
Monte Carlo Computability
Vasco Brattka∗1, Rupert Hölzl2, and Rutger Kuyper3

1 Department of Mathematics and Applied Mathematics, University of Cape
Town, Cape Town, South Africa; and
Faculty of Computer Science, Universität der Bundeswehr München,
Neubiberg, Germany
Vasco.Brattka@cca-net.de

2 Faculty of Computer Science, Universität der Bundeswehr München,
Neubiberg, Germany
r@hoelzl.fr

3 School of Mathematics and Statistics, Victoria University of Wellington,
Wellington, New Zealand
mail@rutgerkuyper.com

Abstract
We introduce Monte Carlo computability as a probabilistic concept of computability on infinite
objects and prove that Monte Carlo computable functions are closed under composition. We then
mutually separate the following classes of functions from each other: the class of multi-valued
functions that are non-deterministically computable, that of Las Vegas computable functions, and
that of Monte Carlo computable functions. We give natural examples of computational problems
witnessing these separations. As a specific problem which is Monte Carlo computable but neither
Las Vegas computable nor non-deterministically computable, we study the problem of sorting
infinite sequences that was recently introduced by Neumann and Pauly. Their results allow us to
draw conclusions about the relation between algebraic models and Monte Carlo computability.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Weihrauch degrees, Weak Weak Kőnig’s Lemma, Monte Carlo com-
putability, algorithmic randomness, sorting

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.17

1 Introduction

It is folklore in computational complexity theory that different machine models such as
deterministic machines, non-deterministic machines and probabilistic machines describe
the same classes of computable problems while they potentially yield different classes of
polynomial-time computable problems. The complexity classes NP,BPP and ZPP are classes
of decision problems which are polynomial-time computable on non-deterministic machines,
Monte Carlo machines, and Las Vegas machines, respectively. The separation of these classes
is a major and challenging problem in computational complexity theory.

In recent years it emerged that the situation for computations on infinite objects is
somewhat different in that the classes of problems which are non-deterministically computable
or probabilistically computable are actually strictly larger than the class of deterministically

∗ Vasco Brattka has received funding from the National Research Foundation of South Africa. Rutger
Kuyper has received funding from the John Templeton Foundation.

© Vasco Brattka, Rupert Hölzl, and Rutger Kuyper;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Monte Carlo Computability

Non-deterministic Monte Carlo

Las Vegas

fixed points sortingzeros

Nash equilibria

differentiation

WKL

WWKL

WWKL′ × C′
N

Figure 1 Classes of non-deterministically and probabilistically computable problems.

computable problems from the mere point of view of computability theory even without time
complexity considerations.

Computability over infinite objects is understood here in the well-established sense of
computable analysis [28, 13] and the Weihrauch lattice [6, 24] is used as a fine-grained tool
to express these results. Intuitively, it offers a notion of many-one reducibility for partial
multi-valued functions f :⊆ X ⇒ Y that can be used to compare computational problems in
a very natural and straightforward way.

Work on probabilistic notions in this setting has been started by Brattka and Pauly
[15], Dorais, Dzhafarov, Hirst, Mileti and Shafer [18], Bienvenu and Porter [2] and others.
In recent work Brattka, Gherardi and Hölzl [7, 8] have proposed the concept of Las Vegas
computable functions and studied its computational power. The problem of computing Nash
equilibria is an example of a Las Vegas computable problem, which is not deterministically
computable.

Roughly speaking, a function f :⊆ X ⇒ Y is Las Vegas computable if it can be computed
on a Turing machine upon input of (a name of) some x ∈ dom(f) with the help of an
additional advice r ∈ 2N subject to the following conditions:

1. If the advice r ∈ 2N is not helpful, then the machine recognizes this in finite time and
stops the computation with a failure signal.

2. If the advice r ∈ 2N is helpful, then the machine computes forever and produces a correct
result, that is, (a name of) some y ∈ f(x).

3. The set of helpful advices r for each fixed name of input x has to be of positive measure.

We continue this work in the present article and propose the new concept of Monte Carlo
computability, which is different from Las Vegas computability in that we relax condition 1.
Roughly speaking, we consider f : ⊆ X ⇒ Y as Monte Carlo computable if the fact that
the advice r ∈ 2N is not helpful can be recognized (only) in the limit. As a consequence of
this relaxation such a machine might compute forever without producing a correct result.
However, with positive probability it will produce a correct result.

In the Weihrauch lattice we can identify the classes WKL,WWKL and WWKL′ × C′N as
being complete for non-deterministically computable, Las Vegas computable and Monte Carlo
computable problems, respectively. All these classes are variants of Weak Kőnig’s Lemma
(WKL) and will be formally defined below. In a vague analogy these classes correspond to
the complexity classes NP,ZPP and BPP, respectively.

V. Brattka, R. Hölzl, and R. Kuyper 17:3

In contrast to the situation in computational complexity theory, we can separate the
classes WKL,WWKL and WWKL′ × C′N and provide natural computational problems as
witnesses for these separations. The picture that emerges is illustrated in Figure 1. The
problems given in the picture have been studied before:
1. Differentiation is the problem d : ⊆ C[0, 1] → C[0, 1], f 7→ f ′ to determine the deriva-

tive of a continuously differentiable function f : [0, 1] → R [27] and it is neither non-
deterministically computable nor probabilistically computable in any form [8].

