
What Can Be Verified Locally?∗

Alkida Balliu1, Gianlorenzo D’Angelo2, Pierre Fraigniaud†3, and
Dennis Olivetti4

1 Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and
University Paris Diderot, Paris, France; and
Gran Sasso Science Institute (GSSI), L’Aquila, Italy

2 Gran Sasso Science Institute (GSSI), L’Aquila, Italy
3 Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and

University Paris Diderot, Paris, France
4 Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and

University Paris Diderot, Paris, France; and
Gran Sasso Science Institute (GSSI), L’Aquila, Italy
Abstract

We are considering distributed network computing, in which computing entities are connected by a
network modeled as a connected graph. These entities are located at the nodes of the graph, and
they exchange information by message-passing along its edges. In this context, we are adopting
the classical framework for local distributed decision, in which nodes must collectively decide
whether their network configuration satisfies some given boolean predicate, by having each node
interacting with the nodes in its vicinity only. A network configuration is accepted if and only if
every node individually accepts. It is folklore that not every Turing-decidable network property
(e.g., whether the network is planar) can be decided locally whenever the computing entities
are Turing machines (TM). On the other hand, it is known that every Turing-decidable network
property can be decided locally if nodes are running non-deterministic Turing machines (NTM).
However, this holds only if the nodes have the ability to guess the identities of the nodes currently
in the network. That is, for different sets of identities assigned to the nodes, the correct guesses
of the nodes might be different. If one asks the nodes to use the same guess in the same network
configuration even with different identity assignments, i.e., to perform identity-oblivious guesses,
then it is known that not every Turing-decidable network property can be decided locally.

In this paper, we show that every Turing-decidable network property can be decided locally if
nodes are running alternating Turing machines (ATM), and this holds even if nodes are bounded
to perform identity-oblivious guesses. More specifically, we show that, for every network property,
there is a local algorithm for ATMs, with at most 2 alternations, that decides that property. To
this aim, we define a hierarchy of classes of decision tasks where the lowest level contains tasks
solvable with TMs, the first level those solvable with NTMs, and level k contains those tasks
solvable with ATMs with k alternations. We characterize the entire hierarchy, and show that
it collapses in the second level. In addition, we show separation results between the classes
of network properties that are locally decidable with TMs, NTMs, and ATMs. Finally, we
establish the existence of completeness results for each of these classes, using novel notions of
local reduction.

1998 ACM Subject Classification D.1.3 Concurrent Programming (Distributed programming),
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Distributed Network Computing, Distributed Algorithm, Distributed
Decision, Locality

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.8

∗ The first, third and fourth authors received additional support from the ANR project DISPLEXITY.
† Additional support from the INRIA project GANG.

© Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 What Can Be Verified Locally?

1 Introduction

1.1 Context and objective
In the framework of network computing, distributed decision is the ability to check the legality
of network configurations using a distributed algorithm. In this paper, we are interested in
local distributed decision. We insist on locality, as we want the checking protocols to avoid
involving long-distance communications across the network, for they are generally costly
and potentially unreliable. More specifically, we consider the standard LOCAL model of
computation in networks [14]. Nodes are assumed to be given distinct identities, and each
node executes the same algorithm, which proceeds in synchronous rounds where all nodes
start at the same time. In each round, every node sends messages to its neighbors, receives
messages from its neighbors, and performs some individual computation. The model does not
limit the amount of data sent in the messages, neither it limits the amount of computation
that is performed by a node during a round. Indeed, the model places emphasis on the
number of rounds before every node can output, as a measure of locality. (Note however
that, up to some exceptions, our positive results involve messages of logarithmic size, and
polynomial-time computation). A local algorithm is a distributed algorithm A satisfying
that there exists a constant t ≥ 0 such that A terminates in at most t rounds in all networks,
for all inputs. The parameter t is called the radius of A. In other words, in every network
G, and for all inputs to the nodes of G, every node executing A just needs to collect all
information present in the t-ball around it in order to output, where the t-ball of u is the
ball BG(u, t) = {v ∈ V (G) : dist(u, v) ≤ t}.

The objective of the paper is to determine what network properties can be decided locally,
as a function of the individual computing power of the nodes.

Following the guidelines of [6], we define a configuration as a pair (G, x) where G = (V,E)
is a connected simple undirected graph, and x : V (G)→ {0, 1}∗ is a function assigning an
input x(u) to every node u ∈ V . A distributed language L is a set of configurations (we
consider only Turing-decidable sets). A configuration (G, x) ∈ L is said to be legal w.r.t. L.
Note that the membership of a configuration in a distributed language is independent of
the identity that may be assigned to the nodes in the LOCAL model (this is because one
may want to study the same language under different computational models, including ones
that assume anonymous nodes). The class LD is the set of all distributed languages that
are locally decidable. That is, LD is the class of all distributed languages L for which there
exists a local algorithm A satisfying that, for every configuration (G, x),

(G, x) ∈ L ⇐⇒ A accepts (G, x)

where one says that A accepts if it accepts at all nodes. More formally, given a graph G, let
ID(G) be the set of all injective functions from V (G) to positive integers, i.e., ID(G) denote
the set of all possible identity assignments to the nodes of G. Then LD is the class of all
distributed languages L for which there exists a local algorithm A satisfying the following:
for every configuration (G, x),

(G, x) ∈ L ⇒ ∀id ∈ ID(G),∀u ∈ V (G),AG,x,id(u) = accept
(G, x) /∈ L ⇒ ∀id ∈ ID(G),∃u ∈ V (G),AG,x,id(u) = reject

where AG,x,id(u) is the output of Algorithm A running on the instance (G, x) with identity-
assignment id, at node u. For instance, the language prop-col, composed of all (connected)
properly colored graphs, is in LD. Similarly, the class LCL of “locally checkable labelings”,

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:3

defined in [13], satisfies LCL ⊆ LD. In fact, LCL is precisely LD restricted to configurations
on graphs with constant maximum degree, and inputs of constant size.

