Split Contraction: The Untold Story*

Akanksha Agrawall, Daniel Lokshtanov?, Saket Saurabh3, and
Meirav Zehavi*

1 Department of Informatics, University of Bergen, Bergen, Norway
akanksha.agrawal@uib.no

1 Department of Informatics, University of Bergen, Bergen, Norway
daniello@uib.no

3 Department of Informatics, University of Bergen, Bergen, Norway; and
Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

4  Department of Informatics, University of Bergen, Bergen, Norway
meirav.zehavi@Quib.no

—— Abstract

The edit operation that contracts edges, which is a fundamental operation in the theory of graph
minors, has recently gained substantial scientific attention from the viewpoint of Parameterized
Complexity. In this paper, we examine an important family of graphs, namely the family of split
graphs, which in the context of edge contractions, is proven to be significantly less obedient than
one might expect. Formally, given a graph G and an integer k, SPLIT CONTRACTION asks whether
there exists X C E(G) such that G/X is a split graph and |X| < k. Here, G/X is the graph
obtained from G by contracting edges in X. It was previously claimed that SPLIT CONTRACTION
is fixed-parameter tractable. However, we show that SPLIT CONTRACTION, despite its deceptive
simplicity, is W[1]-hard. Our main result establishes the following conditional lower bound: under
the Exponential Time Hypothesis, SPLIT CONTRACTION cannot be solved in time 20(6%) . 0 (1)
where £ is the vertex cover number of the input graph. We also verify that this lower bound is
essentially tight. To the best of our knowledge, this is the first tight lower bound of the form
20(%) . O for problems parameterized by the vertex cover number of the input graph. In
particular, our approach to obtain this lower bound borrows the notion of harmonious coloring
from Graph Theory, and might be of independent interest.
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1 Introduction

Graph modification problems have been extensively studied since the inception of Parameter-
ized Complexity in the early 90’s. The input of a typical graph modification problem consists
of a graph G and a positive integer k, and the objective is to edit k vertices (or edges) so that
the resulting graph belongs to some particular family, F, of graphs. These problems are not
only mathematically and structurally challenging, but have also led to the discovery of several
important techniques in the field of Parameterized Complexity. It would be completely
appropriate to say that solutions to these problems played a central role in the growth of the
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field. In fact, just over the course of the last couple of years, parameterized algorithms have
been developed for CHORDAL EDITING [9], UNIT INTERVAL EDITING [7], INTERVAL VERTEX
(EDGE) DELETION [10, 8], PROPER INTERVAL COMPLETION [3], INTERVAL COMPLETION [4]
CHORDAL COMPLETION [20], CLUSTER EDITING [19], THRESHOLD EDITING [16], CHAIN
EDITING [16], TRIVIALLY PERFECT EDITING [17, 15] and SPLIT EDITING [21]. This list is
not comprehensive but rather illustrative.

The focus of all of these papers, and in fact, of the vast majority of papers on parameterized
graph editing problems, has so far been limited to edit operations that delete vertices, delete
edges or add edges. Using a different terminology, these problems can also be phrased as
follows. For some particular family of graphs, F, we say that a graph G belongs to F + kv,
F + ke or F — ke if some graph in F can be obtained by deleting at most k vertices from G,
deleting at most k edges from G or adding at most k edges to G, respectively. Recently, a
methodology for proving lower bounds on running times of algorithms for such parameterized
graph editing problems was proposed by Bliznets et al. [2]. Furthermore, a well-known
result by Cai [5] states that in case F is a hereditary family of graphs with a finite set of
forbidden induced subgraphs, then the graph modification problem defined by F and the
aforementioned edit operations admits a simple FPT algorithm.

In recent years, a different edit operation has begun to attract significant scientific
attention. This operation, which is arguably the most natural edit operation apart from
deletions/insertions of vertices/edges, is the one that contracts an edge. Here, given an edge
(u,v) that exists in the input graph, we remove the edge from the graph and merge its two
endpoints. Edge contraction is a fundamental operation in the theory of graph minors. Using
our alternative terminology, we say that a graph G belongs to F/ke if some graph in F can
be obtained by contracting at most k edges in G.! Then, given a graph G and a positive
integer k, F-EDGE CONTRACTION asks whether G belongs to F/ke. For several families of
graphs F, early papers by Watanabe et al. [34, 35] and Asano and Hirata [1] showed that
F-EDGE CONTRACTION is NP-complete. In the framework of Parameterized Complexity,
these problems exhibit properties that are quite different from those of problems where we
only delete or add vertices and edges. Indeed, for these problems, the result by Cai [5] does
not hold. In particular, Lokshtanov et al. [31] and Cai and Guo [6] independently showed
that if F is either the family of P,-free graphs for some £ > 5 or the family of Cy-free graphs
for some ¢ > 4, then F-EDGE CONTRACTION is W[2]-hard.

To the best of our knowledge, Heggernes et al. [26] were the first to explicitly study
F-EDGE CONTRACTION from the viewpoint of Parameterized Complexity. They showed
that in case F is the family of trees, F-EDGE CONTRACTION is FPT but does not admit a
polynomial kernel, while in case F is the family of paths, the corresponding problem admits a
faster algorithm and an O(k)-vertex kernel. Golovach et al. [22] proved that if F is the family
of planar graphs, then 7-EDGE CONTRACTION is again FPT. Moreover, Cai and Guo [6]
showed that in case F is the family of cliques, F-EDGE CONTRACTION is solvable in time
20(klogk) . nO(M) " while in case F is the family of chordal graphs, the problem is W[2]-hard.
Heggernes et al. [25] developed an FPT algorithm for the case where F is the family of
bipartite graphs. Later, a faster algorithm was proposed by Guillemot and Marx [23].

