
Combining Treewidth and Backdoors for CSP∗†

Robert Ganian‡1, M. S. Ramanujan2, and Stefan Szeider3

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
rganian@ac.tuwien.ac.at

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sz@ac.tuwien.ac.at

Abstract
We show that CSP is fixed-parameter tractable when parameterized by the treewidth of a back-
door into any tractable CSP problem over a finite constraint language. This result combines the
two prominent approaches for achieving tractability for CSP: (i) structural restrictions on the in-
teraction between the variables and the constraints and (ii) language restrictions on the relations
that can be used inside the constraints. Apart from defining the notion of backdoor-treewidth
and showing how backdoors of small treewidth can be used to efficiently solve CSP, our main
technical contribution is a fixed-parameter algorithm that finds a backdoor of small treewidth.

1998 ACM Subject Classification G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Algorithms and data structures, Fixed Parameter Tractability, Con-
straint Satisfaction

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.36

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computational problem
which provides a common framework for many theoretical and practical applications [34].
An instance of CSP consists of a collection of variables that must be assigned values subject
to constraints, where each constraint is given in terms of a relation whose tuples specify the
allowed combinations of values for specified variables. The problem was originally formulated
by Montanari [41], and has been found equivalent to the homomorphism problem for relational
structures [22] and the problem of evaluating conjunctive queries on databases [37]. CSP is
NP-complete in general, and identifying the classes of CSP instances which can be solved
efficiently has become a prominent research area in theoretical computer science [10].

One of the most classical approaches in this area relies on exploiting the structure of
how variables and constraints interact with each other, most prominently in terms of the
treewidth of graph representations of CSP instances. The first result in this line of research
dates back to 1985, when Freuder [25] observed that CSP is polynomial-time tractable if the
primal treewidth, which is the treewidth of the primal graph of the instance, is bounded by
a constant. A large number of related results on structural restrictions for CSP have been
obtained to date (see, e.g., [13, 18, 30, 31, 40, 44]).

∗ A full version of the paper is available at https://arxiv.org/abs/1610.03298.
† The authors acknowledge support from Austrian Science Funds (FWF), project P26696.
‡ Robert Ganian is also affiliated with FI MU, Brno, Czech Republic.

© Robert Ganian, M. S. Ramanujan, and Stefan Szeider;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.36
https://arxiv.org/abs/1610.03298
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Combining Treewidth and Backdoors for CSP

X

Figure 1 An illustration of instances with neither a small backdoor into CSP(Γ) for any tractable
constraint language Γ, nor bounded primal treewidth. Here, X denotes a minimum strong backdoor
of unbounded size into CSP(Γ) for some choice of Γ. The ellipsis represents the fact that X can be
arbitrarily big, implying an unbounded number of such instances, one for each size of X.

The other leading approach used to show the tractability of constraint satisfaction relies
on constraint languages. In this case, the polynomially tractable classes are defined in terms
of a tractable constraint language Γ, which is a set of relations that can be used in the
instance. A landmark result in this area is Schaefer’s celebrated Dichotomy Theorem for
Boolean CSP [46] which says that for every constraint language Γ over the Boolean domain,
the corresponding CSP problem is either NP-complete or solvable in polynomial time. Feder
and Vardi [22] conjectured that such a dichotomy holds for all finite constraint languages.
Although the conjecture is still open it has been proven true for many important special
cases (see, e.g., [6, 7, 9, 14, 17, 33]).

Tractability due to restrictions on the constraint language and tractability due to restric-
tions in terms of the structure of the CSP instance are often considered complementary:
under structural restrictions the domain language can be arbitrary, whereas under constraint
language restrictions the variables and constraints can interact arbitrarily.

