨
(
∃y2 : (y = xy2) ∧ (y2 6= ε)

))
∨
(∨

a∈Σ

(
∃z, x2, y2, b : (x = zax2) ∧ (y = zby2) ∧ CΣ−{a}(b)

))
The core spanner selectability of 6= was already shown in [11], Proposition 5.2. Depending
on personal preferences, ϕ6= might be considered more readable than the spanner in that
proof. A similar construction was also used in [18] to show EC-expressibility of 6=.

4.2 Extended Example: Relations for Approximate Matching
In this section, we examine how SpLog-formulas can be used to express relations of words
that are approximately identical. In literature, this is commonly defined by the notion of an
edit distance between two words. Following Navarro [21], we consider edit distances that are
based on three operations: For words u, v ∈ Σ∗, we say that v can be obtained from u with
1. an insertion, if u = u1 · u2 and v = u1 · a · u2,
2. a deletion, if u = u1 · a · u2 and v = u1 · u2,
3. a replacement, if u = u1 · a · u2 and v = u1 · b · u2,
where u1, u2 ∈ Σ∗, a, b ∈ Σ. For every choice of permitted operations, a distance d(u, v)
is then defined as the minimal number of operations that is required to obtain v from u.
One common example is the Levenshtein-distance dL (also called edit distance), which uses
insertion, deletion, and replacement. The following SpLog-formula demonstrates that, for
each k ≥ 1, the relation of all (u, v) with dL(u, v) ≤ k is SpLog-selectable:

ϕL(k)(W;x, y) := ∃x1, . . . , xk, y1, . . . , yk, z0, . . . , zk :

(x = z0 ·x1 ·z1 ·x2 ·z2 · · ··xk ·zk)∧(y = z0 ·y1 ·z1 ·y2 ·z2 · · ··yk ·zk)∧
k∧
i=1

Cα(xi)∧
k∧
i=1

Cβ(yi),

where α := β := (Σ ∨ ε). Here, an insertion is expressed by assigning xi = ε and yi ∈ Σ, a
deletion is modeled by xi ∈ Σ and yi = ε, and a replacement by xi, yi ∈ Σ. This case and
xi = yi = ε also cover cases where less than k operations are used.

Hence, by changing the constraints, this formula can also be used for the Hamming distance
(which uses only replacements), and the episode distance (which uses only insertions), by
defining α := β := Σ, or α := ε and β := Σ (respectively).

With some additional effort, we can also express the relation for the longest common
subsequence distance, which uses only insertions and deletions. Instead of changing α or β,
we need to ensure that for every i, xi = ε or yi = ε holds. We cannot directly write
((xi = ε) ∨ (yi = ε)), as this is not a safe formula. Instead, we extend the conjunction inside
ϕL(k) with

∧k
i=1
(
((xi = ε) ∧ (yi v W)) ∨ ((yi = ε) ∧ (xi v W))

)
, which is safe and equivalent

to
∧k
i=1((xi = ε) ∨ (yi = ε)). In other words, we use v to guard the xi and yi.

D.D. Freydenberger 13:13

4.3 Efficient Conversion of vsf-Regex to SpLog
Most modern implementations of regular expressions contain a backreference operator that
allows the definition of non-regular languages. This is formalized in regex (also called extended
regular expressions), which extend regex formulas with variable references &x for every x ∈ Ξ.
Intuitively, the semantics of &x can be understood as repeating the last value that was
assigned to x{ }, assuming that the regex is parsed left to right (for a formal definition that
uses parse trees, see Freydenberger and Holldack [12]; for a definition with ref-words, see
Schmid [23] or the full version of this paper). For example, x{Σ∗} ·&x ·&x generates the
language of all www with w ∈ Σ∗.

As shown by Fagin et al. [11], core spanners cannot define all regex languages. But [12]
introduces a subclass of regex, the vstar-free regex (short: vsf-regex). A vsf-regex is a regex
that does not use x{ } or &x inside a Kleene star *. Every vsf-regex can be converted
effectively into a core spanner; but the conversion from [12] can lead to an exponential
blowup. The question whether a more efficient conversion is possible was left open in [12].
Using SpLog, we answer this positively:

I Theorem 28. Given a vsf-regex α, an equivalent ϕ ∈ SpLog can be computed in polynomial
time.

