
Optimizing Tree Decompositions in MSO∗†

Mikołaj Bojańczyk1 and Michał Pilipczuk2

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
bojan@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract
The classic algorithm of Bodlaender and Kloks [J. Algorithms, 1996] solves the following problem
in linear fixed-parameter time: given a tree decomposition of a graph of (possibly suboptimal)
width k, compute an optimum-width tree decomposition of the graph. In this work, we prove that
this problem can also be solved in mso in the following sense: for every positive integer k, there
is an mso transduction from tree decompositions of width k to tree decompositions of optimum
width. Together with our recent results [LICS 2016], this implies that for every k there exists an
mso transduction which inputs a graph of treewidth k, and nondeterministically outputs its tree
decomposition of optimum width.

1998 ACM Subject Classification F.4.3 Formal Languages, G.2.2 Graph Theory

Keywords and phrases tree decomposition, treewidth, transduction, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.15

1 Introduction

Consider the following problem: given a tree decomposition of a graph of some width k,
possibly suboptimal, we would like to compute an optimum-width tree decomposition of
the graph. A classic algorithm of Bodlaender and Kloks [4] solves this problem in linear
fixed-parameter time complexity, where the input width k is the parameter.

I Theorem 1 (Bodlaender and Kloks, [4]). There exists an algorithm that, given a graph G
on n vertices and its tree decomposition of width k, runs in time 2O(k3) · n and returns a tree
decomposition of G of optimum width.

The algorithm of Bodlaender and Kloks proceeds by a bottom-up dynamic programming
procedure on the input decomposition. For every subtree, a set of partial optimum-width
decompositions is computed. The crucial ingredient is a combinatorial analysis of partial
decompositions which shows that only some small subset of them, of size bounded only by a
function of k, needs to be remembered for future computation.

The algorithm of Bodlaender and Kloks is a key subroutine in the linear-time algorithm
for computing the treewidth of a graph, due to Bodlaender [2]. The fact that the algorithm
is essentially governed by a run of a finite-state automaton on the input tree decomposition
was also used in the recent approximation algorithm of Bodlaender et al. [3]. The notion of

∗ A full version of the paper is available at https://arxiv.org/abs/1701.06937.
† The research of M. Bojańczyk is supported by the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant LIPA,
agreement no. 683080). Mi. Pilipczuk is supported by the Foundation for Polish Science via the START
stipend programme.

© Mikołaj Bojańczyk and Michał Pilipczuk;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.15
https://arxiv.org/abs/1701.06937
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Optimizing Tree Decompositions in MSO

typical sequences, which is the main component of the analysis of partial decompositions, has
found applications in algorithms for computing other width measures, like branchwidth [5],
cutwidth [16, 17], or pathwidth of matroids [12]. The concept of typical sequences originates
in the previous work of Courcelle and Lagergren [8] and of Lagergren and Arnborg [15].

Our results. The main result of this paper (Theorem 2) is that the problem of Bodlaender
and Kloks can be solved by an mso transduction, which is a way of describing nondeterministic
transformations of relational structures using monadic second-order logic. More precisely,
we show that for every k ∈ {0, 1, 2, . . .} there is an mso transduction that inputs a tree
decomposition of width k of a graph G, and outputs nondeterministically a tree decomposition
of G of optimum width.

As a corollary of our main result, we show (Corollary 3) that an mso transduction can
compute an optimum-width tree decomposition, even if the input is only the graph and not a
(possibly suboptimal) tree decomposition. This application is obtained by combining the main
result of this paper with Theorem 2.4 from [6], which says that for every k ∈ {0, 1, 2, . . .} there
is an mso transduction which inputs a graph of treewidth k and outputs nondeterministically
one of its tree decompositions of possibly suboptimal width at most f(k), for some function f .
In particular, we thus strengthen Theorem 2.4 of [6] by making the output a decomposition
of exactly the optimum width, instead of only bounded by a function of the optimum.

Our proof is divided into a few steps. First, we prove a result called the Dealternation
Lemma, which shows that there always exists an optimum-width tree decomposition that
has bounded “alternation” with respect to the input suboptimal decomposition. Intuitively,
small alternation is the key property allowing an optimum-width tree decomposition to be
captured by an mso transduction or by a dynamic programming algorithm that works on
the input suboptimal decomposition. This part of the proof essentially corresponds to the
machinery of typical sequences of Bodlaender and Kloks. However, we find the approach via
alternation more intuitive and combinatorially less complicated, and we hope that it will
find applications for computing other width measures. In fact, a similar approach has very
recently been used by Giannopoulou et al. [10] in a much simpler setting of cutwidth to give
a new fixed-parameter algorithm for this graph parameter.