The class NLD is the non-deterministic version of LD, i.e., the class of all distributed
languages L for which there exists a local algorithm A verifying L, i.e., satisfying that, for
every configuration (G, x),

(G, x) ∈ L ⇐⇒ ∃c,A accepts (G, x) with certificate c.

More formally, NLD is the class of all distributed languages L for which there exists a local
algorithm A satisfying the following: for every configuration (G, x),

(G, x) ∈ L ⇒ ∃c ∈ C(G),∀id ∈ ID(G),∀u ∈ V (G),AG,x,c,id(u) = accepts
(G, x) /∈ L ⇒ ∀c ∈ C(G),∀id ∈ ID(G),∃u ∈ V (G),AG,x,c,id(u) = rejects

where C(G) is the class of all functions c : V (G)→ {0, 1}∗, assigning certificate c(u) to each
node u. Note that the certificates c may depend on the network and on the input to the
nodes, but should be set independently of the actual identity assignment to the nodes of the
network. In the following, for the sake of simplifying the notations, we shall omit specifying
the domain sets C(G) and ID(G) unless they are not clear from the context. It follows from
the above that NLD is a class of distributed languages that can be locally verified, in the sense
that, on legal instances, certificates can be assigned to nodes by a prover so that a verifier
A accepts, and, on illegal instances, the verifier A rejects (i.e., at least one node rejects)
systematically, and cannot be fooled by any fake certificate. For instance, the language

tree = {(G, x) : G is a tree}

is in NLD, by selecting a root r of the given tree, and assigning to each node u a counter
c(u) equal to its hop-distance to r. If the given (connected) graph contains a cycle, then no
counters could be assigned to fool an algorithm checking that, at each node u with c(u) 6= 0,
a unique neighbor v satisfies c(v) < c(u). In [5], NLD was proved to be exactly the class of
distributed languages that are closed under lift.

Finally, [6] defined the randomized versions BPLDp,q and BPNLDp,q, of the aforementioned
classes LD and NLD, respectively, by replacing the use of a deterministic algorithm with
the use of a randomized algorithm characterized by its probability p of acceptance for legal
instances, and its probability q of rejection for illegal instances. By defining BPNLD =
∪p2+q≥1BPNLDp,q, the landscape of local decision was pictured as follows:

LD ⊂ NLD ⊂ BPNLD = All

where all inclusions are strict, and All is the set of all distributed languages. That is, every
distributed language can be locally verified with constant success probabilities p and q, for
some p and q satisfying p2 + q ≥ 1. In other words, by combining non-determinism with
randomization, one can decide any given distributed language.

1.2 Our contributions
Following up the approach recently applied to distributed graph automata in [15], and to the
CONGEST model in [2], we observe that the class LD and NLD are in fact the basic levels of
a “local hierarchy” defined as follows. Let Σloc

0 = Πloc
0 = LD, and, for k ≥ 1, let Σloc

k be the
class of all distributed languages L for which there exists a local algorithm A satisfying that,
for every configuration (G, x),

(G, x) ∈ L ⇐⇒ ∃c1,∀c2, . . . , Qck,A accepts (G, x) with certificates c1, c2, . . . , ck

STACS 2017

8:4 What Can Be Verified Locally?

LD co-LD

Πloc
1 co-Πloc

1

NLD = Σloc
2 co-NLD

All = Πloc
2

diamkand or

tree

alts amos
iter iter

exts
miss

miss↑ miss↑

Figure 1 Relations between the different decision classes of the local hierarchy (the definitions of
the various languages can be found in the text).

where the quantifiers alternate, and Q is the universal quantifier if k is even, and the
existential one if k is odd. The class Πloc

k is defined similarly, by starting with a universal
quantifier, instead of an existential one. A local algorithm A insuring membership to a
class C ∈ {Σloc

k , k ≥ 0} ∪ {Πloc
k , k ≥ 0} is called a C-algorithm. Hence, NLD = Σloc

1 , and, for
instance, Πloc

2 is the class of all distributed languages L for which there exists a Πloc
2 -algorithm,

that is, a local algorithm A satisfying the following: for every configuration (G, x),

(G, x) ∈ L ⇒ ∀c1,∃c2,∀id,∀u ∈ V (G),AG,x,c1,c2,id(u) = accept;
(G, x) /∈ L ⇒ ∃c1,∀c2,∀id,∃u ∈ V (G),AG,x,c1,c2,id(u) = reject. (1)

Our main results are the following.

I Theorem 1. LD ⊂ Πloc
1 ⊂ NLD = Σloc

2 ⊂ Πloc
2 = All, where all inclusions are strict.

That is, Πloc
1 ⊃ Πloc

0 , while Σloc
2 = Σloc

1 , and the whole local hierarchy collapses to the
second level, at Πloc

2 . In other words, while not every Turing-decidable network property can
be decided locally if nodes are running non-deterministic Turing machines (NTM), Theorem 1
says that every Turing-decidable network property can be decided locally if nodes are running
alternating Turing machines (ATM). More specifically, for every network property, there is a
local algorithm for ATMs, with at most 2 alternations, that decides that property.