As a consequence, it is possible to extend the syntax of SpLogrx, SpLog, and ECreg by
defining constraints with vsf-regex instead of classical regular expressions, without affecting
the complexity of evaluation or satisfiability (and core spanner representations can also use
vsf-regex). Theorem 28 also shows that, given vsf-regex α1, . . . , αn, one can decide in PSPACE
whether

⋂
L(αi) = ∅ (by converting each αi into a formula ϕi, and deciding the satisfiability

of
∧
ϕi). This is an interesting contrast to the full class of regex, where even the intersection

emptiness problem for two languages is undecidable (cf. Carle and Narendran [3]).

4.4 A Normal Form for SpLog
Another advantage of using a logic is the existence of normal forms. In order to consider a
short example of such an application, we introduce the following:

IDefinition 29. A ϕ ∈ SpLog is a prenex conjunction if ϕ = ∃x1, . . . , xk : (
∧m
i=1 ηi∧

∧n
j=1 Cj),

with k, n ≥ 0, m ≥ 1, where the ηi are word equations, and the Cj are constraints. A SpLog-
formula is in DPC-normal form (DPCNF) if it is a disjunction of prenex conjunctions.

I Lemma 30. Given ϕ ∈ SpLog, we can compute ψ ∈ SpLog in DPCNF with ϕ ≡ ψ.

Fagin et al. [11] also examined CRPQ= and UCRPQ= (conjunctive regular path queries
with string equality, and unions of these). These are existential positive queries on graphs,
but when restricted to marked paths, JUCRPQ=K = JRGXcoreK holds (cf. [11]). Using our
methods, it is easy to show that there are polynomial time transformations between CRPQ=

and SpLog prenex conjunctions, and between UCRPQ= and DPCNF-formulas. The author
conjectures that the exponential blowup from the proof of Lemma 30 is necessary. This
would immediately imply that there is an exponential blowup from RGXcore to UCRPQ=.

We use DPCNF to illustrate some differences between SpLog and ECreg: First, consider the
following: Every ECreg-formula ϕ with free(ϕ) = {x} defines a language L(ϕ) := {σ(x) | σ |=
ϕ} (in Section 5, we shall see that this has applications beyond the language theoretic point
of view). For C ∈ {EC,ECreg, SpLog}, a language L ⊆ Σ∗ is a C-language if there is a ϕ ∈ C
with L(ϕ) = L. We denote this by L ∈ L(C). For L ⊆ Σ∗ and a ∈ Σ, we define the right
quotient of L by a as L /a := {w | wa ∈ L}. It is easily seen that the class of ECreg-languages

ICDT 2017

13:14 A Logic for Document Spanners

is closed under this operation, by using formulas like ϕ/a(w) := ∃u : ((u = wa) ∧ ϕ(u)). But
as SpLog-variables can only contain subwords of the main variable, writing u = wa is not
possible in SpLog. The proof for the analogous is more involved and relies on Lemma 30.

I Lemma 31. For every SpLog-language L and every a ∈ Σ, L /a is a SpLog-language.

This allows us to use Greibach’s Theorem [15] to prove the following:

I Proposition 32. The following conditions are equivalent:
1. L(ECreg) = L(SpLog),
2. Given ϕ ∈ ECreg, it is decidable whether L(ϕ) ∈ L(SpLog),
3. L(SpLog) is closed under the prefix operator.

This characterization might serve as a starting point to answer whether JECregK = JSpLogK,
an important question that is left open in the present paper (we define JCK := {JϕK | ϕ ∈ C}
for C ⊆ ECreg). The question appears to be surprisingly complicated; even when only
considering word equations. We only discuss this briefly, as a deeper examination would
require considerable additional notation. In contrast to EC and ECreg, SpLog can only use
variables that are subwords of the main variable. Hence, one might expect that it is easy
to construct an EC-formula where other variables are necessary. But as it turns out, many
word equations can be rewritten to reduce the number of variables. In particular, there
is a notion of word equations where the solution set can be parameterized (i. e., expressed
with a finite number of so-called parametric words – for more details, see e. g. Czeizler [5],
Karhumäki and Saarela [20]). In all cases that were considered by the author, it was possible
to use these parametrizations to construct SpLog-formulas. Similarly, the solution sets of non-
parametrizable equations that the author examined, like xaby = ybax, are self-similar in a
way that allows the construction of SpLog-formulas (cf. Czeizler [5], Ilie and Plandowski [17]).
On the other hand, these constructions do not appear to generalize straightforwardly to an
equivalence proof.