2. The fixed point problem BFT : C([0, 1]n, [0, 1]n) ⇒ [0, 1]n, f 7→ {x : f(x) = x}, that is,
the problem of determining a fixed point of a continuous function f : [0, 1]n → [0, 1]n for
n ≥ 2 [14], is non-deterministically computable but not probabilistically computable in
any form [8]. BFT stands for “Brouwer Fixed Point Theorem”.

3. The zero problem IVT : ⊆ C[0, 1]⇒ [0, 1], f 7→ f−1{0}, that is, the problem that maps
every continuous function f : [0, 1] → R with f(0) · f(1) < 0 to one of its zeros [5], is
non-deterministically computable, has a Monte Carlo algorithm, but is not Las Vegas
computable [8]. IVT stands for “Intermediate Value Theorem”.

4. Nash is the problem that maps a bi-matrix game (A,B) ∈ Rm×n × Rm×n to one of its
Nash equilibria [23] and is Las Vegas computable [8].

5. Sorting stands for the problem SORT2 : 2N → 2N of sorting a binary sequence [22]. It is
not non-deterministically computable but has a Monte Carlo algorithm, as we will show.

The given classifications of these problems (also illustrated in Figure 1) follow from results
in the given references, except for the case of sorting, which we will precisely define and
discuss in Section 5. This section contains the main technical contributions of this article.
In Section 2 we start with recalling the definition of Weihrauch reducibility and some basic
algebraic operations, followed by an introduction of the concept of Monte Carlo computability
in Section 3. In Section 4 we discuss versions of Weak Weak Kőnig’s Lemma. We close this
article with a brief discussion of algebraic computation models in Section 6.

2 The Weihrauch Lattice

Formally, the Weihrauch lattice is formed by equivalence classes of partial multi-valued
functions f : ⊆ X ⇒ Y on represented spaces X,Y . We will simply call such functions
problems here and they are, in fact, computational challenges in the sense that for every
x ∈ dom(f) the goal is to find some y ∈ f(x). In this case dom(f) contains the admissible
instances x of the problem and for each instance x the set f(x) contains the corresponding
solutions. Some typical problems f such as solving some type of equation or sorting a given
sequence are mentioned above.

A represented space (X, δ) is a set X together with a surjective partial map δ : ⊆ NN → X

that assigns names p ∈ NN to points δ(p) = x ∈ X. These representations allow us to describe
computations on all representable spaces using Turing machines that operate on the names
corresponding to points in the space. We refer the reader to [28, 13] for details.

For problems f : ⊆ X ⇒ Y and g : ⊆ Y ⇒ Z we define the composition g ◦f : ⊆ X ⇒ Z

by g ◦ f(x) = {z ∈ Z : (∃y ∈ f(x)) z ∈ g(y)}, where dom(g ◦ f) := {x ∈ X : f(x) ⊆ dom(g)}.
We also denote the composition briefly by gf .

The intuition behind Weihrauch reducibility is that f ≤W g holds if there is a compu-
tational procedure for solving f during which a single application of the computational
resource g is allowed. There are actually two slightly different formal versions of this reduc-
tion, which are both needed. In expressions like H(x, gK(x)) we tacitly use the definition of
the composition as given above.

STACS 2017

17:4 Monte Carlo Computability

K Hg

f

x f(x)

Figure 2 Visualization of Weihrauch reducibility f ≤W g.

I Definition 1 (Weihrauch reducibility). Let f : ⊆ X ⇒ Y and g : ⊆W ⇒ Z be problems.
1. f is called Weihrauch reducible to g, in symbols f ≤W g, if there are computable

K : ⊆ X ⇒W , H : ⊆ X×Z ⇒ Y such that ∅ 6= H(x, gK(x)) ⊆ f(x) for all x ∈ dom(f).
2. f is called strongly Weihrauch reducible to g, in symbols f ≤sW g, if there are computable

K : ⊆ X ⇒W , H : ⊆ Z ⇒ Y such that ∅ 6= HgK(x) ⊆ f(x) for all x ∈ dom(f).

The concept of Weihrauch reducibility is illustrated in Figure 2. The strong version of
Weihrauch reducibility can be illustrated similarly without the direct input access of H.

Weihrauch reducibility induces a lattice with a rich and very natural algebraic structure.
We briefly summarize some of these algebraic operations for problems f : ⊆ X ⇒ Y and
g : ⊆W ⇒ Z:

f × g is the product of f and g and represents the parallel evaluation of problem f on
some input x and g on some input w.
f ∗ g := sup{f0 ◦ g0 : f0≤W f and g0≤W g} is the compositional product and represents
the consecutive usage of the problem f after the problem g.
f∗ :=

⊔∞
n=0 f

n is the finite parallelization and allows an evaluation of the n–fold prod-
uct fn for some arbitrary given n ∈ N.
f ′ denotes the jump of f , which is formally the same problem, but the input representation
δX of X is replaced by its jump δ′X := δX ◦ lim.

Here lim: ⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ limi→∞ pi is the usual limit map on Baire space
for pi ∈ NN, where 〈 〉 denotes a standard infinite tupling function. One can also define a
coproduct operation t and a sum operation u that play the role of supremum and infimum
for ordinary Weihrauch reducibility ≤W, respectively. But we are not going to use these
operations here. The resulting Weihrauch lattice is not complete as infinite suprema do not
need to exist, but the supremum f ∗ g always exists as shown by Brattka and Pauly [16].
The finite parallelization is a closure operator in the Weihrauch lattice. Further information
on the algebraic structure can be found in [16].