We complete our description of the local hierarchy by a collection of separation and
completeness results regarding the different classes and co-classes in the hierarchy. In
particular, we revisit the completeness results in [6], and show that the notion of reduction
introduced in this latter paper is too strong, and may allow a language outside NLD to
be reduced to a language in NLD. We introduce a more restricted form of local reduction,
called label-preserving, which does not have this undesirable property, and we establish the
following.

I Theorem 2. NLD and Πloc
2 have complete distributed languages under local label-preserving

reductions.

Finally, Figure 1 summarizes all our separation results.

1.3 Related Work
Several form of “local hierarchies” have been investigated in the literature, with the objective
of understanding the power of local computation, and/or for the purpose of designing
verification mechanisms for fault-tolerant computing. In particular, [15] has investigated the
case of distributed graph automata, where the nodes are finite automata, and the network is

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:5

anonymous (which are weaker assumptions than those in our setting), but also assuming an
arbitrary global interpretation of the individual decisions of the nodes (which is a stronger
assumption than those in our setting). It is shown that all levels Σaut

k , k ≥ 0, of the resulting
hierarchy are separated, and that the whole local hierarchy is exactly composed of the MSO
(monadic second order) formulas on graphs.

In the framework of distributed computing, where the computing entities are Turing
machines, proof-labeling schemes (PLS) [8], extended to locally checkable proofs (LCP) [7],
give the ability to certify predicates using certificates that can take benefits of the node
identities. That is, for the same network predicate, and the same legal network configuration,
the distributed proof that this configuration is legal may be different if the node identities
are different. In this context, the whole hierarchy collapses at the first level, with Σlcp

1 = All.
However, this holds only if the certificates can be as large as Ω(n2) bits. In [2], the class
LogLCP [7], which bounds the certificate to be of size O(logn) bits is extended to a hierarchy
that fits to the CONGEST model. In particular, it is shown that MST stands at the second
level ΠLogLCP

2 of that hierarchy, while there are languages outside the hierarchy.
In [6], the authors introduced the model investigated in this paper. In particular, they

defined and characterized the class NLD, which is nothing else than Σloc
1 , that is, the class

of languages that have a proof-labeling scheme in which the certificates are not depending
on the node identities. It is proved that, while NLD 6= All, randomization helps a lot, as
the randomized version BPNLD of NLD satisfies BPNLD = All. It is also proved that, with
the oracle #nodes providing each node with the number of nodes in the network, we get
NLD#nodes = All. Interestingly, it was proved [5] that restricting the verification algorithms
for NLD to be identity-oblivious, that is, enforcing that each node decides the same output for
every identity-assignment to the nodes in the network, does not reduce the ability to verify
languages. This is summarized by the equality NLDO = NLD where the “O” in NLDO stands
for identity-oblivious. In contrast, it was recently proved that restricting the algorithms to
be identity-oblivious reduces the ability to decide languages locally, i.e., LDO (LD (see [4]).

Finally, it is worth mentioning that the ability to decide a distributed language locally has
impact on the ability to design construction algorithms [12] for that language (i.e., computing
outputs x such that the configuration (G, x) is legal w.r.t. the specification of the task). For
instance, it is known that if L is locally decidable, then any randomized local construction
algorithm for L can be derandomized [13]. This result has been recently extended [1] to
the case of languages that are locally decidable by a randomized algorithm (i.e., extended
from LD to BPLD according to the notations in [6]). More generally, the reader is invited to
consult [3, 9, 10, 11, 14, 16] for good introductions to local computing, and/or samples of
significant results related to local computing.

2 All languages are Πloc
2 decidable

In this section, we show the last equality of Theorem 1.

I Proposition 3. Πloc
2 = All.

Proof. Let L be a distributed language. We give an explicit Πloc
2 -algorithm for L, i.e., a

local algorithm A such that, for every configuration (G, x), Eq. (1) is satisfied. For this
purpose, we describe the distributed certificates c1 and c2. Intuitively, the certificate c1 aims
at convincing each node that (G, x) 6∈ L, while c2 aims at demonstrating the opposite. More
precisely, at each node u in a configuration (G, x), the certificate c1(u) is interpreted as a
triple (M(u), data(u), index(u)) where M(u) is an m×m boolean matrix, data(u) is a linear

STACS 2017

8:6 What Can Be Verified Locally?

array with m entries, and index(u) ∈ {1, . . . ,m}. Informally, c1(u) aims at proving to node u
that it is node labeled index(u) in the m-node graph with adjacency matrix M(u), and that
the whole input data is data(u). We denote by n the number of nodes of the actual graph G.

For a legal configuration (G, x) ∈ L, given c1, the certificate c2 is then defined as follows.
It is based on the identification of a few specific nodes, that we call witnesses. Intuitively,
a witness is a node enabling to demonstrate that the structure of the configuration (G, x)
does not fit with the given certificate c1. Let dist(u, v) denote the distance between any two
nodes u and v in the actual network G, that is, dist(u, v) equals the number of edges of a
shortest path between u and v in G. A certificate c2(u) is of the form (f(u), σ(u)) where
f(u) ∈ {0, . . . , 4} is a flag, and σ(u) ∈ {0, 1}∗ depends on the value of the flag.