One specific tool that is frequently used to build upon the constraint language approach
detailed above is the notion of backdoors, which provides a means of relaxing celebrated results
on tractable constraint languages to instances which are ‘almost’ tractable. In particular, this
is done by measuring the size of a strong backdoor [47] to a selected tractable class, where a
strong backdoor is a set of variables with the property that every assignment of these variables
results in a CSP instance in the specified class. A natural way of defining such a class is
to consider all CSP instances whose constraints use relations from a constraint language Γ,
denoted by CSP(Γ). The last couple of years have seen several new results for CSP using this
backdoor-based approach (see, e.g., [11, 26, 27]. In particular, the general aim of research
in this direction is to obtain so-called fixed-parameter algorithms, i.e., algorithms where
the running time only has a polynomial dependence on the input size and the exponential
blow-up is restricted exclusively to the size of the backdoor (the parameter). Parameterized
decision problems which admit such an algorithm belong to the complexity class FPT.

We note that treewidth-based and backdoor-based approaches outlined above are ortho-
gonal to each other. Consider, for example, on the one hand a CSP instance which is tractable
due to the used constraint language but which has high treewidth, or on the other hand an
instance consisting of many disjoint copies of CSP instances of constant primal treewidth
with a constant-size strong backdoor into a tractable constraint language (backdoor size
multiplies whereas treewidth remains constant). Hence applying either of these approaches
(treewidth-based and backdoor-based) alone will not yield satisfactory results for instances
that are not homogeneous with respect to either of these forms of restrictions. It is certainly
natural to consider the algorithmic complexity of instances which have small treewidth after

R. Ganian, M. S. Ramanujan, and S. Szeider 36:3

certain simple ‘blocks’ characterized by a tractable constraint language are removed, or
instances with a large but ‘well-structured’ backdoor to a tractable class (see Fig. 1), but
until now we lacked the theoretical tools required to capture the complexity of such instances.

Our Results. We propose and develop a hybrid framework for constraint satisfaction
which combines the advantages of both the width-based and backdoor-based approaches. In
particular, we introduce the notion of backdoor-treewidth with respect to a constraint language
Γ; this is defined, roughly speaking, as the primal treewidth of the instance after contracting
(possibly large) parts of the instance into single constraints, so that the remaining variables
form a strong backdoor into CSP(Γ) in the original instance. We refer to Definition 5 for the
formal definition of backdoor-treewidth. It is not difficult to see that backdoor-treewidth is
at most the minimum of primal treewidth and the size of a backdoor into the specified class.
However, backdoor-treewidth can be arbitrarily smaller than both the primal treewidth and
the size of a backdoor, and hence promises to push the frontiers of tractability beyond the
current state of the art.

I Theorem 1. Let Γ be a fixed tractable finite constraint language. Then, CSP parameterized
by the backdoor-treewidth with respect to Γ is FPT.

We note that our result is in fact tight as far as the choice of the language Γ is concerned:
Γ must clearly be tractable, and both the backdoor-based and width-based approaches are
known to fail for infinite languages under established complexity assumptions. To be more
specific, finding strong backdoors is not even FPT parameterized by backdoor size if the arity
of relations in the language is unbounded [27], primal treewidth implicitly bounds the arity
of relations, and both approaches require bounded domain to solve CSP in FPT time [44].
In fact, our algorithm implies that even when Γ is not a fixed constraint language, CSP is
FPT when parameterized jointly by the maximum arity of the relations in Γ, the size of the
domain and the backdoor-treewidth with respect to Γ.

Two separate problems need to be dealt with in order to use backdoor-treewidth for
solving constraint satisfaction: finding a strong backdoor of small treewidth, and then using
it to actually solve the CSP instance. The latter task can be solved efficiently by a dynamic
programming procedure on a tree-decomposition. However, finding strong backdoors of small
treewidth is considerably more complicated and forms the main technical contribution of this
article. We note in particular that algorithms for finding small backdoors to tractable classes
cannot be used for this purpose, since the size of the backdoors we are interested in can be
very large. In fact, it is even far from obvious that we can detect a backdoor of treewidth at
most k in polynomial time when k is considered a constant (and the order of the polynomial
may depend on k).