An important problem in the Weihrauch lattice is closed choice CX : ⊆ A−(X)⇒ X,
A 7→ A, which maps every closed set A ⊆ X to its points. The crucial fact here is that
closed sets A ∈ A−(X) are represented with respect to negative information, essentially by
enumerating open balls that exhaust their complement. That is, closed choice CX is the
following problem: given a closed set A by a description that lists everything that does not
belong to A, find a point x ∈ A (see [4] for further information). We also consider PCX ,
which is the restriction of CX to sets of positive measure, where we assume that we have
some given natural Borel measure on X. In case of Cantor space X = 2N we are going to
use the uniform measure µ2N , in case of the reals X = R we use the Lebesgue measure µR.
Different classes of problems have been characterized by different forms of closed choice in
the following ways [4, 8]:

f ≤W CN ⇐⇒ f is computable with finitely many mind changes.
f ≤W C2N ⇐⇒ f is non-deterministically computable.
f ≤W PC2N ⇐⇒ f is Las Vegas computable.

V. Brattka, R. Hölzl, and R. Kuyper 17:5

Here non-deterministic computability is understood in the way defined by Martin
Ziegler [29] for the advice space 2N.

3 Monte Carlo Computability

The notion of Las Vegas computability was introduced by Brattka, Gherardi and Hölzl [7, 8]
and analogously we are going to introduce the notion of Monte Carlo computability here.
The intuition of Monte Carlo computability was already described in the introduction and
it is illustrated in Figure 3. The essential difference between Las Vegas and Monte Carlo
computations is that in the former case we can recognize the failure of the advice in finite
time, whereas in the latter case we can only recognize the failure in the limit. Indeed, one
can even relax this condition further and obtain a whole hierarchy of notions of Monte Carlo
computations, but we are not going to discuss this hierarchy here.

Instead of introducing Monte Carlo machines formally, we implicitly define them by using
ordinary computable functions. Essentially, the computation of a Monte Carlo machine is
governed by two functions F1 and F2. Roughly speaking, F1 is responsible to provide the
result of the computation upon some input and some additional advice r ∈ 2N and F2 is
responsible to recognize whether the advice r fails.

The status of the advice is captured using Sierpiński space S = {0, 1}, which is equipped
with the topology {∅, {1},S} and a corresponding representation δS. This space provides an
asymmetric way to capture the status of the computation, very much in the same way as
being computably enumerable is an asymmetric version of decidability. The point is that
failure of an advice is supposed to be a recognizable event (in the limit), but success cannot
necessarily be recognized in the same way. Monte Carlo computability can now be formalized
as follows.

I Definition 2 (Monte Carlo computability). Let (X, δX) and (Y, δY) be represented spaces.
A problem f : ⊆ X ⇒ Y is said to be Monte Carlo computable if there exists a computable
function F1 : ⊆ NN → NN and a limit computable function F2 : ⊆ NN → S such that
〈dom(fδX)× 2N〉 ⊆ dom(F2) and for each p ∈ dom(fδX) the following hold:
1. Sp := {r ∈ 2N : F2〈p, r〉 = 0} is non-empty and µ2N(Sp) > 0,
2. δY F1〈p, r〉 ∈ fδX(p) for all r ∈ Sp.

This difference to Las Vegas computability lies in the fact that F2 is only required to
be limit computable (which is the same as effectively Σ0

2–measurable) and not necessarily
computable. While computable characteristic functions χ2N\A : 2N → S capture exactly
co-c.e. closed sets A (that is, effective Π0

1–sets in the Borel hierarchy), limit computable
characteristic functions χ2N\A capture exactly effective Gδ–sets A (that is, effective Π0

2–sets
in the Borel hierarchy) (see Pauly [25]). Hence, it should not come as a big surprise that
Monte Carlo computability is closely related to choice for Gδ–sets, which we define next. By
Π0

2(2N) we denote the class of Gδ–subsets of 2N.

I Definition 3 (Positive Gδ–choice). By Π0
2PC2N : ⊆ Π0

2(2N) ⇒ 2N, A 7→ A we denote the
positive Gδ–choice problem, defined for all A ∈ Π0

2(2N) with µ2N(A) > 0.

The crucial idea for a simple proof of the following result is to use a synthetic representation
for the class of Gδ–sets. There is a canonical function space representation [δ2N → δS] of
the continuous functions χ : 2N → S and likewise [δ2N → δ′S] is a representation of the
Σ0

2–measurable functions [25] that we are going to use to represent Π0
2(2N). This synthetic

representation enables us to apply the methods of evaluation and type conversion. Hence we

STACS 2017

17:6 Monte Carlo Computability

input advice

Monte Carlo
Turing Machine

correct output

or

computes f :⊆ X ⇒ Y

y ∈ f(x) failure!

status

x ∈ X r ∈ 2N

Figure 3 Illustration of a Monte Carlo machine that computes f : ⊆ X ⇒ Y .

can transfer the proof of [4, Theorem 7.2] by Brattka, de Brecht and Pauly literally to our
setting.

I Theorem 4 (Monte Carlo computability). f ≤W Π0
2PC2N if and only if f is Monte Carlo

computable.

The class Π0
2PC2N has been studied before and the following theorem was proved by

Brattka, Gherardi, Hölzl, Nobrega and Pauly [9].

I Theorem 5 (Positive Gδ–Choice). Π0
2PC2N ≡sW PC′R.