Case 0. There are two adjacent nodes v 6= v′ such that (M(v),data(v)) 6= (M(v′), data(v′)),
or there is at least one node v in which c1(v) cannot be read as a triple (M(v), data(v), index(v)).
Then we set one of these nodes as witness w, and we set c2(u) = (0,dist(u,w)) at every
node u.

Otherwise, i.e., if the pair (M(u), data(u)) is identical to some pair (M,data) at every node u:

Case 1. (G, x) is isomorphic to (M,data), preserving the inputs, denoted by (G, x) ∼
(M,data), and index() represents the isomorphism. Then we set c2(u) = (1) at every node u.

Case 2. n > m, i.e., |V (G)| is larger than the dimension m of M , or index() is not injective.
Then we set the certificate c2(u) = (2, i, d(u,w), d(u,w′)) where i ∈ {1, . . . ,m}, and w 6= w′

are two distinct nodes such that index(w) = index(w′) = i. These two nodes w and w′ are
both witnesses.

Case 3. n < m and index() is injective. Then we set c2(u) = (3, i) where i ∈ {1, . . . ,m} is
such that index(v) 6= i for every node v.

Case 4. n = m and index() is injective, but (G, x) is not isomorphic to (M, data). Then
we set as witness a node w whose neighborhood in (G, x) does not fit with what it should be
according to (M,data), and we set c2(u) = (4, d(u,w)) for every node u.

The local verification algorithm A then proceeds as follows. First, every node u checks
whether its flag f(u) in c2(u) is identical to all the ones of its neighbors, and between 0
and 4. If not, then u rejects. Otherwise, u carries on executing the verification procedure.
Its behavior depends on the value of its flag.

If f(u) = 0, then u checks that at least one of its neighbors has a distance to the witness
that is smaller than its own distance. A node with distance 0 to the witness checks that
there is indeed an inconsistency with its c1 certificate (i.e., its c1 certificate cannot be
read as a pair matrix-data, or its c1 certificate is distinct from the one of its neighbors).
Every node accepts or rejects accordingly.
If f(u) = 1, then u accepts or rejects according to whether (M(u), data(u)) ∈ L (recall
that, by definition, we consider only distributed languages L that are Turing-decidable).
If f(u) = 2, then u checks that it has the same index i in its certificate c2 as all its
neighbors. If that is not the case, then it rejects. Otherwise, it checks each of the two
distances in its certificate c2 separately, each one as in the case where f(u) = 0. A node
with one of the two distances equal to 0 also checks that its c1 index is equal to the

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:7

index i in c2. If that is not the case, or if its two distances are equal to 0, then it rejects.
If all the test are passed, then u accepts.
If f(u) = 3, then u accepts if and only if it has the same index i in its c2 certificate as all
its neighbors, and index(u) 6= i.
If f(u) = 4, then u checks the distances as in the case where f(u) = 0. A node with
distance 0 also checks that its neighborhood in the actual configuration (G, x) is not what
it should be according to (M, data). It accepts or rejects accordingly.

To prove the correctness of this Algorithm A, let us first consider a legal configuration
(G, x) ∈ L. We show that the way c2 is defined guarantees that all nodes accept, because
c2 correctly pinpoints inconsistencies in c1, witnessing any attempt of c1 to certify that the
actual configuration is illegal. Indeed, in Case 0, by the setting of c2, all nodes but the
witness accept. Also, the witness itself accepts because it does witness the inconsistency of
the c1 certificate. In Case 1, all nodes accept because (G, x) ∼ (M,data) and (G, x) ∈ L. In
Case 2, by the setting of c2, all nodes but the witnesses accept, and the witnesses accept too
because each one checks that it is the vertex with index i in M . In Case 3, all nodes accept
by construction of the certificate c2. Finally, in Case 4, by the setting of c2, all nodes but
the witness accept. Also, the witness itself accepts because, as in Case 0, it does witness the
inconsistency of the c1 certificate. So, in all cases, all nodes accept, as desired.

We are now left with the case of illegal configurations. Let (G, x) /∈ L be such an illegal
configuration. We set c1(u) = (M,data, index(u)) where (M,data) ∼ (G, x) and index(u) is
the index of node u in the adjacency matrix M and the array data. We show that, for any
certificate c2, at least one node rejects. Indeed, for all nodes to accept, they need to have
the same flag in c2. This flag cannot be 1 because, if f(u) = 1 then u checks the legality of
(M, data). In all other cases, the distance checking should be passed at all nodes for them
to accept. Thus, the flag is distinct from 0 and 4 because every radius-1 ball in (G, x) fits
with its description in (M,data). Also, the flag is distinct from 2 because there are no two
distinct nodes with the same index i in the c1 certificate. Finally, also the flag is distinct
from 3, because, by the setting of c1, every index in {1, . . . , n} appears at some node, and
this node would reject. Hence, all cases lead to contradiction, that is, not all nodes can
accept, as desired. J

To conclude the section, let us define a simple decision task in Πloc
2 \ NLD. Let exts,

which stands for “exactly two selected” be the following language. We set (G, x) ∈ exts
if x(u) ∈ {⊥,>} for every u ∈ V (G), and |{u ∈ V (G) : x(u) = >}| = 2. Proving that
exts /∈ NLD is easy using the following characterization of NLD. Let t ≥ 1. A configuration
(G′, x′) is a t-lift of a configuration (G, x) iff there exists a mapping φ : V (G′)→ V (G) that,
for every u ∈ V (G′), induces an isomorphism between BG(φ(u), t) and BG′(u, t), preserving
inputs (i.e., x(φ(u)) = x′(u) for all u ∈ V (G′)). A distributed language L is closed under lift
if there exists t ≥ 1 such that, for every (G, x), we have (G, x) ∈ L implies (G′, x′) ∈ L for
every (G′, x′) that is a t-lift of (G, x).