5 Using EC-Inexpressibility to Prove Non-Selectability

While Section 4 examined various aspects of expressing relations in SpLog, the present section
examines how to prove that a relation cannot be selected. As we shall see, this can often
be proved by using inexpressibility of appropriate languages. To this end, general tools for
language inexpressibility (like a pumping lemma) would be very convenient. Up to now,
the only (somewhat) general technique for core spanner inexpressibility was given in [12],
where it was observed that on unary alphabets, core spanners can only define semi-linear
(and, hence, regular) languages. Due to the limited applicability of this result, having further
inexpressibility techniques appears to be desirable. As SpLog is a fragment of ECreg, it is
natural to ask whether this connection can be used to obtain inexpressibility results.

Karhumäki et al. [18] developed multiple inexpressibility techniques for EC. Sadly, EC-
inexpressibility does not imply SpLog-inexpressibility; e. g., for Σ = {a, b, c}, the language
{a, b}∗ is not EC-expressible (cf. [18]), but obviously SpLog-expressible. On the other hand,
while ECreg-inexpressibility results would be useful, to the author’s knowledge, the only
result in this direction is that every ECreg-language is an EDT0L-language (cf. Ciobanu et
al. [4]). While this allows the use of the EDT0L-inexpressibility results (e. g. Ehrenfeucht and
Rozenberg [10]), the large expressive power of EDT0L limits the usefulness of this approach.

As we shall see, developing a sufficient criterion for EC-expressible SpLog-languages
allows us to use one of the techniques from [18] for SpLog. We begin with a definition: A

D.D. Freydenberger 13:15

language L ⊆ Σ∗ is bounded if there exist words w1, w2, . . . , wn ∈ Σ+, n ≥ 1, such that
L ⊆ w∗1w

∗
2 · · ·w∗n. Combining a characterization of the class of bounded regular languages

(Ginsburg and Spanier [14]) with the observations on EC from [18] yields the following:

I Lemma 33. Every bounded regular language is an EC-language.

I Theorem 34. Every bounded SpLog-language is an EC-language.

The intuition behind this is very simple: In bounded SpLog-languages, every constraint can
be replaced with a bounded regular language (as this reasoning does not apply to ECreg, the
proof does not generalize). The EC-inexpressibility technique from [18] that we are going to
use is based on the following definition by Karhumäki, Plandowski, and Rytter [19]:

I Definition 35. A word w ∈ Σ+ is imprimitive if there exist a u ∈ Σ+ and n ≥ 2 with
w = un. Otherwise, w is primitive. For a given primitive word Q, the FQ-factorization of
w ∈ Σ∗ is the factorization w = w0 ·Qx1 ·w1 · · ·Qxk ·wk that satisfies the following conditions:
1. Q2 6v wi for all 0 ≤ i ≤ k,
2. Q is a proper suffix of w0, or w0 = ε,
3. Q is a proper prefix of wk, or wk = ε,
4. Q is a proper prefix and a proper suffix of wi for all 0 < i < k.
Furthermore, we define TQ(w) := {x | Qx occurs in the FQ-factorization of w}, as well as
expQ(w) := max(TQ(w) ∪ {0}).

For every primitive word Q, the FQ-factorization of every word w (and, hence, expQ(w)) is
uniquely defined (cf. [18, 19]). We use this definition in the following pumping result:

I Theorem 36 (Karhumäki et al. [18]). For every EC-language L and every primitive word Q,
there exists a k ≥ 0 such that, for each w ∈ L with expQ(w) > k, there is a u ∈ L with
expQ(u) ≤ k which is obtained from w by removing some occurrences of Q.

We now consider a short example of this proof technique: As shown by Fagin et al. [11]
(Theorem 4.21), Lel := {aibi | i ≥ 0} is not expressible with core spanners (note that Lel
is also used in [18] as an example application of Theorem 36). The length of this proof
is roughly one page. Contrast this to the following: Assume that Lel is a SpLog-language.
Then Lel is an EC-language, due to Theorem 34. Choose the primitive word Q := a. Then
there exists a k ≥ 0 that satisfies Theorem 36. Choose w := ak+2bk+2, and observe that
expQ(w) = k + 1 > k (due to the factorization w = ε · ak+1 · abk+2). Hence there exists a
u = ak+2−jbk+2, j > 0, with u ∈ Lel. As k + 2− j < k + 2, this is a contradiction.