The recent paper [24] studied the case where F is the family of split graphs, which
corresponds to the following problem.

! Here, it might be more appropriate to replace / (in F/ke) by the operation opposite to edge contraction,
but we believe that the current notation is clearer.
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SPLIT CONTRACTION Parameter: &
Input: A graph G and an integer k.
Question: Does there exist X C F(G) such that G/X is a split graph and | X| < k?

The paper [24] claimed to design an algorithm that solves SPLIT CONTRACTION in time
20(K*) . n®® | which proves that the problem is FPT. Our initial objective was to either
speed-up this algorithm or obtain a tight conditional lower bound. In fact, it seemed plausible
that SPLIT CONTRACTION, like F-EDGE CONTRACTION where F is the family of cliques,

20(klogk) . nO() " The algorithm in [24] first computes a set of vertices

is solvable in time
of small size whose removal renders the graph into a split graph. Then, it is based on case
distinction. In case the remaining graph contains a large clique, the problem is solved in
time 20(klogk) . ;01 and otherwise it is solved in time 20**) . @) In particular, in case
the clique is small, the minimum size of a vertex cover of the input graph is small—it can be
bounded by O(k). Thus, the bottleneck of the proposed algorithm is captured by graphs
having small vertex covers. Interestingly, our first main result, given in Section 3, proves

that it is unlikely to overcome the difficulty imposed by such graphs.

» Theorem 1. Unless the ETH fails, SPLIT CONTRACTION parameterized by £, the size of
a minimum vertexr cover of the input graph, does not have an algorithm running in time
20(£) . poO1) Here, n denotes the number of vertices in the input graph.

To the best of our knowledge, under the Exponential Time Hypothesis (ETH) [12, 27],
this is the first tight lower bound of this form for problems parameterized by the vertex
cover number of the input graph. Lately, there has been increasing scientific interest in the
examination of lower bounds of forms other than 2°(*) . n©() for some parameters s. For
example, lower bounds that are “slightly super-exponential”, i.e. of the form 20(s10gs) . nO(1)
for various parameters s, have been studied in [30]. Cygan et al. [13] obtained a lower
bound of the form 22°" . n®M) | where k is the solution size, for the EDGE CLIQUE COVER
problem. Very recently, Marx and Mitsoue [32] have further obtained lower bounds of the

forms 22°™ . n®M) and 2220(1”) -n9M | where w is the treewidth of the input graph, for
choosability problems.

In order to derive our main result, we make use of a partitioning of the vertex set V(G)
into independent sets C1, . .., Cy such that for each ¢, j € [t], i # j, |E(G[C;UC;])NE(G)| < 1.
Essentially, this coloring can be viewed as a proper coloring f : V(G) — [t] with the additional
property that between any two color classes we have at most one edge. (Here, we use the
standard notation [t] = {1,2,...,t}.) This kind of coloring, called harmonious coloring
[29, 33, 18], has been studied extensively in the literature. We are not aware of uses of
harmonious coloring in deriving lower bound results and believe that this approach could be
of independent interest.

After we had established Theorem 1, we took a closer look at the paper [24], and were
not able to verify some of their arguments. We next prove that unless FPT=W][1]-hard, the
algorithm in [24] is incorrect, as the problem is W[1]-hard (Section 4).

» Theorem 2. SpPLIT CONTRACTION parmeterized by the size of a solution is W[1]-hard.

We find this result surprising: one might a priori expect that “contraction to split graphs”

should be easy as split graphs have structures that seem relatively simple. Indeed, many
NP-hard problems admit simple polynomial-time algorithms if restricted to split graphs.
Consequently, our result can also be viewed as a strong evidence of the inherent complexity
of the edit operation which contracts edges. Furthermore, some of the ideas underlying the
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constructions of this reduction, such as the exploitation of properties of a special case of the
PERFECT CODE problem to analyze budget constraints involving edge contractions, might
be used to establish other W[1]-hard results for problems of similar flavors. We remark that
despite errors in the paper [24], it can be verified that the lower bound given by Theorem 1
is tight. For the sake of completeness, we design a standalone FPT algorithm for SPLIT
CONTRACTION that runs in time 20(¢*) -nPM)  the details of which are omitted due to space
constraints.

2 Preliminaries

We consider only finite simple graphs. A split graph is a graph G whose vertex set V(G) can
be partitioned into two sets, A and B, such that G[A] is a clique while B is an independent
set, i.e. G[B] is an edgeless graph. We say that two disjoint vertex subsets, say S, S’ C V(G),
are adjacent if there exist v € S and v’ € S’ such that (v,v') € E(G). Further, an edge
(u,v) € E(Q) is between S,S5" ifue Sandv e S (orve S and ueS). For (v,u) € E(G),
the result of contracting the edge (v,u) in G is the graph obtained by the following operation.
We add a vertex vu* and make it adjacent to the vertices in (N(v) U N(u)) \ {v,u}, and
delete v, u from the graph. We often call such an operation a contraction of the edge (v, u).
For E' C E(G), we denote by G/E’ the graph obtained by contracting the edges of E' in G.

A graph G is isomorphic to a graph H if there exists a bijective function ¢ : V(G) — V(H)
such that for v,u € V(G), (v,u) € E(G) if and only if (¢(v), ¢p(u)) € E(H). A graph G is
contractible to a graph H if there exists E/ C F(G) such that G/E’ is isomorphic to H. In
other words, G is contractible to H if there exists a surjective function ¢ : V(G) — V(H)
with the following properties.