I Lemma 4 ([5]). NLD is the class of distributed languages closed under lift.

Since exts is not closed under lift, it results from Lemma 4 that exts /∈ NLD.

3 On the impact of the last universal quantifier

In this section, we prove the part of Theorem 1 related to the two classes Πloc
1 and Σloc

2 .
These two classes have in common that the universal quantifier is positioned last. It results
that these two classes seem to be limited, as witnessed by the following two propositions.

STACS 2017

8:8 What Can Be Verified Locally?

10200010

0111

02

00

12

21

2000

01

10 00

11

02

20

01

100020 10

v

f2(b) f3(b) f4(b)f(b)f,a,bf(a)f2(a)f3(a)f4(a)f5(a)f6(a)f7(a)f8(a)

Figure 2 An illustration of the distributed language iter.

I Proposition 5. Σloc
2 = NLD.

To show that Πloc
1 6= NLD, we consider the language alts, which stands for “at least two

selected”. (Note that alts is the complement of the language amos introduced in [6], where
amos stands for “at most one selected”). We set (G, x) ∈ alts if x(u) ∈ {⊥,>} for every
node u ∈ V (G), and |{u ∈ V (G) : x(u) = >}| ≥ 2. To separate NLD and Πloc

1 , we show that
alts ∈ NLD \Πloc

1 .

I Proposition 6. Πloc
1 ⊂ NLD (the inclusion is strict).

While Πloc
1 is in NLD, the universal quantifier adds some power compared to LD. We

show that LD 6= Πloc
1 by exhibiting a language in Πloc

1 \ LD. Note that the existence of this
language is not straightforward as it must involve Turing-computability issues. Indeed, if one
does not insist on the fact that the local algorithm must be a Turing-computable function,
then the two classes LD and Πloc

1 would be identical. For instance, given a t-round algorithm
A deciding a language L in Πloc

1 , one could define the following mechanism for deciding the
same language in LD. Given a t-ball B centered at u, node u accepts if and only if there are
no certificate assignments to the nodes of B that could lead A to reject at u. However, this
mechanism is not a Turing-computable function. Interestingly, NLD would still not collapse
to LD even if using non Turing-computable decision mechanisms. To see why, assume that
we are given the ability to try all possible certificates of an NLD algorithm A. The simple
decision mechanism at every node u consisting in rejecting at u as long as A rejects one of
the certificates at u, which works fine for Πloc

1 , does not work for NLD. Indeed, a node that
rejects a configuration for some certificate cannot safely reject because it might be a legal
configuation with an incorrect certificate. We show that, in fact, Πloc

1 \ LD 6= ∅.

I Proposition 7. LD ⊂ Πloc
1 where the inclusion is strict.

Proof. We describe the distributed language iter, which stands for “iteration”. Let M
be a Turing machine, and let us enumerate lexicographically all the states of the system
tape-machine where M starts its execution on the blank tape, with the head at the beginning
of the tape. We define the function fM : N→ N by fM (0) = 0, fM (1) = 1, and, for i > 1,
fM (i) equal to the index of the system state after one step of M from system state i. We
define iter as the collection of configurations (G, x) representing two sequences of iterations
of a function fM on different inputs a and b (see Figure 2).

More precisely, let M be a Turing machine, and let a and b be two non-negative integers.
We define the following family of configurations (see Figure 2). A configuration in iter
mainly consists of a path P with a special node v, called the pivot, identified in this path.
So P = LvR where L and R are subpaths, respectively called left path and right path.
All nodes of the path are given the machine M as input, and the pivot v is also given a

and b as inputs. The node of the left path (resp., right path) at distance i from v is given

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:9

a value fi,L (resp., fi,R) as input. To be in the language, it is required that, for every i,
fi,L = f

(i)
M (a) and fi,R = f

(i)
M (b), where g(i) denotes the ith iterated of a function g. Let u`

and ur be the two nodes at the extremity of the left path and of the right path, respectively.
The configuration is in the language if and only if the f -values at both extremities of the
path P are 0 or 1, and at least one of them is equal to 0. That is, the configuration is in the
language if and only if:

(f|L|,L ∈ {0, 1} and f|R|,R ∈ {0, 1}) and (f|L|,L = 0 or f|R|,R = 0). (2)

In fact, for technical reasons, it is also required that both |L| and |R| are powers of 2. Indeed,
on top of L and R are two complete binary trees TL and TR, respectively, with horizontal
paths connecting nodes of the same depth in each tree (see Figure 2). The nodes of L and R
are the leaves of these two trees. Finally, every node u of the graph receives as input a pair
of labels (`1, `2) ∈ {0, 1, 2}2. The label `1 is the distance modulo 3 from u to the right-most
node (resp., left-most node) of the path if u is an internal node of TL (resp., TR), and, for
nodes in the path P , `1 is simply the distance modulo 3 from the pivot v. The label `2 is the
height of the node in its tree modulo 3. (The pivot, which belongs to none of the trees, has
height 0). A configuration (G, x) ∈ iter if and only if (G, x) satisfies all the above conditions
with respect to the given machine M .