Next, we derive a corollary of the Dealternation Lemma called the Conflict Lemma,
which directly prepares us to construct the mso transduction for the Bodlaender-Kloks
problem. The Conflict Lemma is stated in purely combinatorial terms, but intuitively it
shows that some optimum-width tree decomposition of the graph can be interpreted in
the given suboptimum-width tree decomposition using subtrees that cross each other in a
restricted fashion, guessable in mso. Finally, we formalize the intuition given by the Conflict
Lemma in mso, thus constructing the mso transduction promised in our main result.

2 Preliminaries and statement of the main result

Trees, forests and tree decompositions. Throughout this paper all graphs are undirected,
unless explicitly stated. A forest (which is sometimes called a rooted forest in other contexts)
is defined to be an acyclic graph, where every connected component has one designated node
called the root. This naturally imposes parent–child and ancestor–descendant relations in a
(rooted) forest. We use the usual tree terminology: root, leaf, child, parent, descendant and
ancestor. We assume that every node is its own descendant, to exclude staying in the same
node we use the name strict descendant. Likewise for ancestors. For forests we often use the
name node instead of vertex. A tree is the special case of a forest that is connected and thus



M. Bojańczyk and M. Pilipczuk 15:3

has one root. Two nodes in a forest are called siblings if they have a common parent, or if
they are both roots. Note that there is no order on siblings, unlike some models of unranked
trees and forests where siblings are ordered from left to right.

A tree decomposition of a graph G is a pair t = (F, β), where F is a rooted forest and β
is a function that associates bags to the nodes of F .A bag is a nonempty subset of vertices of
G. We require the following two properties:
(T1) whenever uv is an edge of G, then there exists a node of F whose bag contains both u

and v; and
(T2) for every vertex u of G, the set of nodes of F whose bags contain u is nonempty and

induces a connected subtree in F .
The width of a tree decomposition is its maximum bag size minus 1, and the treewidth of a
graph is the minimum width of its tree decomposition. An optimum-width tree decomposition
is one whose width is equal to the treewidth of the underlying graph. Note that throughout
this paper all tree decompositions will be rooted forests. This slightly diverges from the
literature where usually the shape of a tree decomposition is an unrooted tree.

For a tree decomposition t = (F, β) of a graph G, and each node x of F , we define the
following vertex sets:

The adhesion of x, denoted σ(x), is equal to β(x) ∩ β(x′), where x′ is the parent of x
in F . If x is a root of F , we define its adhesion to be empty.
The margin of x, denoted µ(x), is equal to β(x) \ σ(x).
The component of x, denoted α(x), is the union of the margins of all the descendants of
x (including x itself). Equivalently, it is the union of the bags of all the descendants of x,
minus the adhesion of x.

Whenever the tree decomposition t is not clear from the context, we specify it in the subscript,
i.e., we use operators βt(·), σt(·), µt(·), and αt(·).

Observe that, by property (T2) of a tree decomposition, for every vertex of G there is a
unique node whose bag contains u, but the bag of its parent (if exists) does not contain u. In
other words, there is a unique node whose margin contains u. Consequently, the margins of
the nodes of a tree decomposition form a partition of the vertex set of the underlying graph.

Relational structures and MSO. Define a vocabulary to be a finite set of relation names,
each with associated arity that is a nonnegative integer. A relational structure over the
vocabulary Σ consists of a set called the universe, and for each relation name in the vocabulary,
an associated relation of the same arity over the universe. To describe properties of relational
structures, we use logics, mainly monadic second-order logic (mso for short). This logic
allows quantification both over single elements of the universe and also over subsets of the
universe. For a precise definition of mso, see [7].

We use mso to describe properties of graphs and tree decompositions. To do this, we
need to model graphs and tree decompositions as relational structures. A graph is viewed as
a relational structure, where the universe is a disjoint union of the vertex set and the edge set
of a graph. There is a single binary incidence relation, which selects a pair (v, e) whenever
v is a vertex and e is an incident edge. The edges can be recovered as those elements of
the universe which appear on the second coordinate of the incidence relation; the vertices
can be recovered as the rest of the universe. For a tree decomposition of a graph G, the
universe of the corresponding structure consists of the disjoint union of: the vertex set of G,
the edge set of G, and the node set of the tree decomposition. There is the incidence relation
between vertices and edges, as for graphs, a binary descendant relation over the nodes of
the tree decomposition, and a binary bag relation which selects pairs (v, x) such that x is

STACS 2017



15:4 Optimizing Tree Decompositions in MSO

a node of the tree decomposition whose bag contains vertex v of the graph. The nodes of
the decomposition can be recovered as those which are their own descendants, since we
assume that the descendant relation is reflexive. Note that thus, the representation of a tree
decomposition as a relational structure contains the underlying graph as a substructure.