In our context PC′R is somewhat easier to handle than Π0
2PC2N and Theorems 4 and 5

lead to the following corollary.

I Corollary 6 (Monte Carlo computability). f ≤W PC′R if and only if f is Monte Carlo
computable.

Bienvenu and Kuyper [1] answered a number of questions related to composition and
they proved the following result on the compositional product of PC′R.

I Theorem 7 (Composition). PC′R ∗ PC
′
R≡W PC′R.

In light of Theorem 4 and Theorem 5 we obtain a second independent proof of this
theorem along the lines of the Independent Choice Theorem of Brattka, Gherardi and
Hölzl [8, Theorem 4.3], which is essentially based on Fubini’s Theorem. The synthetic
representation of Π0

2(2N) allows us to transfer the proof of the Independent Choice Theorem
directly to a proof of the fact that Π0

2PC2N ∗ Π0
2PC2N ≡W Π0

2PC2N and hence we obtain
Theorem 7 with the help of Theorem 5. The importance of Theorem 7 for us lies in the
following conclusion.

I Corollary 8. Monte Carlo computable functions are closed under composition.

This conclusion ensures that Monte Carlo computability satisfies one of the necessary
conditions that any reasonable concept of computability should satisfy. Due to the definition
it is also clear that every Las Vegas computable function is Monte Carlo computable.

I Corollary 9. Every Las Vegas computable function is Monte Carlo computable.

V. Brattka, R. Hölzl, and R. Kuyper 17:7

The inverse implication is clearly false, as there are functions that are Monte Carlo
computable but not Las Vegas computable. An example is the equality test =: R×R→ {0, 1};
it is Monte Carlo computable since it is reducible to CN≤W PC′R, but cannot be Las Vegas
computable since it is not even non-deterministically computable [6].

4 Weak Weak Kőnig’s Lemma and Jumps

In this section we discuss the relation of Weak Weak Kőnig’s Lemma to Monte Carlo
computations. Weak Kőnig’s Lemma and Weak Weak Kőnig’s Lemma are principles that
have been intensively studied in reverse mathematics [26]. The classical lemma of Kőnig says
(in its weak version) that every infinite binary tree has an infinite path. Here we understand
Weak Kőnig’s Lemma as the mathematical problem

WKL : ⊆ Tr⇒ 2N, T 7→ [T]

that maps an infinite binary tree T ⊆ 2∗ to an infinite path p ∈ [T] of this tree. By Tr we
denote the set of all binary trees (represented via their characteristic functions) and by [T]
we denote the set of infinite paths of such a tree. We assume that dom(WKL) is the set of
infinite binary trees. Weak Weak Kőnig’s Lemma is the restriction of WKL to trees T such
that µ2N([T]) > 0, that is, such that the set of infinite paths has positive measure. Some
basic facts known about these principles are the following (see [21, 8, 10]):

WKL≡sW C2N .
WWKL≡sW PC2N .
WWKL× CN≡sW PCR.
WWKL<sW WKL and WWKL<sW PCR.
KN<sW WWKL and CN<sW PCR.

Here KN := C∗2 is also called compact choice because it can be seen as CN restricted to sets
A ⊆ N that are given together with an upper bound.

In the context of Monte Carlo computability we need to transfer some of these results to
jumps of the involved principles. For the forwards direction one can usually use monotonicity
of jumps with respect to strong Weihrauch reducibility. The following lemma was proved by
Brattka, Gherardi and Marcone [11, Proposition 5.6].

I Lemma 10 (Monotonicity). f ≤sW g =⇒ f ′≤sW g′.

We note that a corresponding result for ordinary Weihrauch reducibility ≤W does not
hold. This is one of the reasons why the study of strong Weihrauch reductions seems to be
unavoidable. Even if one is interested only in results about ordinary Weihrauch reducibility
of jumps, this typically requires to study strong Weihrauch reductions.

Surprisingly, we were also able to prove a certain inverse result of the above monotonicity
property, which we formulate next. Here “relative to the halting problem” is supposed to
mean that the reduction functions H,K used for the reduction f ≤W g both have access to
the halting problem.

I Theorem 11 (Jumps and relativization). f ′≤W g′ =⇒ f ≤W g relative to the halting problem.

Proof. Let f ′≤W g′. Then there are computable functions H,K : ⊆ NN → NN such that
H〈r,GK(r)〉 is a name for an output of f ′ on the input specified by r ∈ NN, whenever G is
a realizer for g′. For r actually any sequence is allowed that converges to an input q of f and
K(r) must be a sequence converging to a name of an input of g in this situation. Without
loss of generality we can assume that range(K) ⊆ 2N. By a theorem of Brattka, Hendtlass

STACS 2017

17:8 Monte Carlo Computability

and Kreuzer [12, Theorem 14.11] there are functions K0 : ⊆ NN → 2N and K1 : ⊆ NN → NN

that are computable with access to the halting problem and such that

K0(q) = limKK1(q) and limK1(q) = q

for all q ∈ dom(lim ◦K ◦ lim−1). Then K1(q) = r is a sequence that converges to q and
such that K0(q) = limK(r) is a name of an input of g. Let H0 be defined by H0〈q, u〉 :=
H〈K1(q), u〉 for all q, u. Then H0 is computable relative to the halting problem and we
obtain that G lim is a realizer of g′ for every realizer G of g and hence

H0〈q,GK0(q)〉 = H〈K1(q), GK0(q)〉 = H〈r,G limK(r)〉,

which is name for an output of f ′ on input r and hence an output for f on input lim r = q.
This proves f ≤W g relative to the halting problem. J

An analogous statement holds for ≤sW in place of ≤W. Often separations of problems
are proved in a topological way by showing that there are not even continuous reduction
functions H,K. In such a situation, H,K cannot even be computable with respect to the
halting problem. Hence, topological separations of f and g are very useful when it comes to
separating f ′ and g′.