In other words, fM is defined so that 1 denotes the rejecting state with any tape content,
and any head position, while 0 denotes the accepting state with any tape content, and any
head position. All the other configurations uniquely identify the entire tape content, the
head position, and the current non halting state. In essence, when the machine switches
from some configuration i > 1 to another configuration j > 1, we keep track of the tape
content and the head position. If the machine halts, then we discard the tape content as
well as the head position, and we simply set f (i)

M equal to 0 or 1 accordingly. A configuration
is in the language if the machine terminates on both inputs a and b, and accepts at least one
of these two inputs.

Let us consider a weaker version of iter, denoted by iter− where the condition of
Eq. (2) is replaced by just: f|L|,L ∈ {0, 1} and f|R|,R ∈ {0, 1}. Thanks to the labeling
(`1, `2) at each node, which “rigidifies” the structure, we have iter− ∈ LD using the same
arguments as the ones in [4]. Moreover, iter ∈ Πloc

1 . To see why, we describe a local
algorithm A using certificates. The algorithm first checks whether (G, x) ∈ iter−. All nodes,
but the pivot v, decide according to this checking. If the pivot rejected (G, x) ∈ iter−,
then it rejects in A as well. Otherwise, it carries on its decision process by interpreting its
certificate as a non-negative integer k, and accepts in A unless f (k)

M (a) = 1 and f (k)
M (b) = 1.

To show the correctness of A, let (G, x) ∈ iter. We have f|L|,L = 0 or f|R|,R = 0, i.e.,
f

(|L|)
M (a) = 0 or f (|R|)

M (b) = 0. W.l.o.g., assume f (|L|)
M (a) = 0. If k ≥ |L| then f (k)

M (a) = 0
since fM (0) = 0, and thus v accepts. If k < |L| then f (k)

M (a) 6= 1 since fM (1) = 1, and thus v
accepts. Therefore, all certificates lead to acceptance. Let us now consider (G, x) /∈ iter.
If (G, x) /∈ iter− then at least one node rejects, independently of the certificate. So, we
assume that (G, x) ∈ iter− \ iter. Thus, f (|L|)

M (a) = 1 and f (|R|)
M (b) = 1. The certificate is

set to k = max{|L|, |R|}. Let us assume, w.l.o.g., that k = |L| ≥ |R|. By this setting, we
have f (k)

M (a) = 1. Moreover, since k ≥ |R|, and since fM (1) = 1, we get that f (k)
M (b) = 1.

Therefore, A rejects, as desired. Thus, iter ∈ Πloc
1 .

It remains to show that iter /∈ LD. Let us assume, for the purpose of contradiction,
that there exists a t-round algorithm A deciding iter. Since iter− ∈ LD, this algorithm
is able to distinguish an instance with f

(|L|)
M (a) = 1 and f

(|R|)
M (b) = 1 from instances in

which f (|L|)
M (a) 6= 1 or f (|R|)

M (b) 6= 1. Observe that a node at distance greater than t from

STACS 2017

8:10 What Can Be Verified Locally?

the pivot can gather information related to only one of the two inputs a and b. Therefore,
the distinction between the case f (|L|)

M (a) = 1 and f (|R|)
M (b) = 1 and the case f (|L|)

M (a) 6= 1 or
f

(|R|)
M (b) 6= 1 can only be made by a node at distance at most t from the pivot. Therefore,
by simulating A at all nodes in the ball of radius t around v, with identities between 1 and
the size of the ball of radius 2t around the pivot, a sequential algorithm can determine,
given a Turing machine M , and given a and b, whether there exist ` and r such that
f

(`)
M (a) = f

(r)
M (b) = 1 or not, which is actually Turing undecidable. This contradiction implies

that, indeed, iter /∈ LD. J

4 Complement classes

Given a class C of distributed languages, the class co-C is composed of all distributed languages
L such that L̄ ∈ C, where L̄ = {(G, x) /∈ L}. For instance, co-Πloc

1 is the class of languages L
for which there exists a local algorithm A such that, for every configuration (G, x),

(G, x) ∈ L ⇒ ∃c, ∀id,∃u ∈ V (G),AG,x,c,id(u) = accepts;
(G, x) /∈ L ⇒ ∀c, ∀id,∀u ∈ V (G),AG,x,c,id(u) = rejects.

Note in particular, that the rejection must now be unanimous, while the acceptance requires
only one node to accept. Let us define the following two languages: each input to every
node belongs to {true, false} = {1, 0}, and a configuration is in and (resp., in or) if and
only if the logical conjunction (resp., disjunction) of the inputs is true. These two languages
enable to separate LD from its co-class. Indeed, or /∈ LD as every node that sees only zeros
must accept because there might exist far away nodes with input 1. Hence, an all-0 instance
would be accepted, which is incorrect. Instead, and ∈ LD: every node accepts if and only if
its input is 1. The class LD ∩ co-LD is quite restricted. Nevertheless, it contains distributed
languages such as diamk, the class of graphs with diameter at most k, for any fixed k. We
have the following separation.

I Proposition 8. or ∈ co-LD \Πloc
1 , and and ∈ LD \ co-Πloc

1 .

Similarly, the languages alts and amos introduced in the proof of Proposition 6 enable
to separate NLD from its co-class. Indeed, alts = amos, alts is closed under lift, and amos
is not closed under lift. Moreover, consider the language exts defined at the end of Section 2.
Both exts and exts are not closed under lift. So, overall, by Lemma 4, we get:

I Proposition 9. alts ∈ NLD\ co-NLD, amos ∈ co-NLD\NLD, and exts /∈ NLD∪ co-NLD.