MSO transductions. Suppose that Σ and Γ are vocabularies. Define a transduction with
input vocabulary Σ and output vocabulary Γ to be a set of pairs

(input structure over Σ, output structure over Γ)

which is invariant under isomorphism of relational structures. When talking about transduc-
tions on graphs or tree decompositions, we use the representations described in the previous
paragraph. Note that a transduction is a relation and not necessarily a function, thus it can
have many different possible outputs for the same input. A transduction is called determ-
inistic if it is a partial function (up to isomorphism). For example, the subgraph relation
is a transduction from graphs to graphs, but it is not deterministic since a graph can have
many subgraphs. On the other hand, the transformation that inputs a tree decomposition
and outputs its underlying graph is a deterministic transduction.

This paper uses mso transductions, as defined in the book of Courcelle and Engelfriet [7],
which are a special case of transductions that can be defined using the logic mso. The
precise definition is in Section 5, but the main idea is that an mso transduction is a finite
composition of transductions of the following types: copy the input a fixed number of times,
nondeterministically color the universe of the input, and add new predicates to the vocabulary
with interpretations given by mso formulas over the input vocabulary. We refer to Courcelle
and Engelfriet [7] for a broader discussion of the role of mso transduction in the theory of
formal languages for graphs.

The main result. We now state the main contribution of this paper, which is an mso
version of the algorithm of Bodlaender and Kloks.

I Theorem 2. For every k ∈ {0, 1, 2, . . .} there is an mso transduction from tree decomposi-
tions to tree decompositions such that for every input tree decomposition t:

if t has width at most k, then there is at least one output; and
every output is an optimum-width tree decomposition of the underlying graph of t.

We remark that the transduction of Theorem 2 is not deterministic, i.e. it might have several
outputs on the same input. Using Theorem 2, we prove that an mso transduction can
compute an optimum-width tree decomposition given only the graph.

I Corollary 3. For every k ∈ {0, 1, 2, . . .} there is an mso transduction from graphs to tree
decompositions such that for every input graph G:

if G has treewidth at most k, then there is at least one output; and
every output is a tree decomposition of G of optimum width.

Proof. Theorem 2.4 of [6] says that for every k ∈ {0, 1, 2, . . .} there is an mso transduction
with exactly the properties stated in the statement, except that when the input has treewidth
k, then the output tree decompositions have width at most f(k), for some function f : N→ N.
By composing this transduction with the transduction given by Theorem 2, applied to f(k),
we obtain the claim. J



M. Bojańczyk and M. Pilipczuk 15:5

Structure of the paper. The rest of this paper is devoted to the proof of Theorem 2. In
Section 3 we formulate the Dealternation Lemma. Intuitively, this result says that any
optimum-width tree decomposition s can be adjusted without increasing the width so that it
behaves nicely with respect to the input suboptimal decomposition t in the following sense:
for every subtree of t, the vertices appearing in the bags of this subtree are partitioned into
few “connected blocks” in s. This part holds the essence of typical sequences of Bodlaender
and Kloks [4], but in the full version of the paper (see https://arxiv.org/abs/1701.06937)
we give a self-contained proof in order to achieve stronger assertions and highlight the key
combinatorial properties we use later on. Then, we prove a corollary of the Dealternation
Lemma, which we call the Conflict Lemma. This result intuitively states that some optimum-
width tree decomposition of the graph can be interpreted in the given suboptimum-width tree
decomposition. This intuition is formalized in the last section, where we introduce formally
mso transductions and use the combinatorial property given by the Conflict Lemma to prove
Theorem 2.

3 Dealternation

This section is devoted to the Dealternation Lemma, which intuitively says that for a tree
decomposition t of bounded, though possibly suboptimal width, there always exists an
optimum-width decomposition in which every subtree of t is broken into small number of
“pieces”. We begin by defining factors, which is our notion of “pieces” of a tree decomposition.

Factors and factorizations. Intuitively, a factor is a set of nodes in a forest that respects
the tree structure. We define three kinds of factors: tree factors, forest factors, and context
factors. A tree factor in a forest is a set of nodes obtained by taking all (not necessarily
strict) descendants of some node, which is called the root of the tree factor. Define a forest
factor to be a nonempty union of tree factors whose roots are siblings. These roots are called
the roots of the forest factor. In particular, a tree factor is also a forest factor, with one root.

X

roots of the forest factor

outside the forest factor

non-roots of the forest factor

XY

root of the context factor

appendices of the context factor

outside the context factor

non-roots of the context factor

a forest factor a context factor

A context factor is the difference X − Y for a tree factor X and a forest factor Y , where
the root of X is a strict ancestor of every root of Y . For a context factor X − Y , its root
is defined to be the root of X, while the roots of Y are called the appendices. Note that a
context factor always contains a unique node that is the parent of all its appendices.