For all h,h' € V(H), (h,h') € E(H) if and only if W (h), W(h') are adjacent in G. Here,
W(h) ={v e V(G) | ¢(v) = h}.
For all h € V(H), GIW (h)] is connected.

Let W= {W(h) | h € V(H)}. Observe that VW defines a partition of the vertex set of G.
We call W a H-witness structure of GG. The sets in VW are called witness-sets.

3 Lower Bound for Split-Contraction Parameterized by Vertex Cover

In this section we show that unless the ETH fails, SPLIT CONTRACTION does not admit an
algorithm running in time 20(52)710(1), where £ is the size of a minimum vertex cover of the
input graph G on n vertices. We complement it by designing an algorithm (whose details
are omitted) for SPLIT CONTRACTION parameterized by ¢, running in time 20(£)p,0(1),

To obtain our lower bound, we give an appropriate reduction from VERTEX COVER on
sub-cubic graphs. For this we utilize the fact that VERTEX COVER on sub-cubic graphs
does not have an algorithm running in time 2°(n®®) unless the ETH fails [27, 28]. For
the ease of presentation we split the reduction into two steps. The first step comprises of
reducing a special case of VERTEX COVER on sub-cubic graphs, which we call SUB-CUBIC
PARTITIONED VERTEX COVER (SUB-CUBIC PVC) to SPLIT CONTRACTION. In the second
step we show that there does not exist an algorithm for SUB-CuBic PVC running in time
20RO for SuB-Cusic PVC. We remark that the reduction from VERTEX COVER on
sub-cubic graphs to SUB-CUBIC PVC is a Turing reduction.
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3.1 Reduction from Sub-Cubic Partitioned Vertex Cover to Split
Contraction

In this section we give a reduction from SUB-CUBIC PARTITIONED VERTEX COVER to SPLIT
CONTRACTION. Next we formally define SUB-CUBIC PARTITIONED VERTEX COVER.

SUB-CUBIC PARTITIONED VERTEX COVER (SuB-CuBIC PVC)

Input: A sub-cubic graph G; an integer ¢; for i € [t], an integer k; > 0; a partition P =
{C1,...,C} of V(G) such that t € O(1/|V(G)]) and for all i € [¢], C; is an independent
set and |C;| € O(V/|V(G)|). Furthermore, for i,j € [t],i # j, |E(G[C; UC;))NE(G)| = 1.
Question: Does G have a vertex cover X such that for all ¢ € [¢], | X N C;| < k;?

We first explain (informally) the ideas behind our reduction. Let X be a hypothetical vertex
cover we are looking for. Recall that we assume the ETH holds and thus we are allowed to
use 2°0 M) time to obtain our reduction. We will use this freedom to design our reduction
and to construct an instance (G’, k) of SPLIT CONTRACTION. For i € [t], in V(G’), we have

a vertexr corresponding to each possible intersection of X with C; on at most k; vertices.

Further, we have a vertex ¢; € V(G’) corresponding to each Cj, for ¢ € [t]. We want to
make sure that for each (u,v) € E(G), we choose an edge of F(G’) (in the solution to SPLIT
CONTRACTION) that is incident to a vertex which corresponds to a subset containing one
of u or v and one of ¢; or ¢;. Furthermore, we want to force these selected vertices to be
contracted to the clique side in the resulting split graph. We crucially exploit the fact that
there is exactly one edge between every C;, C; pair, where 4, j € [t],7 # j. Finally, we will
add a clique, say I', of size 3t and make each of its vertices adjacent to many pendant vertices,
which ensures that after contracting the solution edges, the vertices of I' remain in the clique
side. We will assign appropriate adjacencies between the vertices of I and ¢;, for ¢ € [t]. This
will guide us in selecting edges for the solution of the contraction problem. We now move to
the formal description of the construction used in the reduction.

Construction. Let (G,P = {C1,Cs,...Ci}, k1, ... ki) be an instance of SUB-CuBIiC PVC
and n = |V(G)|. We create an instance of SPLIT CONTRACTION (G', k') as follows. For
ie€t],let S; ={vy | Y CC; and |Y| < k;}. That is, S; comprises of vertices corresponding
to subsets of C; of size at most k;. For each i € [t], we add five vertices b;, ¢;, x4, yi, 2; to
V(G"). The vertices {x;,y;, % | i € [t]} induce a clique (on 3t vertices) in G’. We add the
edges (bs, sy), (¢, sy), (%4, 8v), (Y4, Sy ), (21, sy) for all sy € S; to E(G'). Fori,j € [t], i # 7,
we add the edges (¢;, ), (¢i,y5), (¢i, 2;) to E(G'). For 4,5 € [t], i # j and sy € S}, we add
the edge (c;, sy) in E(G") if and only if Y covers the unique edge between C; and C;. For

all i € [t], we add 4t + 2 pendant vertices, b, j € [4t + 2], to b;. Similarly, for all i € [t], we

add 4t + 2 pendant vertices c;i, xgi, yy, and 27, J €[4t + 2], to ¢, x;, y; and z;, respectively.

The pendant vertices are added in order to make sure that the vertices resulting after the
contraction of their witness sets belong to the clique side. This completes the construction of
the graph G’. Observe that {b;,c;, x;,yi, 2; | ¢ € [t]} forms a minimum vertex cover of G’ of

size 5t. Finally, we set k' = 2t. The resulting instance of SPLIT CONTRACTION is (G, k').