More interesting is the position of the Πloc
1 w.r.t. NLD and co-NLD:

I Proposition 10. Πloc
1 ∪ co-Πloc

1 ⊂ NLD ∩ co-NLD, where the inclusion is strict.

5 Complete problems

In this section, we prove Theorem 2. Let G be a connected graph, and U be a set (typically,
U = {0, 1}∗). Let e : V (G) → U , and let S : V (G) → 22U . That is, e assigns an
element e(u) ∈ U to every node u ∈ V (G), and S assigns a collection of sets S(u) =
{S1(u), . . . , Sku(u)} to every node u ∈ V (G), with ku ≥ 1 and Si : V (G) → 2U for every
i ≥ 1. We say that S covers e if and only if there exists u ∈ V (G), and there exists
i ∈ {1, . . . , ku}, such that Si(u) = {e(v) | v ∈ V (G)}. In [6], the authors defined the language

cover = {(G, x) : ∀u ∈ V (G), x(u) = (S(u), e(u)) such that S covers e}

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:11

and proved that cover is the “most difficult decision task”, in the sense that every distributed
language can be locally reduced to cover. However cover is closed under lift as lifting does
not create new elements and preserves the sets. Therefore, by Lemma 4, cover ∈ NLD.1
This is in contradiction with the claim in [6] regarding the hardness of cover. The reason
for this contradiction is that the local reduction used in [6] for reducing any language to
cover is too strong. Indeed, it transforms a configuration (G, x) into a configuration (G, x′)
where the certificates used for proving x′ may depend on the identities of the nodes in G.
This is in contradiction with the definitions of the classes Σloc

k and Πloc
k , k ≥ 0, for which the

certificates must be independent of the identity assignment. In this section, we show that
completeness results can be obtained using a more constrained notion of reduction which
preserves the membership to the classes.

Recall from [6] that a local reduction of L to L′ is a local algorithm R which maps any
configuration (G, x) to a configuration (G, y), where y = R(G, x, id) may depend on the
identity assignment id, such that: (G, x) ∈ L if and only if, for every identity assignment
id to the nodes of G, (G, y) ∈ L′ where y = R(G, x, id). Ideally, we would like R to be
identity-oblivious, that is, such that the output of each node does not depend on the identity
assignment, but this appears to be too restrictive. So, instead, we use a concept somewhat
intermediate between identity-oblivious reduction and the unconstraint reduction in [6].

I Definition 11. Let C be a class of distributed languages, and let L and L′ be two distributed
languages. Let A be a C-algorithm deciding L′, and let R be a local reduction of L to L′.
We say that (R,A) is label-preserving for (L,L′) if and only if, for any configuration (G, x),
the existential certificates used by the prover in A for (G, y) where y = R(G, x, id) are the
same for all identity assignments id to G.

The following result shows that the notion of reduction in Definition 11 preserves the
classes of distributed languages.

I Lemma 12. Let C be a class of distributed languages. Let L and L′ be two distributed
languages with L′ ∈ C, and let (R,A) be a label-preserving local reduction for (L,L′). Then
L ∈ C.

We now exhibit a language that is among the hardest decision tasks, under local label-
preserving reductions. In the following decision task, every node u of a configuration (G, x)
is given a family F(u) of configurations, each described by an adjacency matrix representing
a graph, and a 1-dimensional array representing the inputs to the nodes of that graph.
In addition, every node u has an input string x′(u) ∈ {0, 1}∗. Hence, (G, x′) is also a
configuration. The actual configuration (G, x) is legal if (G, x′) is missing in all families F(u)
for every u ∈ V (G), i.e., (G, x′) /∈ F where F = ∪u∈V (G)F(u). In short, we consider the
language

miss = {(G, x) : ∀u ∈ V (G), x(u) = (F(u), x′(u)) and (G, x′) /∈ F}

We show that miss is among the hardest decision tasks, under local label-preserving reductions.
Note that miss /∈ NLD (it is not closed under lift: it may be the case that (G, x′) /∈ F but a
lift of (G, x′) is in F).

I Proposition 13. miss is Πloc
2 -complete under local label-preserving reductions.

1 In fact, one can show that there exists a local verification algorithm for cover using certificates of size
quasi linear in n whenever the ground set U is of polynomial size.

STACS 2017

8:12 What Can Be Verified Locally?

Proof. Let L be a distributed language. We describe a local label-preserving reduction
(R,A) for (L,miss) with respect to Πloc

2 .
In essence, the local algorithm A for deciding miss in Πloc

2 is the generic algorithm
described in the proof of Proposition 3. Recall that, in this generic algorithm, on a legal
configuration (G, x), the existential c2 certificate in A is pointing to an inconsistency in the
given c1 certificate which is supposed to describe the configuration (G, x). And, on an illegal
configuration (G, x), the existential c1 certificate in A does provide an accurate description
of the configuration (G, x). For the purpose of label-preservation, we slightly modify the
generic algorithm for miss. Instead of viewing c1 as a description of the configuration (G, x),
the algorithm views it as a description of (G, x′) where, at each node u, x′(u) is the second
item in x(u) (the first item is the family F(u)). The algorithm is then exactly the same as
the generic algorithm with the only modification that the test when the flag f(u) = 1 is not
regarding whether (G, x′) ∈ miss, but whether (G, x′) /∈ F(u). On a legal configuration, all
nodes accept. On an illegal instance, a node with (G, x′) ∈ F(u) rejects.