From the inexpressibility of Lel, Fagin et al. then conclude that the equal length relation
{(u, v) | |u| = |v|} is not selectable with core spanners (Karhumäki et al. [18] and Ilie [16]
use the same approach for EC: Show the non-selectability of a relation by proving that a
suitable language is not expressible). Using Theorem 36 and 34 we observe:

I Proposition 37. For x, y ∈ Σ∗, x is a scattered subword of y if there exist a k ≥ 1,
x1, . . . , xk, y0, . . . yk ∈ Σ∗ with x = x1 · · ·xk and y = y0(x1y1) · · · (xkyk). For every word
w ∈ Σ∗, its reversal wR is the word that is obtained by reading w from right to left. We
define the following binary relations over Σ∗:

Rscatt := {(u, v) | u is a scattered subword of v}, Rrev := {(u, v) | v = uR},
Rnum(a) := {(u, v) | |u|a = |v|a} for a ∈ Σ, R< := {(u, v) | |u| < |v|},
Rpermut := {(u, v) | |u|a = |v|a for all a ∈ Σ}.

Each of Rscatt, Rnum(a), Rpermut, Rrev, and R< is not SpLog-selectable.

ICDT 2017

13:16 A Logic for Document Spanners

Sadly, being limited to bounded languages also limits the applicability of this approach. For
example, Ilie [16] shows that the language of square-free words over a two letter alphabet
(words that contain no subword xx with x 6= ε) is not EC-expressible. Although one could
expect that this language is not a SpLog-language, it is easily seen that every bounded
subset of this language has to be finite, which means that this technique cannot be applied.
Furthermore, the author conjectures that the relation {(x, xn) | x ∈ Σ∗, n ≥ 1} is not
SpLog-selectable, but there is no suitable bounded language that could be used to prove this.

6 Conclusions and Further Directions

As we have seen, SpLog has the same expressive power as the three classes of representations
for core spanners that were introduced by Fagin et al. [11], and it is possible to convert
between these models in polynomial time. As a result of this, core spanner representations
can be converted to SpLog to decide satisfiability and hierarchicality, and SpLog provides a
convenient way of defining core spanners, and in particular relations that are selectable by
core spanners (see e. g. ϕ6= in Example 27). Of course, whether one considers SpLog or one
of the spanner representations more convenient mostly depends on personal preferences and
the task at hand. Independent of one’s opinion regarding the practical applications of SpLog,
it can be used as a versatile tool for examining core spanners: For example, we used SpLog
as intermediary to obtain polynomial time conversions between various subclasses of VAcore.

In addition to this, we defined a pumping lemma for core spanners by connecting SpLog to
EC. A promising next step could be extending this to more general inexpressibility techniques
that go beyond bounded SpLog languages. While the connection to word equations suggests
that this line of research is difficult, one might also expect that at least some of the existing
techniques for word equations can be used.

Another set of question where the comparatively simple syntax and semantics of SpLog
might help is the relative succinctness of various models. For example, in order to examine the
blowup from VAcore to RGXcore, it suffices to examine the blowup from NFAs to SpLogrx; and
converting RGXcore to UCRPQ= has the same blowup as the transformation of SpLog-formulas
to DPCNF. (Conjecture: All these blowups are exponential.)

Finally, the conversion of SpLog-formulas to spanner representations preserves many
structural properties. Hence, when looking for subclasses of spanners that have certain
properties (e. g., more efficient combined complexity of evaluation), the search can start with
examining certain fragments of SpLog that correspond to interesting classes of spanners. One
direction that seems to be promising as well as challenging is developing a notion of acyclic
core spanners, which would need to account for the interplay of join and string equality (as
seen in Corollary 23, every spanner representation can be rewritten into a representation
that simulates ./ with × and ζ=). This direction might be helped by first defining acyclicity
for SpLog-formulas, which in turn could be inspired by the restrictions that are discussed in
Reidenbach and Schmid [22].

A more fundamental question is whether JECregK = JSpLogK. In addition to our discussion
in Section 4.4, a potential approach to this is examining whether every bounded ECreg-language
is an EC-language (as ECreg can use arbitrary variables, the reasoning from Theorem 34 does
not carry over from SpLog to ECreg).