The diagram in the upper half of Figure 5 illustrates some important reductions for jumps
of Weak Weak Kőnig’s Lemma and related principles

5 Sorting

Sorting infinite sequences is a basic computational task that was introduced and studied
by Neumann and Pauly [22] in the binary case. We generalize this problem by defining
SORTn : {0, 1, ..., n− 1}N → {0, 1, ..., n− 1}N by

SORTn(p) := 0k01k1 ...(m− 1)km−1m̂

if m < n is the smallest digit that appears infinitely often in p and each digit i < m appears
exactly ki times in p. Here m̂ = mmm... denotes the infinite sequence which has the constant
value m. This definition is understood such that SORTn(p) = 0̂ if 0 appears infinitely often
in p. In Figure 4 SORT5 is illustrated.

For n ≤ 1 the problem SORTn is computable, since SORT0 is the nowhere defined function
and SORT1 is the constant function. Neumann and Pauly [22, Proposition] proved that
CN≤W SORT2 and in fact it is easy to see that even a strong reduction holds.

I Proposition 12. CN≤sW SORT2.

Here we want to discuss probabilistic solutions for the problem SORTn and the interesting
observation is the following.

I Proposition 13. SORTn≤sW WWKL′ for all n ∈ N.

Proof. Given a sequence p ∈ {0, ..., n−1}N as input to SORTn we want to compute SORTn(p)
with the help of WWKL′. We produce a sequence of binary trees (Ti)i with Ti :=

⋃n−1
m=0 Ti,m.

Here for each m ∈ {0, ..., n− 1}

Ti,m := 0m10k010k1 ...10km−11{0, 1}km ,

where kj denotes the number of appearances of digit j ∈ {0, ...,m} in the initial segment
p(0), ..., p(i). The sequence (Ti,m)i converges to a tree Sm. If no j ≤ m appears infinitely

V. Brattka, R. Hölzl, and R. Kuyper 17:9

0 3 2 1 3 1 2 1 3 4 3 4 3 4 3 ...

0 1 1 1 2 2 3 3 3 3 3 3 3 3 3 ...

SORT5

Figure 4 Application of SORT5 to some example sequence (that continues alternately with 4, 3).

often in p, then [Sm] = ∅. If m appears infinitely often in p and no smaller j < m appears
infinitely often in p, then

[Sm] = 0m10k010k1 ...10km−11{0, 1}N,

where kj is the number of appearances of digit j in p for j ∈ {0, ...,m− 1}. If l < m is the
minimal digit that appears infinitely often in p, then

[Sm] = {0m10k010k1 ...10kl−110̂},

where kj is the number of appearances of digit j in p for j ∈ {0, ..., l− 1}. The sequence (Ti)i
converges to the tree T :=

⋃n−1
m=0 Sm. Since one digit m < n is the minimal digit that appears

infinitely often in p, we have µ([T]) ≥ µ([Sm]) > 0. Given some q ∈ [T], we can reconstruct
SORTn(p), since there is some m < n and there is some l < m or some r ∈ {0, 1}N such that
exactly one of the following cases holds:
1. q = 0m10k010k1 ...10kl−110̂ =⇒ SORTn(p) = 0k01k1 ...(l − 1)kl−1 l̂,
2. q = 0m10k010k1 ...10km−11r =⇒ SORTn(p) = 0k01k1 ...(m− 1)km−1m̂. J

Brattka, Gherardi and Hölzl proved that WWKL (and hence WWKL′) is strongly idem-
potent [8, Corollary 4.5], that is, WWKL′ ×WWKL′≡sW WWKL′, and hence Proposition 13
can be strengthened in the following way.

I Corollary 14. SORT∗n≤sW WWKL′ for all n ∈ N.

Since WWKL′≤W PC′R we also obtain the following conclusion.

I Corollary 15. SORT∗n is Monte Carlo computable for every n ∈ N.

The next observation is that the Intermediate Value Theorem IVT is reducible to SORT2.
We study IVT here in the slightly easier form of connected choice CC[0,1], that is, C[0,1]
restricted to connected subsets of [0, 1]. The equivalence IVT≡sW CC[0,1] was proved by
Brattka and Gherardi [5, Theorem 6.2] (where CC[0,1] appears under the name CI).

I Proposition 16. CC[0,1]≤W SORT2.