The reduction R from L to miss proceeds as follows, in a way similar to the one in [6]. A
node u with identity id(u) and input x(u) computes its width ω(u) = 2|id(u)|+|x(u)| where |s|
denotes the length of a bit-string s. Then u generates all configurations (H, y) /∈ L such that
H has at most ω(u) nodes and y(v) has value at most ω(u), for every node v of H. It places
all these configurations in F(u). The input x′(u) is simply x′(u) = x(u). If (G, x) ∈ L, then
(G, x) /∈ F since only illegal instances are in F , and thus (G,R(G, x)) ∈ miss. Conversely, if
(G, x) /∈ L, then (G,R(G, x)) /∈ miss. Indeed, there exists at least one node u with identity
id(u) ≥ n, which guarantees that u generates the graph G. If no other node u′ has width
ω(u′) > n then u generates (G, x) ∈ F(u). If there exists a node u′ with ω(u′) > n then u′
generates (G, x) ∈ F(u′). In each case, we have (G, x) ∈ F , and thus (G,R(G, x)) /∈ miss.

It remains to show that the existential certificate used in A for all configurations
(G,R(G, x)) are the same for any given (G, x), independently of the identity assignment to
G used to perform the reduction R. This directly follows from the nature of A since the
certificates do not depend on the families F(u)’s but only on the bit strings x′(u)’s. J

The following language is defined as miss by replacing F by the closure under lift F↑
of F . That is, F↑ is composed of F and all the lifts of the configurations in F .

miss↑ = {(G, x) : ∀u ∈ V (G), x(u) = (F(u), x′(u)) and (G, x′) /∈ F↑}

We show that miss↑ is among the hardest decision tasks in NLD.

I Proposition 14. miss↑ is NLD-complete (and miss↑ is co-NLD-complete) under label-
preserving reduction.

6 Conclusion

This paper is aiming at providing a proof of concept for the notion of interactive local
verification: Πloc

2 can be viewed as the interaction between two players, with conflicting
objectives, one is aiming at proving the instance, while the other is aiming at disproving it.
As a consequence, for this first attempt, we voluntarily ignored important parameters such
as the size of the certificates, and the individual computation time, and we focussed only on
the locality issue. The impact of limiting the certificate size was recently investigated in [2].
Regarding the individual computation time, our completeness results involve local reductions
that are very much time consuming at each node. Insisting on local reductions involving
polynomial-time computation at each node is crucial for practical purpose. At this point, we

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti 8:13

do not know whether non-trivial hardness results can be established under polynomial-time
local reductions. Proving or disproving the existence of such hardness results is left as an
open problem.

Acknowledgement. The authors are thankful to Laurent Feuilloley for fruitful discussions
about the topic of the paper.

References
1 L. Feuilloley, P. Fraigniaud: Randomized Local Network Computing. In Proc. 27th ACM

Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 340–349, 2015
2 L. Feuilloley, P. Fraigniaud, J. Hirvonen: A Hierarchy of Local Decision. In Proc. 43rd

International Colloquium on Automata, Languages and Programming (ICALP), pp. 118:1–
118:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.118

3 P. Floréen, J. Kaasinen, P. Kaski, J. Suomela: An optimal local approximation algorithm
for max-min linear programs. In Proc. 21st ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pp. 260–269, 2009.

4 P. Fraigniaud, M. Göös, A. Korman, J. Suomela: What can be decided locally without
identifiers? In Proc. 32nd ACM Symp. on Principles of Distributed Computing (PODC),
pp. 157–165, 2013.

5 P. Fraigniaud, M. Halldórsson, A. Korman. On the Impact of Identifiers on Local Decision.
In Proc. 16th Int. Conference on Principles of Distributed Systems (OPODIS). Springer,
LNCS 7702, pp. 224–238, 2012.

6 P. Fraigniaud, A. Korman, D. Peleg. Towards a complexity theory for local distributed
computing. J. ACM 60(5): 35 (2013) (Preliminary version in FOCS 2011).

7 M. Göös, J. Suomela: Locally checkable proofs. In Proc. 30th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 159–168, 2011.

8 A. Korman, S. Kutten, D. Peleg (2010). Proof labeling schemes. Distributed Computing
22(4):215–233.

9 F. Kuhn, T. Moscibroda, R. Wattenhofer: What cannot be computed locally! In Proc.
23rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 300–309, 2004.

10 C. Lenzen, Y. Anne Oswald, R. Wattenhofer: What can be approximated locally? In
Proc. 20th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 46–
54, 2008.

11 C. Lenzen, R. Wattenhofer: Leveraging Linial’s Locality Limit. In Proc. 22nd Int. Symp.
on Distributed Computing (DISC), pp. 394–407, 2008.

12 N. Linial. Locality in Distributed Graph Algorithms. SIAM J. Comp. 21(1): 193-201 (1992)
13 M. Naor, L. Stockmeyer. What Can be Computed Locally? SIAM J. Comput. 24(6):1259–

1277 (1995)
14 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
15 F. Reiter: Distributed Graph Automata. In Proc. 30th ACM/IEEE Symposium on Logic

in Computer Science (LICS), pp. 192–201, 2015.
16 J. Suomela: Survey of local algorithms. ACM Comput. Surv. 45(2):24 (2013)

STACS 2017

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.118

	Introduction
	Context and objective
	Our contributions
	Related Work

	All languages are Piloc-2 decidable
	On the impact of the last universal quantifier
	Complement classes
	Complete problems
	Conclusion