Forest factors and context factors will be jointly called factors. The following lemma can
be proved by a straightforward case study, and hence we leave its proof to the reader.

I Lemma 4. The union of two intersecting factors in the same forest is also a factor.

STACS 2017

https://arxiv.org/abs/1701.06937


15:6 Optimizing Tree Decompositions in MSO

For a subset U of nodes of a forest, a U -factor is a factor that is entirely contained in U .
A factorization of U is a partition of U into U -factors. A U -factor is maximal if no other
U -factor contains it as a strict subset.

I Lemma 5. For every subset of nodes U in a forest, the maximal U-factors form a
factorization of U .

Proof. Every node of U is contained in some factor, e.g., a singleton factor (which has forest
or context type depending on whether the node is a leaf or not). Thus, every node of U
is also contained in some maximal U -factor. On the other hand, two different maximal
U -factors must be disjoint, since otherwise by Lemma 4, their union would also be a U -factor,
contradicting maximality. J

The set of all maximal U -factors will be called the maximal factorization of U , and will be
denoted by fact(U). We specify the forest in the subscript whenever it is not clear from the
context. Lemma 5 asserts that fact(U) is indeed a factorization of U . Note that the maximal
factorization of U is the coarsest in the following sense: in every factorization of U , each of
its factors is contained in some factor of fact(U). In particular, the maximal factorization
has the smallest number of factors among all factorizations of U .

In the sequel, we will need the following simple result about relation between the maximal
factorizations of a set and of its complement. Its proof is a part of the proof of the
Dealternation Lemma, and can be found in the full version of the paper.

I Lemma 6. Suppose (U,W ) is a partition of the node set of a rooted forest F , and let k be
the number of factors in the maximal factorization of W . Then the maximal factorization of
U has at most k + 1 forest factors and at most 2k − 1 context factors.

Separation forests. The general definition of a tree decomposition is flexible and allows
for multiple combinatorial adjustments. Here, we will rely on a normalized form that we
call separation forests, which are essentially tree decompositions where all the margins have
size exactly 1. The definition of treewidth via separation forests resembles the definition of
pathwidth via the so-called vertex separation number [14].

I Definition 7. Suppose G is a graph. A separation forest of G is a rooted forest F on the
same vertex set as G such that G is contained in the ancestor-descendant closure of F ; that
is, whenever uv is an edge of G, then u is an ancestor of v in F or vice versa.

Separation forests are used to define the graph parameter treedepth, which is equal to the
minimum depth of a separation forest of a graph. To define treewidth, we need to take a
different measure than just the depth, as explained next.

Suppose F is a separation forest of G. Endow F with the following bag function β(·).
For any vertex u of G, assign to u the bag β(u) consisting of u and all the ancestors of u in
F that have a neighbor among the descendants of u in F . The following claim follows by
verifying the definition of a tree decomposition; we leave the easy proof to the reader.

I Claim 8. If F is a separation forest of G and β(·) is defined as above, then (F, β) is a tree
decomposition of G. Moreover, for every vertex u of G, the margin of u in (F, β) is {u}.

The tree decomposition (F, β) defined above is said to be induced by the separation
forest F . Observe that if t = (F, β) is induced by F , then for any vertex u, the component
of u in t consists of all the descendants of u in F .



M. Bojańczyk and M. Pilipczuk 15:7

Figure 1 Construction of the induced tree decomposition from a separation forest. The graph
edges are depicted in black, the child-parent relation of the forest is depicted as dashed grey lines.

One can reformulate the construction given above as follows. First, put every vertex u
into its bag β(u). Then, examine every neighbor v of u, and if v is a descendant of u in F ,
then add u to every bag on the path from v to u in F . Thus, every vertex u is “smeared”
onto a subtree of F , where u is the root of this subtree and its leaves correspond to those
neighbors of u that are also its descendants in F . This construction is depicted in Figure 1.

The width of a separation forest is simply the width of the tree decomposition induced by
it. Consequently, the width of a separation forest is never smaller than the treewidth of a
graph. The next result shows that in fact there is always a separation forest of optimum
width. The proof follows by a simple surgery on an optimum-width tree decomposition, and
can be found in the full version of the paper.

I Lemma 9. For every graph G there exists a separation forest of G whose width is equal to
the treewidth of G.

Dealternation Lemma. We are finally ready to state the Dealternation Lemma.

I Lemma 10 (Dealternation Lemma). There exist functions f(k) ∈ O(k2) and g(k) ∈ O(k3)
such that the following holds. Suppose that t is a tree decomposition of a graph G of width k.
Then there exists an optimum-width separation forest F of G such that:
(D1) for every node x of t, the maximal factorization factF (αt(x)) has at most f(k) factors;
(D2) for every node x of t, there are at most g(k) children of x in the set

{y : y is a node of t with at least one context factor in factF (αt(y))}.