Our result on backdoor-treewidth also carries over to the counting variant of CSP (#CSP).
#CSP is a prominent #P-complete extension of CSP problem which asks for the number
of variable assignments that satisfy the given constraints. Structural restrictions as well as
language restrictions have been studied for #CSP. The dynamic programming algorithm
for CSP for instances of bounded primal treewidth can be readily adapted to #CSP (see,
e.g., [21]). A constraint language Γ is #-tractable if #CSP(Γ) (#CSP restricted to instances
whose constraints use only relations from Γ) can be solved in polynomial time. Bulatov [8]
characterized all finite #-tractable constraint languages. Applying our results, we obtain the
following corollary.

I Corollary 2. Let Γ be a fixed #-tractable finite constraint language. Then, #CSP para-
meterized by the backdoor-treewidth with respect to Γ is FPT.

STACS 2017

36:4 Combining Treewidth and Backdoors for CSP

(a) In the first part of our algorithm to detect strong backdoors of small treewidth, we
define a notion of boundaried CSP instances in the spirit of boundaried graphs and show
that for any t, k ∈ N, there is an equivalence relation ∼t,k on the set of all t-boundaried
CSP instances such that (i) this relation has at most f(k, t) equivalence classes for
some function f (all functions used in the paper can be easily seen to be computable)
depending only on k and the constraint language Γ, and (ii) for any two t-boundaried
CSP instances in the same equivalence class of ∼t,k, they ‘interact in the same way’
with every other t-boundaried CSP-instance.

(b) We then describe an algorithm that for any given t, k ∈ N runs in time O(g(t, k)) for
some function g and actually constructs a set H of f(k, t) CSP instances, one from each
equivalence class of the relation ∼t,k. Additionally, we show that each instance in this
set has size bounded by a function of k and t.

(c) In this part, we show that for any given t-boundaried CSP instance I whose size exceeds
a certain bound depending on k and t and whose incidence graph satisfies certain
connectivity properties, we can in time g(t, k)|I|O(1) correctly determine the equivalence
class that this instance belongs to and compute a strictly smaller t-boundaried CSP
instance I′ which belongs to the same equivalence class of ∼t,k as I. It follows that
once I′ is computed, we can ‘replace’ I with the strictly smaller I′, without altering the
existence (or non-existence) of a strong backdoor of small treewidth. Our replacement
framework is inspired by the graph replacement tools dating back to the results of
Fellows and Langston [23] and further developed by Arnborg, Bodlaender, and other
authors [1, 3, 5, 19, 4].

(d) In this part, we utilize the recursive-understanding technique, introduced by Grohe et
al. [32] to solve the Topological Subgraph Containment problem and used with great
success in the design of FPT algorithms for several other fundamental graph problems
(see [36, 12]), to recursively compute a t-boundaried subinstance with the properties
required to execute Part (c). Once this process terminates, we have an instance whose
size is upper-bounded by a function of k and t which can be solved by brute force.

Related Work. Williams et al. [47, 48] introduced the notion of backdoors for the runtime
analysis of algorithms for CSP and SAT, see also [35] for a more recent discussion of backdoors
for SAT. A backdoor is a small set of variables whose instantiation puts the instance into
a fixed tractable class (called the base class). One distinguishes between strong and weak
backdoors, where for the former all instantiations lead to an instance in the base class, and
for the latter at least one leads to a satisfiable instance in the base class. Backdoors have
been studied under a different name by Crama et al. [16]. The study of the parameterized
complexity of finding small backdoors was initiated by Nishimura et al. [42] for SAT, who
considered backdoors into the classes of Horn and Krom CNF formulas. Further results
cover the classes of renamable Horn formulas [43], q-Horn formulas [28] and classes of
formulas of bounded treewidth [29, 24]. The detection of backdoors for CSP has been studied
in several works [2, 11]. Gaspers et al. [27] obtained results on the detection of strong
backdoors into heterogeneous base classes of the form CSP(Γ1) ∪ · · · ∪ CSP(Γd) where for
each instantiation of the backdoor variables, the reduced instance belongs entirely to some
CSP(Γi) (possibly to different CSP(Γi)’s for different instantiations). This direction was
recently further generalized by Ganian et al. [26] by developing a framework for detecting
strong backdoors into so-called scattered base classes with respect to Γ1 . . .Γd; there, each
instantiation of the backdoor variables results in a reduced instance whose every connected
component belongs entirely to some CSP(Γi) (possibly to different CSP(Γi)’s for different
components and different instantiations).