Proof. Let two monotone rational sequences (an)n and (bn)n in [0, 1] be given, the first one
increasing, the second one decreasing, and such that an ≤ bn for all n. We computably
produce an input p for SORT2 by writing a 1 every second step and by producing occasionally
a 0 according to the following algorithm: whenever we find an n ∈ N such that |bn−an| < 2−k,
then we ensure that we have k digits 0 included in p. Hence, p will include exactly k zeros if
k is the largest number such that there is some n with |bn − an| < 2−k and it will include
infinitely many zeros if for every k there is such an n. Given the output of SORT2(p) and the
original input (an)n and (bn)n we can find a point x ∈ [0, 1] with an ≤ x ≤ bn for all n as
follows. If we see at least k zeros in SORT2(p), then we search for n with |bn−an| < 2−k and
produce xk := an + 1

2 (bn− an) as approximation of x of precision 2−k. In the moment where

STACS 2017

17:10 Monte Carlo Computability

we see that there are k and not more zeros in SORT2(p), that is, we see the first 1 at position
k + 1, we continue to produce xk+i := xk as approximation for x of any higher precision
2−k−i. Since there is no n with |bn − an| < 2−k−1, it is guaranteed that an ≤ xk+i ≤ bn for
all i ∈ N. J

In particular, this result implies that zero finding, that is, the Intermediate Value Theorem
IVT, is Monte Carlo computable.

I Corollary 17. The Intermediate Value Theorem IVT is Monte Carlo computable.

Brattka, Gherardi and Hölzl proved CC[0,1]≤W WWKL′ [8, Corollary 15.9], which also
implies Corollary 17. However, Proposition 16 generalizes the aforementioned result via
Proposition 13. We note that CC[0,1] 6≤sW SORT2 since IVT 6≤sW WWKL′ by [8, Corollary 15.8].
Brattka and Rakotoniaina proved CC[0,1]≤W C′N [17, Proposition 5.21], a result which is
generalized by the following observation.

I Proposition 18. SORTn≤sW C′N for all n ∈ N.

Proof. By [11, Theorem 9.4] we have CLN≡sW C′N, where CLN denotes the cluster point
problem (i.e., the problem to find a cluster point of a given sequence of natural numbers that
has one). Given a sequence p ∈ {0, 1, ..., n− 1}N we compute a sequence q ∈ NN as follows:
we inspect p and whenever we find a new occurrence of the digit m ∈ {0, 1, ..., n− 1}, then
we add a number 〈m, 〈k0, k1, ..., km−1〉〉 ∈ N to q, where each ki ∈ N counts the occurrences
of digit i in p so far. One fixed such tuple 〈m, 〈k0, k1, ..., km−1〉〉 appears infinitely often in q
if and only if m appears infinitely often in p and each number i ∈ {0, 1, ...,m− 1} appears
exactly ki times in p altogether. CLN(q) determines one such tuple that appears infinitely
often and hence it is easy to reconstruct SORTn(p) from CLN(q). J

We note that the proof even shows SORTn≤sW UC′N, where UC′N is the unique version
of C′N. Proposition 18 also yields an independent proof of Corollary 15. With the help of the
fact that C′N × C′N≡sW C′N we obtain the following corollary.

I Corollary 19. SORT∗n≤sW C′N for all n ∈ N.

One could ask whether this result can be strengthened to the upper bound K′N, which is
not the case.

I Proposition 20. CC[0,1] 6≤W K′N.

Proof. By [11, Theorem 9.4] we have K′N≡sW BWTN, where BWTN denotes the restriction
of CLN to bounded sequences. Let us assume that CC[0,1]≤W BWTN holds via computable
reduction functions K,H. We construct sequences (an)n and (bn)n of rational numbers in
[0, 1] with an ≤ an+1 ≤ bn+1 ≤ bn for all n ∈ N as an input for CC[0,1]. We start with
choosing an := 0 and bn := 1 for all n ∈ N. Upon this input K will produce a sequence
(xn)n of natural numbers as an input to BWTN. This sequence has to contain only finitely
many different numbers y0, ..., yj . Each of these numbers is a possible output of BWTN and
hence for each of these numbers yi and the original input, H has to select a point zi ∈ [0, 1]
with an ≤ zi ≤ bn for all n ∈ N. Since H is continuous, there is a certain input length k
such that upon input of a0, ..., ak and b0, ..., bk the function H already approximates each
number zi up to precision 2−j−2. It is clear that j + 1 intervals of diameter 2−j−1 cannot
cover the entire interval [0, 1] and in fact the uncovered part has non-empty interior. We can
also assume that k is large enough such that by continuity of K actually all the numbers
y0, ..., yj already appear in the output of K upon input of a0, ..., ak and b0, ..., bk. Now we

V. Brattka, R. Hölzl, and R. Kuyper 17:11

lim

lim′

PC′R≡sW WWKL′ × C′N

C2N ≡sW WKL

PC′2N ≡sW WWKL′

SORTn+2

CC[0,1]≡sW IVT

K′N

C′N

CN
Σ0

2–measurable

Σ0
3–measurable

Figure 5 Sorting in the Weihrauch lattice.

can choose a new proper interval [a, b] that does not overlap with any of the approximations
of the zi and we modify the original input by choosing ak+i := a and bk+i := b for all i ∈ N.
Upon this modified input K has to produce a new number y ∈ N, which is not among the
numbers y0, ..., yj , since otherwise the output that is produced by the reduction is not in
[a, b]. We can now inductively repeat the above construction and in this way we construct
an input (an)n, (bn)n to CC[0,1] such that K produces a sequence (xn)n with infinitely many
different numbers xn in its range (none of which appear infinitely often, in fact). This is not
an admissible input to BWTN and hence a contradiction. J

Neumann and Pauly [22, Corollary 27] proved that SORT2 is low2 in the sense that
lim ∗ lim ∗SORT2≡W lim ∗ lim. However, it is not closed under composition and not low as,
for instance, the following result shows.

I Proposition 21. C′n≤W SORTn ∗ SORTn≤W C′N for all n ∈ N.