Note that in the statement of the Dealternation Lemma, the vertex set of G is at the
same time the node set of the forest F . Thus, factF (αt(x)) denotes the maximal factorization
of αt(x), treated as a subset of nodes of F .

The proof of the Dealternation Lemma uses essentially the same core ideas as the
correctness proof of the algorithm of Bodlaender and Kloks [4]. We include our proof in
the full version of the paper for several reasons. First, unlike in [4], in our setting we
cannot assume that t has binary branching, as is the case in [4]. In fact, condition (D2)
is superfluous when t has binary branching. Second, our formulation of the Dealternation
Lemma highlights the key combinatorial property, which is expressed as the existence of
a single separation forest F that behaves nicely with respect to the input decomposition t.
This property is somehow implicit [4], where the existence of nicely-behaved optimum-width
tree decompositions is argued along performing dynamic programming. For this reason, we
find the new formulation more explanatory and potentially interesting on its own.

STACS 2017



15:8 Optimizing Tree Decompositions in MSO

4 Using the Dealternation Lemma

In this section we use the Dealternation Lemma to show that an optimum-width separation
forest of a graph can be interpreted in a suboptimum-width tree decomposition. For this,
we need to develop a better understanding of the combinatorial insight provided by the
Dealternation Lemma, which is expressed via an auxiliary graph, called the conflict graph.

Suppose G is a graph, t is a tree decomposition of G of width k, and F is a separation
forest of G. Let φ be the mapping that sends each vertex u of G to the unique node of t that
contains u in its margin. For a vertex u of G, we define the stain of u, denoted Su, which
is a subgraph of the underlying forest of t, as follows. For every child v of u in F , find the
unique path in t between φ(u) and φ(v). Then stain Su consists of the node φ(u) and the
union of these paths. Note that if u is a leaf of F , then the stain Su consists only of the node
φ(u). Define the conflict graph H(t, F ) as follows. The vertices of H(t, F ) are the vertices of
G, and vertices u and v are adjacent in H(t, F ) if and only their stains Su and Sv have a
node in common. The main result of this section can be formulated as follows.

I Lemma 11 (Conflict Lemma). There is a function h(k) ∈ O(k5) such that if t and F are
as in the Dealternation Lemma, then their conflict graph H(t, F ) admits a proper coloring
with h(k) colors.

Recall here that a proper coloring of a graph is a coloring of its vertex set such that no
two adjacent vertices receive the same color. The rest of this section is devoted to the proof
of the Conflict Lemma. From now on, we assume that G, t, F are as in the Dealternation
Lemma, and we denote H = H(t, F ).

Observe that the conflict graph H is an intersection graph of a family of subtrees of a
forest. It is well-known (see, e.g., [11]) that this property precisely characterizes the class
of chordal graphs (graphs with no induced cycle of length larger than 3), so H is chordal.
Chordal graphs are known to be perfect (again see, e.g., [11]), hence the chromatic number
of a chordal graph (the minimum number of colors needed in a proper coloring) is equal
to the size of the largest clique in it. On the other hand, subtrees of a forest are known to
satisfy the so-called Helly property: whenever F is some family of subtrees such that the
subtrees in F pairwise intersect, then in fact there is a node of the forest that belongs to all
the subtrees in F . This means that the largest clique in an intersection graph of a family of
subtrees of a forest can be obtained by taking all the subtrees that contain some fixed node.
Therefore, to prove the Conflict Lemma it is sufficient to prove the following claim.

I Claim 12. There exists a function h(k) ∈ O(k5) such that every node of t belongs to at
most h(k) of the stains {Su : u ∈ V (G)}.

In the remainder of this section we prove Claim 12. Fix any node x of t, and let
y1, y2, . . . , yp be its children in t. Consider the following partition of the vertex set of G:

Π = (αt(y1), αt(y2), . . . , αt(yp), µt(x), V (G) \ αt(x))

Define a factorization Φ of the whole node set of F as follows: for each set X from the
partition Π, take its maximal factorization factF (X), and define Φ to be the union of these
maximal factorizations. Thus, Φ is a factorization that refines the partition Π. Since the
number of children yi is unbounded, we cannot expect that Φ has a small number of factors,
but at least it has a small number of context factors.

I Claim 13. Factorization Φ contains at most g(k) · f(k) + 2f(k) + k context factors, where
f and g are as in the Dealternation Lemma.