We refer the reader to Figure 1 for an illustration of the construction.

In the next few lemmata (Lemmata 3 to 8) we prove certain properties of the instance
(G',K") of SPLIT CONTRACTION. This will be helpful later for establishing the equivalence
between the original instance (G, P = {C1,Ca,...Ci}, k1, ... k) of SuB-CuBIic PVC and
the instance (G’, k") of SPLIT CONTRACTION. In Lemmas 3 to 8 we will use the following
notations. We use T' to denote a solution to SPLIT CONTRACTION in (G, k') and H = G'/T

5:5
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Figure 1 Reduction from SUB-CuBIC PVC to SPLIT CONTRACTION.

with C, I being a partition of V(H) inducing a clique and an independent set, respectively,
in H. We let ¢ : V(G') — V(H) be the surjective function defining the contractibility of G’
to H, and W be the H-witness structure of G’.

» Lemma 3. Let (G’ k') be a YES instance of SPLIT CONTRACTION. Then, for all
v € {bi,ci, i, yi, 2 | i € [t]}, we have (v) € C.

Proof. Consider v € {b;, ¢;, 24, Yi,2; | © € [t]}. Recall that there are 4¢ + 2 = 2k’ 4+ 2 pendant
vertices v, for j € [2k’ + 2] adjacent to v. At most k' edges in {(v},v) | j € [2k' + 2]} can
belong to T. Therefore, there exist ji, jo € [2k" + 2], j1 # j2 such that no edge incident to
v or v} is in T. In other words, for hy = (v},) and hy = @(v}), W(h1) and W (hy) are
singleton sets. Since W is a H-witness structure of G', (hy, ha) ¢ E (H). Therefore, at least

one of hi,ho belongs to f, say hy € I. This implies that p(v) € C. |

» Lemma 4. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for alli € [t],
there exists sy, € S; such that (b;,sy,) € T.

Proof. Towards a contradiction assume that there is ¢ € [t] such that for all sy € S;,
(bi,sy) ¢ T. Recall that Ner(bi) = S; U{b} | j € [4t 4+ 2]}. Let h = ¢(b;) and A =
{bj,cj,xj,y5,2; | € [t],7 #i}. There exists v € A such that |IW(h')| =1, where b’ = p(v).
This follows from the fact that at most 2k’ = 4¢ vertices in A can be incident to an edge in
T, although |A| = 5(t — 1) > 4¢, as t can be assumed to be larger than 6, else the graph has
constantly many edges and we can solve the problem in polynomial time. From Lemma 3 it
follows that (h,h') € E(H), but W(h), W(h') are not adjacent in G’, contradicting that W
is an H-witness structure of G'. Hence the claim follows. |

For each i € [t], we arbitrarily choose a vertex sj, € S; such that (b;,s3.) € T. The
existence of such a vertex is guaranteed by Lemma 4.

» Lemma 5. Let (G', k") be a YES instance of SPLIT CONTRACTION and (b;,sy,) € T for
i € [t]. Then, for h; = ¢(sy.), we have |W (h;)| > 3. Furthermore, there is an edge in T
incident to b; or sy. other than (b;, sy.).

Proof. Suppose there exists i € [t], h; = ¢(sy,) such that [W(h;)| < 3. Recall that
|W(h;)| > 2, since b; € W(h;). Let A = {z;,y;,2; | 7 € [t],j # i}. From Lemma 4, it
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follows that for each j € [t], there is an edge (b, sy,) € T, therefore the number of edges
in T incident to a vertex in A is bounded by k' —t = t. But |A| = 3t — 3 > 2¢, therefore,
there exists a € A such that for h, = p(a), |[W(h,)| = 1. From Lemma 3, (h;, h,) € E(H),
therefore W (h;) and W (h,) must be adjacent in G'. But a ¢ N({b;, sy, }), hence W (h;) and
W (h,) are not adjacent in G’, contradicting that W is an H-witness structure of G’.

Since [W (h;)| > 3 and G[W (h;)] is connected, at least one of sy, ,b; must be adjacent to
an edge in T which is not (sy.,b;). <

» Lemma 6. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for alli € [t],
we have [W(h;)| > 2 where h; = ¢(c;).

Proof. Towards a contradiction assume that there exists i € [t], h; = ¢(¢;), such that
|[W(h;)| < 2. Let A={c;|je€lt],j#i}U{zs, vy, 2} From Lemma 4 it follows that the
edge (b;, s{,]) € T, for each j € [t]. By Lemma 5 it follows that there is an edge in T that
is adjacent to exactly one of {b;, 8%} in T, for all j € [t]. Therefore, at most ¢ vertices in
A can be adjacent to an edge in T, while |A| = ¢ + 2. This implies that there exists a € A,
ha = @(a) such that |W(h,)| = 1. Observe that none of the vertices in A are adjacent to ¢;
in G’. Therefore, it follows that W (h;), W (h,) are not adjacent in G’. But Lemma 3 implies
that (hi, he) € E(H), a contradiction to W being an H-witness structure of G'. <

» Lemma 7. Let (G', k") be a YES instance of SPLIT CONTRACTION and (b, sy,) € T for
i € [t]. Then, for each i € [t], we have |W (h;)| = 3 where h; = p(s3,).