Proof. We obtain C′n≤W limn ∗SORTn≤W CN ∗ SORTn≤W SORTn ∗ SORTn≤W C′N. The
first reduction holds since SORTn(p) is always a converging sequence and its limit is a
cluster point of p. We have C′n≡W CLn for the cluster point problem CLn by a result of
Brattka, Gherardi and Marcone [11, Theorem 9.4]. The second reduction follows since
limn≤W limN≤W CN and the third reduction follows from Proposition 12. The reduction
SORTn ∗ SORTn≤W C′N follows from Proposition 18 and the fact that C′N ∗C

′
N≡W C′N (which

one can easily see by a direct proof). J

As a consequence of this result we obtain SORTn 6≤W WKL for n ≥ 2 since WKL ∗
WKL≡W WKL by [21, Theorem 6.14] and hence we get the following conclusion.

I Corollary 22. SORTn is not non-deterministically computable for n ≥ 2.

STACS 2017

17:12 Monte Carlo Computability

In the diagram in Figure 5 we have collected some of the results on sorting. The solid
lines indicate strong Weihrauch reductions against the direction of the arrows, the dashed
line indicates an ordinary Weihrauch reduction against the direction of the arrow.

6 Algebraic Computation Models

One reason that Neumann and Pauly studied the binary sorting problem is that SORT∗2
characterizes the strength of strongly analytic machines as defined by Gärtner and Hotz
[19, 20]. Essentially these strongly analytic machines are real random access machines over
the field of real numbers (with computable constants) as studied by Blum, Shub and Smale
and others [3] and extended by semantics that allows one to approximate the output. They
are called strongly analytic if the machine also provides an error bound for the approximation
of the output. Neumann and Pauly proved the following theorem [22, Observation 30,
Corollary 34 and 11].

I Theorem 23 (Algebraic machine models). Consider a function of type f : R∗ → R∗.
1. If f is computable by a strongly analytic machine, then f ≤W SORT∗2 and SORT∗2 is

equivalent to a function computable by a strongly analytic machine.
2. If f is computable by a BSS machine, then f ≤W CN and CN is equivalent to a function

computable by a BSS machine.

Using this result we obtain the following corollary; note that while the class of functions
computable by strongly analytic machines is not closed under composition, the corollary
does hold for such compositions as well.

I Corollary 24. Any finite composition of functions f : R∗ → R∗ that are computable on
strongly analytic machines is Monte Carlo computable.

Since functions that are computable on a Blum, Shub and Smale machine (BSS machine)
are a special case, we obtain the following corollary.

I Corollary 25. Every function f : R∗ → R∗ that is computable on a BSS machine is Monte
Carlo computable.

Corollary 25 could already be deduced from the observation that CN≤W PCR and does
not require our results on sorting. However, it is worth pointing out that in general
functions computable on a BSS machine (even the equality test) are not non-deterministically
computable and, in particular, not Las Vegas computable.

References
1 Laurent Bienvenu and Rutger Kuyper. Parallel and serial jumps of Weak Weak König’s

Lemma. In Adam Day, Michael Fellows, Noam Greenberg, Bakhadyr Khoussainov, Alexan-
der Melnikov, and Frances Rosamond, editors, Computability and Complexity: Essays
Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, volume 10010
of Lecture Notes in Computer Science, pages 201–217. Springer, Cham, 2017. doi:
10.1007/978-3-319-50062-1_15.

2 Laurent Bienvenu and Christopher P. Porter. Deep Π0
1 classes. Bulletin of Symbolic Logic,

22(2):249–286, 2016. doi:10.1017/bsl.2016.9.
3 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Com-

putation. Springer, New York, 1998.

http://dx.doi.org/10.1007/978-3-319-50062-1_15
http://dx.doi.org/10.1007/978-3-319-50062-1_15
http://dx.doi.org/10.1017/bsl.2016.9

V. Brattka, R. Hölzl, and R. Kuyper 17:13

4 Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163:986–1008, 2012. doi:10.1016/j.apal.
2011.12.020.

5 Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in com-
putable analysis. The Bulletin of Symbolic Logic, 17(1):73–117, 2011. doi:10.2178/bsl/
1294186663.

6 Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak
computability. The Journal of Symbolic Logic, 76(1):143–176, 2011. doi:10.2178/jsl/
1294170993.

7 Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Las Vegas computability and al-
gorithmic randomness. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30
of Leibniz International Proceedings in Informatics (LIPIcs), pages 130–142, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
STACS.2015.130.

8 Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Probabilistic computability and choice.
Information and Computation, 242:249–286, 2015. doi:10.1016/j.ic.2015.03.005.

9 Vasco Brattka, Guido Gherardi, Rupert Hölzl, Hugo Nobrega, and Arno Pauly. Positive
Borel choice. Unpublished draft, 2016.

10 Vasco Brattka, Guido Gherardi, Rupert Hölzl, and Arno Pauly. The Vitali covering theo-
rem in the Weihrauch lattice. In Adam Day, Michael Fellows, Noam Greenberg, Bakhadyr
Khoussainov, Alexander Melnikov, and Frances Rosamond, editors, Computability and
Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birth-
day, volume 10010 of Lecture Notes in Computer Science, pages 188–200. Springer, Cham,
2017. doi:10.1007/978-3-319-50062-1_14.

11 Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-Weierstrass theorem
is the jump of weak Kőnig’s lemma. Annals of Pure and Applied Logic, 163:623–655, 2012.
doi:10.1016/j.apal.2011.10.006.