M. Bojańczyk and M. Pilipczuk 15:9

Proof. By the Dealternation Lemma, the maximal factorization in F of each of the sets
αt(y1), . . . , αt(yp), αt(x) has at most f(k) factors. Moreover, only at most g(k) of the sets
αt(y1), . . . , αt(yp) can have a context factor in their maximal factorizations. Hence, the
maximal factorizations of sets αt(y1), . . . , αt(yp) introduce at most g(k) · f(k) context factors
to the factorization Π. Since the maximal factorization of αt(x) has at most f(k) factors as
well, by Lemma 6 we deduce that the maximal factorization of V (G) \ αt(x) has at most
2f(k)− 1 context factors. Finally, the cardinality of µt(x) is at most k + 1, so in particular
its maximal factorization has at most k + 1 factors in total. Summing up all these upper
bounds, we conclude that Φ has at most g(k) · f(k) + 2f(k) + k context factors. J

With Claim 13 in hand, we complete now the proof of Claim 12. Take any vertex u such
that x belongs to the stain Su. This means that either
(i) u belongs to the margin of x, or
(ii) u does not belong to the margin of x, but u has a child v in F such that the unique

path in t between φ(u) and φ(v) passes through x.
The number of vertices u satisfying 1 is bounded by the size of the margin of x, which is
at most k + 1, hence we focus on vertices u that satisfy 2. Observe that condition 2 in
particular means that u and v belong to different parts of partition Π, so also to different
factors of factorization Φ. Since u is the parent of v in F , this means that the unique factor
of Φ that contains u must be a context factor, and u must be the parent of its appendices.
Consequently, the number of vertices u satisfying 2 is upper bounded by the number of
context factors in factorization Φ, which is at most g(k) · f(k) + 2f(k) + k by Claim 13. We
conclude that the number of stains Su containing x is at most

h(k) := g(k) · f(k) + 2f(k) + 2k + 1;

in particular h(k) ∈ O(k5). This concludes the proof of Claim 12, so also the proof of the
Conflict Lemma is complete.

5 Constructing the transduction

We now use the understanding gathered in the previous sections to give an mso transduction
that takes a tree decomposition of a graph of suboptimum width, and produces an optimum-
width tree decomposition. First, we need to precisely define mso transductions.

MSO transductions. Formally, an mso transduction is any transduction that can be
obtained by composing a finite number of transductions of the following kinds. Note that
kind 1 is a partial function, kinds 2, 3, 4 are functions, and kind 5 is a relation.
1. Filtering. For every mso sentence ϕ over the input vocabulary there is transduction

that filters out structures where ϕ is satisfied. Formally, the transduction is the partial
identity whose domain consists of the structures that satisfy the sentence. The input and
output vocabularies are the same.

2. Universe restriction. For every mso formula ϕ(x) over the input vocabulary with one free
first-order variable there is a transduction, which restricts the universe to those elements
that satisfy ϕ. The input and output vocabularies are the same, the interpretation of
each relation in the output structure is defined as the restriction of its interpretation in
the input structure to tuples of elements that remain in the universe.

3. MSO interpretation. This kind of transduction changes the vocabulary of the structure
while keeping the universe intact. For every relation name R of the output vocabulary,

STACS 2017



15:10 Optimizing Tree Decompositions in MSO

there is an mso formula ϕR(x1, . . . , xk) over the input vocabulary which has as many
free first-order variables as the arity of R. The output structure is obtained from the
input structure by keeping the same universe, and interpreting each relation R of the
output vocabulary as the set of those tuples (x1, . . . , xk) that satisfy ϕR.

4. Copying. For k ∈ {1, 2, . . .}, define k-copying to be the transduction which inputs a
structure and outputs a structure consisting of k disjoint copies of the input. Precisely,
the output universe consists of k copies of the input universe. The output vocabulary is
the input vocabulary enriched with a binary predicate copy that selects copies of the same
element, and unary predicates layer1, layer2, . . . , layerk which select elements belonging to
the first, second, etc. copies of the universe. In the output structure, a relation name R of
the input vocabulary is interpreted as the set of all those tuples over the output structure,
where the original elements of the copies were in relation R in the input structure.

5. Coloring. We add a new unary predicate to the input structure. Precisely, the universe
as well as the interpretations of all relation names of the input vocabulary stay intact, but
the output vocabulary has one more unary predicate. For every possible interpretation of
this unary predicate, there is a different output with this interpretation implemented.

We remark that the above definition is easily equivalent to the one used in [6], where filtering,
universe restriction, and mso interpretation are merged into one kind of a transduction.

Proving the main result. We are finally ready to prove our main result, Theorem 2. The
proof is broken down into several steps. The first, main step shows that an mso transduction
can output optimum-width separation forests. Here, a separation forest of a graph G is
encoded by enriching the relational structure encoding G with a single binary relation
interpreted as the child relation of F . Note that the definition of a separation forest is
mso-expressible: there is an mso sentence that checks whether the additional relation indeed
encodes a separation forest of the graph.