Proof. For i € [t], let h; = ¢(s},). From Lemma 5 we know that [W(h;)| > 3. Let
C={ci|ie[t]} and S = {{b;,sy,} | i € [t{]}. From Lemmata 5 and 6 it follows that each
¢ € C must be incident to an edge in T" and each S € S must have a vertex which is incident
to an edge in 7' with the other endpoint not in S. Since |C| = [S| =t and (b;, sy,) € T, for
all ¢ € [t], there are at most ¢ edges in T' that are incident to a vertex in C' and a vertex in
S € S. Therefore, each ¢ € C is incident to exactly one edge in T. Similarly, each S € S is
incident to exactly one edge with one endpoint in S and the other not in S. This implies that
exactly one vertex ¢ € C belongs to W (h;) for ¢ € [t], and ¢ does not belong to W (h;), where
i#j, 1,7 € [t]. Also note that none of the vertices in {x;, y;, z; | ¢ € [¢]} can be incident to
an edge in 7. Similarly, none of the vertices in {b}i, c;.i, x;-i, y}i, z;-i |i€lt],j €[4t + 2]} can
be incident to an edge in 7. Hence, we get that |IW(h;)| = 3, concluding the proof. <

» Lemma 8. Let (G', k") be a YES instance of SPLIT CONTRACTION and (b;,sy,) € T for
i € [t]. Then, for alli € [t], we have ¢; € W (h;) where h; = ¢(sy.).

Proof. Suppose for some i € [t], ¢; ¢ W (h;) where h; = ¢(sy.). From Lemmata 5, 6 and
k' = 2t, it follows that there exists some j € [t] such that ¢; € W (h;), where h; = ¢(sy, ).
By our assumption, j # i. From Lemma 7 we know that [W(h;)| = 3, therefore W (h;) =
{b;, s?j,ci}. Moreover, by Lemmata 6 and 7 and since k¥’ = 2¢, |W(x;)| = 1. However, we
then get that W(h;), W(z;) are not adjacent in G’. By Lemma 3, we obtain a contradiction
to the assumption that W is an H-witness structure of G’. This completes the proof. <

We are now ready to prove the main equivalence lemma of this section.

» Lemma 9. (G, P ={C1,Cs,...Ci}, k1,... k) is a YES instance of SUB-CuBIC PVC if
and only if (G', k') is a YES instance of SPLIT CONTRACTION.

Proof. In the forward direction, let Y be a vertex cover in G such that for each i € [t],
Y NCi| < k;. Forie [t], welet Y; =Y NC;. Let T = {(b;,sy;), (¢ci,sy;) | © € [t]}. Let
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H=G'/T, ¢:V(G") — V(H) be the underlying surjective map and W be the H-witness
structure of G'. To show that T is a solution to SPLIT CONTRACTION in (G’ ’), it is
enough to show that H is a split graph. Let I = U;ciy(Si \ {sv, }) U {0}, ¢}, 2%, v, ] ‘ie
[t],7 € [4t 4+ 2]}. Recall that for each v € I, |W(p(v))| = 1. Furthermore, for v,v" € I,
(v,0') & E(G'). Hence, it follows that I = {p(v) | v € I'} induces an independent set in H.
Let C1 = {zi,yi,2i | © € [t]}. Recall that G'[C1] is a clique and from the construction of T,
W (p(c))| = 1 for all ¢ € C;. Therefore, C; = {p(c) | ¢ € €1} induces a clique in H. Let
Co = {sy, | i € [t]}, hi = @(sy,) for i € [t], and Co = {h; | i € [t]}. From the construction
of T, we have W (h;) = {b;,¢;, sy,} for all i € [t]. Observe that for ¢; € C; and ¢y € Ca,
W(e1), W(cy) are adjacent in G’, therefore, (¢1,¢z) € E(H). Consider h;, h; € Ca, where
i,j € [t],i # j. Recall W(h;) = {bs, sy;,c;} and W(h;) = {bj,sy;,c;}. Since Y is a vertex
cover, at least one of Y; or Y; covers the unique edge between C; and C; in G, say Y; covers
the edge between C; and C;. But then (sy,,c;) € E(G'), therefore (h;, h;) € E(H). The
above argument implies that C = C, UGy induces a clique in H. Furthermore, V(H) = Tuc.
This implies that H is a split graph.

In the reverse direction, let T' be a solution to SPLIT CONTRACTION in (G’,k’). Let
H=G']T, ¢:V(G") = V(H) be the underlying surjective map and W be the H-witness
structure of G'. From Lemma 4, it follows that for all ¢ € [t], there exists sy, € S; such
that (b, sy;) € T. For i € [t], let Y; be the set such that (b;,sy;,) € T. We let Y = U;cyYi.
For ¢ € [t], from the definition of the vertices in S;, it follows that |Y N C;| < k;. We
will show that Y is a vertex cover in G. Towards a contradiction assume that there exists
i,j € [t],i # j, such that ¥ does not cover the unique edge between C; and C;. From
Lemmas 4 and 8 it follows that W(h;) = {b;,sy;,c;} and W(h;) = {bj, sy,,c;}, where
hi = ¢(sy;) and h; = ¢(sy;). From Lemma 3 it follows that (h, h;) € E(H). Therefore,
W (h;) and W (h;) are adjacent in G’. Recall that Ng/(b;) "W (h;) =0, Ng/(bj) "W (h;) = 0,
(ci,c5), (sy;, sy;) ¢ E(G"). Therefore, at least one of (¢4, sy, ), (¢;, sy;) must belong to E(G’),
say (ci,sy;) € E(G'). But then by construction it follows that Y; C Y covers the unique
edge between C; and Cj in G, a contradiction. This completes the proof. <

Finally, we restate Theorem 1 and prove its correctness.