Another aspect of SpLog that makes it interesting beyond its connection to core spanners
is that it can be understood as the fragment of ECreg describes properties of words without
using any additional space, as every variable and equation has to be a subword of the main
variable (hence, the name “SpLog” can also be interpreted as “subword property logic”). One

D.D. Freydenberger 13:17

effect of this is that evaluation of SpLog has lower upper bounds that evaluation of ECreg.
While we have only defined SpLog with a single main variable, a natural generalization would
be allowing multiple main variables (the definition generalizes naturally, and the upper bound
for evaluation remains). A potential application of SpLog with two (or more) variables is
describing relations for path labels in graph databases.

Acknowledgements. The author thanks WimMartens for helpful comments and discussions,
and the anonymous reviewers for their insightful feedback.

References
1 P. Barceló and P. Muñoz. Graph logics with rational relations: the role of word combina-

torics. In Proc. CSL-LICS 2014, 2014.
2 J.-C. Birget. Intersection and union of regular languages and state complexity. Inform.

Process. Lett., 43(4):185–190, 1992.
3 B. Carle and P. Narendran. On extended regular expressions. In Proc. LATA 2009, 2009.
4 L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations over free groups are

EDT0L languages. In Proc. ICALP 2015, 2015.
5 Elena Czeizler. The non-parametrizability of the word equation xyz=zvx: A short proof.

Theor. Comput. Sci., 345(2-3):296–303, 2005.
6 V. Diekert. Makanin’s Algorithm. In M. Lothaire, editor, Algebraic Combinatorics on

Words, chapter 12. Cambridge University Press, 2002.
7 V. Diekert. More than 1700 years of word equations. In Proc. CAI 2015, 2015.
8 V. Diekert, A. Jeż, and W. Plandowski. Finding all solutions of equations in free groups

and monoids with involution. In Proc. CSR 2014, 2014.
9 V. G. Durnev. Undecidability of the positive ∀∃3-theory of a free semigroup. Sib. Math.

J., 36(5):917–929, 1995.
10 A. Ehrenfeucht and G. Rozenberg. A pumping theorem for EDT0L languages. Technical

report, Tech. Rep. CU-CS-047-74, University of Colorado, 1974.
11 R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Document spanners: A formal

approach to information extraction. J. ACM, 62(2):12, 2015.
12 D. D. Freydenberger and M. Holldack. Document spanners: From expressive power to

decision problems. In Proc. ICDT 2016, 2016.
13 M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and

Company, 1979.
14 S. Ginsburg and E. H. Spanier. Bounded regular sets. Proc. AMS, 17(5):1043–1049, 1966.
15 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley, 1979.
16 L. Ilie. Subwords and power-free words are not expressible by word equations. Fundam.

Inform., 38(1-2):109–118, 1999.
17 L. Ilie and W. Plandowski. Two-variable word equations. ITA, 34(6):467–501, 2000.
18 J. Karhumäki, F. Mignosi, andW. Plandowski. The expressibility of languages and relations

by word equations. J. ACM, 47(3):483–505, 2000.
19 J. Karhumäki, W. Plandowski, and W. Rytter. Generalized factorizations of words and

their algorithmic properties. Theor. Comput. Sci., 218(1):123–133, 1999.
20 J. Karhumäki and A. Saarela. An analysis and a reproof of Hmelevskii’s theorem. In Proc.

DLT 2008, 2008.
21 G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–

88, 2001.

ICDT 2017

13:18 A Logic for Document Spanners

22 D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. Inform. Comput.,
239:87–99, 2014.

23 M. L. Schmid. Characterising REGEX languages by regular languages equipped with
factor-referencing. Inform. Comput., 249:1–17, 2016.

	Introduction
	Preliminaries
	Document Spanners
	Primitive Spanner Representations
	Spanner Algebras
	Some Results on Automata-Based Spanners

	Word Equations and ECreg

	SpLog: A Logic for Spanners
	Expressing Relations in SpLog
	Selectable Relations
	Extended Example: Relations for Approximate Matching
	Efficient Conversion of vsf-Regex to SpLog
	A Normal Form for SpLog

	Using EC-Inexpressibility to Prove Non-Selectability
	Conclusions and Further Directions