I Lemma 14. For every k ∈ {0, 1, 2, . . .}, there is an mso transduction from tree decomposi-
tions to separation forests such that for every input tree decomposition t:

every output is a separation forest of the underlying graph of t; and
if t has width at most k, then there is at least one output that is a separation forest of
optimum width.

Proof. Observe that the verification whether the width of t is at most k can be expressed by
an mso sentence, so we can first use filtering to filter out any input tree decomposition t
whose width is larger than k; for such decompositions, the transduction produces no output.
Let G be the underlying graph of t, and let φ be the mapping that sends each vertex u of G
to the unique node of t whose margin contains u. By the Conflict Lemma, there exists some
separation forest F of G of optimum width such that the conflict graph H(t, F ) admits some
proper coloring λ with h(k) colors. The constructed mso transduction attempts at guessing
and interpreting F as follows.

First, using coloring and filtering, we guess the coloring λ, represented as a partition of
the vertex set of G. Then, again using coloring and filtering, for every vertex u of G we guess
whether u is a root of F , and if not, then we guess the color under λ of the parent of u in F .

Next, for every color c used in λ, we guess the forest

Mc :=
⋃

u∈λ−1(c)

Su,

where Su is the stain of u in t, defined as in Section 4 for the separation forest F . Note
that the stains {Su : u ∈ λ−1(c)} are pairwise disjoint, because λ is a proper coloring of



M. Bojańczyk and M. Pilipczuk 15:11

the conflict graph H(t, F ). Thus, the connected components of Mc are exactly these stains.
Observe also that Mc is a subgraph of the decomposition t, so we can emulate guessing Mc

in an mso transduction working over t by guessing the subset of those nodes of t, for which
the edge of t connecting the node and its parent belongs to Mc.

Having done all these guesses, we can interpret the child relation of F using an mso
predicate as follows. Fix a pair of vertices u and v, and let c be the guessed color of u
under λ. Then one can readily check that u is the parent of v in F if and only if the following
conditions are satisfied:

we have guessed that v is not a root of F ,
we have guessed that the color of the parent of v in F is c, and
u is the unique vertex of color c such that φ(u) belongs to the same connected component
of Mc as φ(v).

It can be easily seen that these conditions can be expressed by an mso formula with two free
variables u and v.

Finally, we filter out all the wrong guesses by verifying, using an mso sentence, whether
the interpreted child relation on the vertices of G indeed forms a rooted forest, and whether
this forest is a separation forest of G. Obviously, the separation forest F was obtained for
at least one of the guesses, and survives this filtering. At the end, we remove the nodes of
decomposition t from the structure using universe restriction. J

Next, we need to construct the induced tree decomposition out of a separation forest.

I Lemma 15. There is an mso transduction from separation forests to tree decompositions
that on each input separation forest has exactly one output, which is the tree decomposition
induced by the input.

Proof. We copy the vertex set of the graph two times, and declare the second copies to be the
nodes of the constructed tree decomposition. Using the child relation of the input separation
forest, we can interpret in mso the descendant relation in the forest of the decomposition.
Finally, the bag relation in the induced tree decomposition, as defined in Section 3, can be
easily interpreted using an mso formula. J

Finally, so far the transduction can output tree decompositions of suboptimal width,
which should be filtered out. For this, we need the following mso-expressible predicate.

I Lemma 16. For every k ∈ {0, 1, 2, . . .}, there is an mso-sentence over tree decompositions
that holds if and only if the given tree decomposition has width at most k and its width is
optimum for the underlying graph.

Proof. Let t be the given tree decomposition of a graph G. Obviously, we can verify using
an mso sentence whether the width of t is at most k. To check that the width of t is
optimum, we could use the fact that graphs of treewidth k are characterized by a finite list of
forbidden minors, but we choose to apply the following different strategy. Let Rk be the mso
transduction that is the composition of the transductions of Lemmas 14 (for parameter k)
and 15. Provided the input tree decomposition t has width at most k, transduction Rk
outputs some set of tree decompositions of G among which one has optimum width. Hence, t
has optimum width if and only if the output Rk(t) does not contain any tree decomposition
of width smaller than t.

The Backwards Translation Theorem for mso transductions [7] states that whenever T
is an mso transduction and ψ is an mso sentence over the output vocabulary, then the set
of structures on which T outputs at least one structure satisfying ψ, is mso-definable over

STACS 2017



15:12 Optimizing Tree Decompositions in MSO

the input vocabulary. Hence, for every p < k, there exists an mso sentence ϕp that verifies
whether Rk(t) outputs at least one tree decomposition of width at most p. Therefore, we
can check whether t has optimum width by making a disjunction over all ` with 0 ≤ ` ≤ k
of the sentences stating that t has width exactly ` and Rk(t) does not output any tree
decomposition of width less than `. J

Theorem 2 now follows by composing the mso transductions given by Lemmas 14 and 15,
and at the end applying filtering using the predicate given by Lemma 16.