» Theorem 10. Unless the ETH fails, SPLIT CONTRACTION parameterized by ¢, the size
of a minimum vertex cover of the input graph, does not have an algorithm running in time
20(£%) . pO1) Here, n denotes the number of vertices in the input graph.

Proof. Towards a contradiction assume that there is an algorithm .4 for SPLIT CONTRACTION,
parameterized by £, the size of a minimum vertex cover, running in time 20001 et
(G,P={C1,Cs,...Ct}, ki, ... kt) be an instance of SUB-CUBIC PVC. We create an instance
(G', k") of SPLIT CONTRACTION as described in the Construction, running in time 2°( .
n®W) | where n = [V(G)|. Recall that in the instance created, the size of a minimum vertex
cover is ¢ = 5t = O(y/n). Then we use algorithm A for deciding if (G', k") is a YES instance
of SPLIT CONTRACTION and return the same answer for SUB-CuBic PVC on (G, P, k1,

..kt). The correctness of the answer returned follows from Lemma 9. But then we can
decide whether (G, P, k,...k;) is a YES instance of SUB-CuBIC PVC in time 2°") . n©@(1),
which contradicts ETH assuming Theorem 11. This concludes the proof. <

3.2 Reduction from Sub-Cubic VC to Sub-Cubic PVC

Finally, to complete our proof we show that SUB-CuBIC PVC on graphs with n vertices
can not be solved in time 2°(n®W unless the ETH fails. In this section we give a Turing
reduction from SUB-CUBIC VC to SuB-CuBic PVC that will imply our desired assertion.
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Let (G, k) be an instance of SUB-CUBIC VC and n = |[V(G)|. We first create a new
instance (G, k') of SUB-CUBIC VC satisfying certain properties. We start by computing a
harmonious coloring of G using ¢t € O(y/n) color classes such that each color class contains
at most O(y/n) vertices. A harmonious coloring on bounded degree graphs can be computed
in polynomial time using at most O(y/n) colors with each color class having at most O(y/n)
vertices [29, 33, 18]. Let C, ..., C; be the color classes. Recall that between each pair of the
color classes, C;, C; for i,j € [t], i # j, we have at most one edge. If for some i, j € [t],i # j,
there is no edge between a vertex in C; and a vertex in Cj, then we add a new vertex z;; in
C; and a new vertex z;; in C; and add the edge (z;;,2,;). Observe that we add a matching
corresponding to a missing edge between a pair of color classes. In this process we can add at
most t — 1 new vertices to a color class C;, for ¢ € [t]. Therefore, the number of vertices in C;
for ¢ € [t] after addition of new vertices is also bounded by O(y/n). We denote the resulting
graph by G’ with partition of vertices C1,--- ,C; (including the newly added vertices, if
any). Observe that the number of vertices n’ in G’ is at most O(n). Let m be the number of
matching edges added in G to obtain G’ and let ¥’ = k + m. It is easy to see that (G, k) is a
YES instance of SUB-CuBICc VC if and only if (G', k') is a yes instance of SuB-CuBIc VC.

We will now be working with the instance (G’, k") of SUB-CuBIC VC with the partition of
vertices C1, ..., C; obtained by extending the color classes of the harmonious coloring of G we
started with. We guess the size of the intersection of the vertex cover in G’ with each C;, for

i € [t]. That is, for i € [t], we guess an integer 0 < ki < min(|C;|, k'), such that 3, ki = &'.

Finally, we let (G',P = {C1,---,C:}, ki, - - ki) be an instance of SUB-CuBIC PVC. Notice
that G’ and P satisfies all the requirements for it to be an instance of SuB-CuBic PVC. It
is easy to see that (G', k') is a YES instance of SUuB-CuBIC VC if and only if for some guess

of k;, for ¢ € [t], (G',P ={C1,---,Ci}, K}, ,k;) is a YES instance of SuB-CuBic PVC.

This finishes the reduction from SuB-CuBic VC to SuB-CuBic PVC.

» Theorem 11. Unless the ETH fails, SUB-CUBIC PV C does not admit an algorithm running
in time 2°00 . n@M) " Here, n is the number of vertices in the input graph.

Proof. Towards a contradiction assume that there is an algorithm A for SuB-CuBic PVC
running in time 2°(" . n@M) Let (G, k) be an instance of SUB-CUBIC VC. We apply the
above mentioned reduction to create an instance (G’,k’) of SUB-CuUBIC VC with vertex
partitions C1, -+ ,Cy such that t € O(y/n) and |C;| € O(y/n), for all ¢ € [t]. Furthermore,
there is exactly one edge between C;, Cj, for 4, j € [t], i # j, and C; induces an independent
set in G’. For each guess 0 < k! < min(|C;|, k") of the size of intersection of vertex cover with
C;, for i € [t], we solve the instance (G', P, ki, -+ ,k;). By the exhaustiveness of the guesses
of the size of intersection for each partition, (G’,%’) is a YES instance of SuB-CuBic VC if

and only if for some guess k{,--- ki, (G',P,ky,--- , ki) is a YES instance of SuB-CuBic PVC.

We emphasize the fact that the number of guesses we make is bounded by \/ﬁo(ﬁ) = 20(n),
since |C;| € O(y/n) and t € O(y/n). But then we have an algorithm for SuB-CuBic VC
running in time 2°(™ . n®W  contradicting the ETH. This concludes the proof. |

4 W/[1]-Hardness of Split Contraction

In this section we show that SPLIT CONTRACTION parameterized by the solution size is
WI[1]-hard. Towards this we first define an intermediate problem from which we give the
desired reduction.