R. Ganian, M. S. Ramanujan, and S. Szeider 36:5

2 Preliminaries

We use standard graph terminology, see for instance the handbook by Diestel [20]. For i ∈ N,
we use [i] to denote the set {1, . . . , i}.

Constraint Satisfaction. Let V be a set of variables and D a finite set of values. A constraint
of arity ρ over D is a pair (S,R) where S = (x1, . . . , xρ) is a sequence of variables from V
and R ⊆ Dρ is a ρ-ary relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. An
assignment α : X → D is a mapping of a set X ⊆ V of variables. An assignment α : X → D
satisfies a constraint C = ((x1, . . . , xρ), R) if var(C) ⊆ X and (α(x1), . . . , α(xρ)) ∈ R. For a
set I of constraints we write var(I) =

⋃
C∈I var(C) and rel(I) = {R : (S,R) ∈ C,C ∈ I }.

A finite set I of constraints is satisfiable if there exists an assignment that simultaneously
satisfies all the constraints in I. The Constraint Satisfaction Problem (CSP, for short)
asks, given a finite set I of constraints, whether I is satisfiable. The Counting Constraint
Satisfaction Problem (#CSP, for short) asks, given a finite set I of constraints, to determine
the number of assignments to var(I) that satisfy I. CSP is NP-complete and #CSP is
#P-complete (see, e.g., [8]).

Let α : X → D be an assignment. For a ρ-ary constraint C = (S,R) with S = (x1, . . . , xρ)
and R ⊆ Dρ, we denote by C|α the constraint (S′, R′) obtained from C as follows. R′ is
obtained from R by (i) deleting all tuples (d1, . . . , dρ) from R for which there is some 1 ≤ i ≤ ρ
such that xi ∈ X and α(xi) 6= di, and (ii) removing from all remaining tuples all coordinates
di with xi ∈ X. S′ is obtained from S by deleting all variables xi with xi ∈ X. For a set I
of constraints we define I|α as {C|α : C ∈ I }.

A constraint language (or language, for short) Γ over a domain D is a set of relations (of
possibly various arities) over D. By CSP(Γ) we denote CSP restricted to instances I with
rel(I) ⊆ Γ. A constraint language is tractable if for every finite subset Γ′ ⊆ Γ, the problem
CSP(Γ′) can be solved in polynomial time. A constraint language is #-tractable if for every
finite subset Γ′ ⊆ Γ, the problem #CSP(Γ′) can be solved in polynomial time. Throughout
this paper, we make the technical assumption that every considered tractable or #-tractable
constraint language Γ contains the redundant tautological relation of arity 2; note that if
this is not the case, then this relation can always be added into Γ and the resulting language
will still be tractable or #-tractable, respectively. Let Γ be a constraint language and I be
an instance of CSP. A variable set X is a strong backdoor to CSP(Γ) if for each assignment
α : X → D it holds that I|α ∈ CSP(Γ).