6 Conclusions

In this work we have constructed an mso transduction that, given a constant-width tree
decomposition of a graph, computes a tree decomposition of this graph of optimum width. As
we have shown, this transduction can be conveniently composed with the mso transduction
given in [6] to prove that given a graph of constant treewidth, some optimum-width tree
decomposition can be computed by means of an mso transduction.

One direct application of this result is a strengthening of the main result of [6]. There,
we have proved that if a class of graphs of treewidth at most k is recognizable (see [6] for
omitted definitions), then it can be defined in mso with modular counting predicates. The
main technical component of this proof was Theorem 2.4, which states that for every k

there is an mso transduction from graphs to tree decompositions, which given a graph of
treewidth k outputs some its tree decomposition of width bounded by f(k), for some doubly-
exponential function f . Then the proof of the main result of [6] used f(k)-recognizability, i.e.,
recognizability within the interface (sourced) graphs with at most f(k) interfaces (sources).
By replacing the usage of Theorem 2.4 of [6] with Corollary 3 of this paper, we deduce that
only k-recognizability of a class of graphs of treewidth at most k is sufficient to prove that it
can be defined in mso with modular counting predicates. However, this strengthening was
already known: Courcelle and Lagergren [8] proved that if a class of graphs of treewidth
at most k is k-recognizable, then it is also k′-recognizable for all k′ ≥ k. In fact, the proof
technique of Courcelle and Lagergren essentially uses the same technique as Bodlaender and
Kloks [4] and as we do in this work; the main technical component of [8] can be interpreted
as a variant of our Local Dealternation Lemma (see the full version of the paper).

Finally, we see potential algorithmic applications of our main result. Namely, it seems
that the existing results, in particular the literature on constructing answers to mso queries
on trees [1, 9, 13], are likely to imply the following algorithmic statement. Suppose R is
an mso transduction whose domain are rooted forests labelled by a finite alphabet. Then,
given a forest t, one can compute in time f(k) · (n+m) any member of the output of R on t,
or conclude that this output is empty. Here, n is the size of t, m is the size of the output
structure (or 0 if transduction R applied to t yields no output), k is the size of the description
of R, and f is some function. Assuming such an algorithmic statement, the algorithmic
result of Bodlaender and Kloks [4] (without a specified dependency on k of the running time)
would basically follow from applying it to the mso transduction constructed in this paper.
However, such a tool could be of more general use. It would essentially reduce designing
constructive dynamic programming algorithms on tree decompositions, which most often
is a tedious and complicated task, to describing the corresponding transformations using
mso transductions, similarly as Courcelle’s theorem reduces designing dynamic programming
algorithm for decision problems to expressing them in mso. We will explore these algorithmic
applications in the journal version of our work.



M. Bojańczyk and M. Pilipczuk 15:13

Acknowledgements. The authors would like to thank Bruno Courcelle for pointing out
connections with his work with Jens Lagergren [8].

References
1 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear

delay. In CSL 2006, volume 4207 of Lecture Notes in Computer Science, pages 167–181.
Springer, 2006.

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

3 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016.

4 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

5 Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for
branchwidth. In ICALP 1997, volume 1256 of Lecture Notes in Computer Science, pages
627–637. Springer, 1997.

6 Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of
bounded treewidth. In LICS 2016, pages 407–416. ACM, 2016.

7 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
– A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012.

8 Bruno Courcelle and Jens Lagergren. Equivalent definitions of recognizability for sets of
graphs of bounded tree-width. Mathematical Structures in Computer Science, 6(2):141–165,
1996.

9 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J.
ACM, 49(6):716–752, 2002.

10 Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M.
Thilikos, and Marcin Wrochna. Cutwidth: obstructions and algorithmic aspects. CoRR,
abs/1606.05975, 2016. To appear in Proc. of IPEC 2016.

11 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of
Annals of Discrete Mathematics. North-Holland Publishing Co., 2004.

12 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of
matroids. In SODA 2016, pages 1695–1704. SIAM, 2016.

13 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
ACM Trans. Comput. Log., 14(4):25, 2013.

14 Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf.
Process. Lett., 42(6):345–350, 1992.

15 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite
congruence. In ICALP 1991, volume 510 of Lecture Notes in Computer Science, pages
532–543. Springer, 1991.

16 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

17 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.

STACS 2017


	Introduction
	Preliminaries and statement of the main result
	Dealternation
	Using the Dealternation Lemma
	Constructing the transduction
	Conclusions