5:9
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Figure 2 W[1]-Hardness of SPLIT CONTRACTION.

SPECIAL RED-BLUE PERFECT CODE (SRBPC) Parameter: k
Input: A bipartite graph G with vertex set V(G) partitioned into R (red set) and B
(blue set). Furthermore, R is partitioned (disjoint) into Ry W Ra W - - W Ry, and for all
r,r’ € R, dg(r) = dg(r’). That is, every vertex in R has same degree, say d.
Question: Does there exist X C R, such that for all b € B, |[N(b) N X| =1 and for all
i€ k], |[RiNX|=17

SRBPC is a variant of PERFECT CODE which is known to be W[1]-hard [14]. The WJ[1]-
hardness proof of SRBPC is given by the following theorem. Proofs of the results
marked by an asterik are omitted due to space constraints.

» Theorem 12 (*). SRBPC parameterized by the number of parts in R is W[1]-hard.

Let (G,R = RiW,Ra W --- W Ry, B) be an instance of SRBPC. We will assume that
|B| = dk, otherwise, the instance is a trivial NO instance of SRBPC. For technical reasons we
assume that |B| = ¢ > 4k (and hence d > 4). Such an assumption is valid because otherwise,
the problem is FPT. Indeed, if |B| = ¢ < 4k then for every partition Py, ..., P, of B into k
parts such that each part is non-empty, we first guess a permutation 7 on k elements and
then for every i € [k], we check whether there exists a vertex Tx(i) € Rr(;) that dominates
exactly all the vertices in P; (and none in other parts P;, j # i). Clearly, all this can be
done in time 20 108%)O()  Furthermore, we also assume that , else the problem is
solvable in polynomial time. Now we give the desired reduction. We construct an instance
(G', k") of SPLIT CONTRACTION as follows. Initially, V(G') = RUB and E(G’) = E(G). For
all b,b' € B, b # V', we add the edge (b,b') to E(G’). That is, we transform B into a clique.
Let . For each b; € B, we add a set of t vertices ¢!, -,y each adjacent to b; in
G'. We add a vertex s adjacent to every vertex r € R in G’. Also, we add a set of ¢ vertices
q1, - ,q: each adjacent to s in G'. For each i € [k], we add a vertex x; adjacent to each
vertex r € R;. Finally, for all i € [k], we add a set of t vertices w?,---w! adjacent to z; in
G'. We set the new parameter k' to be 2k. This completes the description of the reduction.
We refer the reader to Figure 2 for an illustration of the reduction.

In the next four lemmata (Lemmata 13 to 16) we prove certain structural properties
of the instance (G’, k') of SPLIT CONTRACTION. These will later be used in showing that
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(G,R=R1W,Ro W ---W Ry, B) is a YES instance of SRBPC if and only if (G', k) is a YES
instance of SPLIT CONTRACTION. For the next four lemmata, we let .S be a solution to SPLIT
CONTRACTION in (G, k') and H = G'/S with C, I being a partition of V (H) inducing a
clique and an independent set, respectively, in H. Let ¢ : V(G) — V(H) denote the function
defining the contractibility of G to H, and W be the H-witness structure of G.

» Lemma 13 (*). Let (G',k") be a YES instance of SPLIT CONTRACTION. Then, for all
ve ({stuBU{z; | € [k]}), we have o(v) € C.

» Lemma 14 (*). Let (G',k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [k], there exists r; € R; such that (z;,7;) € S.
For each i € [k] we arbitrarily choose a vertex r} € R; such that ef = (z;,77) € S. The

existence of such a vertex is guaranteed by Lemma 14.

» Lemma 15 (*). Let (G, k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [k] and h; = ¢(r}), we have |W(h;)| > 3. Furthermore, there is an edge e; # e} in S
incident to exactly one of x;,r¥ and not incident to the vertices in {wi, - ,wi}.

From Lemma 14 we know that for each ¢ € [k], we have r} € R; such that (z;,7}) € S.

Similarly, from Lemma 15 we know that, for each i € [k], there is an edge incident to one of
*
i
is adjacent to x;,r;. Hence, it follows that we have already used up our budget of k' = 2k

x;,r; other than ef = (x;,7}) in every solution. Recall that for i,j € [k], i # j none of x;,;

by forcing certain types of edges to be in S. Finally, we prove Lemma 16 that forces even
more structure on the witness sets.

» Lemma 16. Let (G, k') be a YES instance of SPLIT CONTRACTION. Then, for alli € [k],
i € W(p(s)).

Proof. Let hy, = @(s) and R = {r} | i € [k],r} € W(h,)}. For a contradiction assume that

|R| < k, otherwise the claim trivially holds. By Lemma 14, for each i € [k], e} = (z;,7F) € S.

?
This implies that for all 7 € R, x; € W (hs) and hence |W (hs)| > 2|R|+ 1. From Lemma 15
we know that there exists an edge e; # e € S incident to either z; or 7 and not incident to
any vertex in {w?,--- ,wi}. Thus, every edge in S is incident to either z; or 7. This implies
that for every vertex z € {q1,...,q.} U{yl,...,y) | j € [f]}, [W(¢(2))| = 1. Now we show
that there exists a vertex in B that is not adjacent to any vertex in W (hs). Observe that the
only vertices in W (hs) that can be adjacent to a vertex in B are in R. However, every vertex
in R has exactly d neighbours in B. This together with the fact that |B| = ¢ = dk > d|R]
implies that there exists a subset B’ of size d(k — |R|) such that none of these vertices are
adjacent to any vertex in R. However, at most (k — |R|) vertices in B’ can be incident to
an edge in S. This implies that there exists a vertex b € B’ with h = ¢(b) such that it is
not incident to any edge in S and thus |W(h)| = 1. But then we can conclude that W(h)
and W (h) are not adjacent in G’. However, by Lemma 13 we know that hg, h € C and thus
there is an edge (h = ¢(b), hs) € E(H'), a contradiction. This contradicts our assumption
that |R| < k and proves the claim. <

We are now ready to prove the equivalence between the instance (G, R, B) of SRBPC
and the instance (G', k) of SPLIT CONTRACTION.