12 Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform computa-
tional content of computability theory. arXiv 1501.00433, 2015. arXiv:1501.00433.

13 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analy-
sis. In S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational
Paradigms: Changing Conceptions of What is Computable, pages 425–491. Springer, New
York, 2008. doi:10.1007/978-0-387-68546-5_18.

14 Vasco Brattka, Stéphane Le Roux, Joseph S. Miller, and Arno Pauly. The Brouwer fixed
point theorem revisited. In Arnold Beckmann, Laurent Bienvenu, and Nataša Jonoska,
editors, Pursuit of the Universal, volume 9709 of Lecture Notes in Computer Science, pages
58–67, Switzerland, 2016. Springer. 12th Conference on Computability in Europe, CiE 2016,
Paris, France, June 27 - July 1, 2016. doi:10.1007/978-3-319-40189-8_6.

15 Vasco Brattka and Arno Pauly. Computation with advice. In Xizhong Zheng and Ning
Zhong, editors, CCA 2010, Proceedings of the Seventh International Conference on Com-
putability and Complexity in Analysis, Electronic Proceedings in Theoretical Computer
Science, pages 41–55, 2010. doi:10.4204/EPTCS.24.9.

16 Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. arXiv
1604.08348, 2016. arXiv:1604.08348.

17 Vasco Brattka and Tahina Rakotoniaina. On the uniform computational content of Ram-
sey’s theorem. arXiv 1508.00471, 2015. arXiv:1508.00471.

18 François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer.
On uniform relationships between combinatorial problems. Transactions of the American
Mathematical Society, 368(2):1321–1359, 2016. doi:10.1090/tran/6465.

STACS 2017

http://dx.doi.org/10.1016/j.apal.2011.12.020
http://dx.doi.org/10.1016/j.apal.2011.12.020
http://dx.doi.org/10.2178/bsl/1294186663
http://dx.doi.org/10.2178/bsl/1294186663
http://dx.doi.org/10.2178/jsl/1294170993
http://dx.doi.org/10.2178/jsl/1294170993
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.130
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.130
http://dx.doi.org/10.1016/j.ic.2015.03.005
http://dx.doi.org/10.1007/978-3-319-50062-1_14
http://dx.doi.org/10.1016/j.apal.2011.10.006
http://arxiv.org/abs/1501.00433
http://dx.doi.org/10.1007/978-0-387-68546-5_18
http://dx.doi.org/10.1007/978-3-319-40189-8_6
http://dx.doi.org/10.4204/EPTCS.24.9
http://arxiv.org/abs/1604.08348
http://arxiv.org/abs/1508.00471
http://dx.doi.org/10.1090/tran/6465

17:14 Monte Carlo Computability

19 Tobias Gärtner and Günter Hotz. Computability of analytic functions with analytic
machines. In Mathematical theory and computational practice, volume 5635 of Lec-
ture Notes in Comput. Science, pages 250–259. Springer, Berlin, 2009. doi:10.1007/
978-3-642-03073-4_26.

20 Tobias Gärtner and Günter Hotz. Representation theorems for analytic machines and
computability of analytic functions. Theory of Computing Systems, 51(1):65–84, 2012.
doi:10.1007/s00224-011-9374-z.

21 Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach
theorem? Notre Dame Journal of Formal Logic, 50(4):393–425, 2009. doi:10.1215/
00294527-2009-018.

22 Eike Neumann and Arno Pauly. A topological view on algebraic computation models. arXiv
1602.08004, 2016. http://arxiv.org/abs/1602.08004.

23 Arno Pauly. How incomputable is finding Nash equilibria? Journal of Universal Computer
Science, 16(18):2686–2710, 2010. doi:10.3217/jucs-016-18-2686.

24 Arno Pauly. On the (semi)lattices induced by continuous reducibilities. Mathematical Logic
Quarterly, 56(5):488–502, 2010. doi:10.1002/malq.200910104.

25 Arno Pauly. The descriptive theory of represented spaces. arXiv 1408.5329, 2014. http:
//arxiv.org/abs/1408.5329.

26 Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic, As-
sociation for Symbolic Logic. Cambridge University Press, Poughkeepsie, second edition,
2009.

27 Thorsten von Stein. Vergleich nicht konstruktiv lösbarer Probleme in der Analysis. Fach-
bereich Informatik, FernUniversität Hagen, 1989. Diplomarbeit.

28 Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
29 Martin Ziegler. Real hypercomputation and continuity. Theory of Computing Systems,

41(1):177–206, 2007. doi:10.1007/s00224-006-1343-6.

http://dx.doi.org/10.1007/978-3-642-03073-4_26
http://dx.doi.org/10.1007/978-3-642-03073-4_26
http://dx.doi.org/10.1007/s00224-011-9374-z
http://dx.doi.org/10.1215/00294527-2009-018
http://dx.doi.org/10.1215/00294527-2009-018
http://arxiv.org/abs/1602.08004
http://dx.doi.org/10.3217/jucs-016-18-2686
http://dx.doi.org/10.1002/malq.200910104
http://arxiv.org/abs/1408.5329
http://arxiv.org/abs/1408.5329
http://dx.doi.org/10.1007/s00224-006-1343-6

	Introduction
	The Weihrauch Lattice
	Monte Carlo Computability
	Weak Weak König's Lemma and Jumps
	Sorting
	Algebraic Computation Models