» Lemma 17. (G,R = Ry W--- Ri,B) is a YES instance of SRBPC if and only if (G', k")
is a YES instance of SPLIT CONTRACTION.

5:11
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Proof. In the forward direction, let Z = {r; | r; € R;,i € [k]} € R be a solution to
(G,R,B) of SRBPC. Let Z' = {(r;,x;),(ri,s) | © € [k]}. Observe that |Z'| = 2k. Let
T = {ri,x; | i € [k],r; € Z}. We define the following surjective function ¢ : V(G') —
V(G)\T. It v € TU{s} then ¢(v) = s, else p(v) = v. Observe that G'[W(s)] is connected
and for all v € V(G') \ (T'U {s}), W(v) is a singleton set. Consider the graph H with
V(H)=V(G")\T and (v,u) € E(H) if and only if ¢=1(v), p~!(u) are adjacent in G’. Note
that the graphs G'/Z’ and H are isomorphic, therefore we prove that H is a split graph. Let
C={pWw) |veBU{s}}and I = V(H)\ C. For v,u e I, o~ (v) = {v} and o' (u) = {u}
and {v}, {u} are non-adjacent in G’. Therefore, (v,u) ¢ E(H). This proves that I is an
independent set in H. For b,b/ € B  C, (b,V) € E(G'), therefore (p(v), o(u)) € E(H).
Since Z is a solution to SRBPC in (G, R, B), for each b € B, there exists r; € Z such that
(b,r;) € E(G"), therefore, W (s) and b are adjacent in G’. Hence, (¢(s), (b)) € E(H'). This
finishes the proof that C induces a clique in H and that H is a split graph.

In the reverse direction, let S be a solution to (G’,k’) of SPLIT CONTRACTION, and
denote H = G'/S. Let W be the H-witness structure of G', ¢ be the associated surjective
function and hs = ¢(s). From Lemmas 14 and 16 it follows that for all i € [k], there exists
rf € R; such that (z;,r}) € S and rf,z; € W(hs). Let Z = {r} | i € [k]}. We will show
that Z is a solution to SRBPC in (G,R,B). Since |W(hs)| = k' +1 = 2k + 1, it holds
that for all v € V(H) \ {hs}, |W(v)| = 1. This implies that for all b € B, b ¢ W (hs). Also
observe that since z; € W (h;) for all i € [k] and |W (hs)| = K" + 1 = 2k + 1, we have that
|W(hs) N R;| = 1. This implies that |Z| = k and |Z N R;| = 1, for all ¢ € [k]. To show that
Z is indeed a solution, it is enough to show that for all b; € B, |[Z N N(b;)| = 1. Towards a
contradiction, assume there exists b; € B such that |Z N N(b;)| # 1. Let hy, = o(b;). We
consider the following two cases.

If |Z N N(bj)| < 1. Recall that W(hy;) = {b;}. Further, Ng/(b;) € R U {vi,. ..y},
Z = W(hs) NR and by our assumption Z N Ng(b;) = 0. But then W (h,) and W (hs,)
are not adjacent in G'. However, Lemma 13 implies that (hs, hy,) € E(H), contradicting
our assumption that |Z N N(b;)| < 1.
If [Z N N(b;)| > 1, then there exists j,j" € [k], j # j’ such that r},77 € Ng/(b). Then
it follows that | Ujepr) N(r7)| < £ = dk. But then there exists b’ € B such that W (p(b'))
and W (hs) are non-adjacent, contradicting that (¢(b'), hs) € E(H) from Lemma 13.
This completes the proof. |

We now restate Theorem 2.

» Theorem 2 (restated). SPLIT CONTRACTION parmeterized by the size of a solution is
WI(1]-hard.

Proof. Proof follows from construction, Lemma 17 and Theorem 12. |

5 Conclusion

In this paper, we have established two important results regarding the complexity of SPLIT
CONTRACTION. First, we have shown that under the ETH, this problem cannot be solved
in time 2°(”) . O where £ is the vertex cover number of the input graph, and this lower
bound is tight. To the best of our knowledge, this is the first tight lower bound of the form
20(%) . O for problems parameterized by the vertex cover number of the input graph.
Second, we have proved that SPLIT CONTRACTION, despite its deceptive simplicity, is actually

WI[1]-hard with respect to the solution size. We believe that techniques integrated in our
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constructions can be used to derive conditional lower bounds and W[1]-hardness results in
the context of other graph editing problems where the edit operation is edge contraction.

We would like to conclude our paper with the following intriguing question. In the exact

setting, it is easy to see that SPLIT CONTRACTION can be solved in time 2°(*1°8™)  Can it
be solved in time 2°("1°8™)? A negative answer would imply, for instance, that it is neither

possible to find a topological clique minor in a given graph in time 2°("1°87) which is an
interesting open problem [11]. It might be possible that tools developed in our paper, such
as the usage of harmonious coloring, can be utilized to shed light on such problems.
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