The primal graph of a CSP instance I is the graph whose vertices correspond to the
variables of I and where two variables a, b are adjacent iff there exists a constraint in I
whose scope contains both a and b. The incidence graph of a CSP instance I is the bipartite
graph whose vertices correspond to the variables and constraints of I, and where vertices
corresponding to a variable x and a constraint C are adjacent if and only if x ∈ var(C).
Observe that an incidence graph does not uniquely define a CSP instance; however, in this
paper the CSP instance from which a graph is obtained will always be clear from the context.
Hence for an incidence or primal graph G we will denote the corresponding CSP instance by
ψ(G). Furthermore, we slightly abuse the notation and use V(G) to refer to the vertices of G
that correspond to variables in ψ(G), and C(G) to refer to the vertices of G that correspond
to constraints in ψ(G). Also, for a vertex subset X ⊆ V (G), we continue to use the notations
V(X) and C(X) to refer to the sets V(G) ∩X and C(G) ∩X, respectively.

STACS 2017

36:6 Combining Treewidth and Backdoors for CSP

Treewidth. Let G be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T))
where T is a tree and X is a collection of subsets of V (G) such that: (1) for each edge
e = uv ∈ E(G) there exists some t ∈ V (T) such that {u, v} ⊆ Xt, and (2) for each vertex
v ∈ V (G), T [{t | v ∈ Xt}] is a non-empty connected subtree of T . We call the vertices of T
nodes and the sets in X bags of the tree decomposition (T,X). The width of (T,X) is equal
to max{|Xt| − 1 | t ∈ V (T)} and the treewidth of G (denoted tw(G)) is the minimum width
over all tree decompositions of G. The primal treewidth of a CSP instance I is the treewidth
of its primal graph, and similarly the incidence treewidth of I is the treewidth of its incidence
graph. We note that if the constraints have bounded arity, then any class of CSP instances
has bounded primal treewidth if and only if it has bounded incidence treewidth [45].

I Proposition 3 ([38]). Let I be a CSP instance where the constraints have arity bounded
by ρ ∈ N. Then, the primal treewidth of the instance is at most ρ(t+ 1)− 1 where t is the
incidence treewidth of the instance.

t-Boundaried CSP Instances. A t-boundaried graph is a graph G with a set Z ⊂ V (G) of
size at most t with each vertex v ∈ Z having a unique label `(v) ∈ {1, . . . , t}. We refer to Z
as the boundary of G. For a t-boundaried graph G, δ(G) denotes the boundary of G. When
it is clear from the context, we will often use the notation (G,Z) to refer to a t-boundaried
graph G with boundary Z. For P ⊆ [t], we use P (G,Z) to denote the subset of Z with labels
in P ; for i ∈ [t] we use i(G,Z) instead of {i}(G,Z) for brevity. Two t-boundaried graphs G1
and G2 can be ‘glued’ together to obtain a new graph, which we denote by G1 ⊕G2. The
gluing operation takes the disjoint union of G1 and G2 and identifies the vertices of δ(G1)
and δ(G2) with the same label.

In some cases, we will also use a natural notion of replacement of boundaried graphs.
Let (G1, Z1) be a t-boundaried graph which is an induced subgraph of a graph G such that
Z1 is a separator between V (G1) \ Z1 and V (G) \ V (G1). Let (G2, Z2) be a t-boundaried
graph. Then the operation of replacement of (G1, Z1) by (G2, Z2) results in the graph
G′ = (G[V (G) \ (V (G1) \ Z1)], Z1)⊕ (G2, Z2). Furthermore, if G was a j-boundaried graph
with boundary Z and Z ∩ V (G1) ⊆ Z1, then the resulting graph G′ is also a j-boundaried
graph with the same boundary.

In this paper, it will sometimes be useful to lift the notions of boundaries and gluing
from graphs to CSP instances. A t-boundaried incidence graph of a CSP instance I is a
t-boundaried graph G with boundary Z such that G is the incidence graph of I and Z ⊆ V.
Similarly, we call a CSP instance I with t uniquely labeled variables a t-boundaried CSP
instance. Note that boundaried incidence graphs and boundaried CSP instances are de-facto
interchangeable, but in some cases it is easier to use one rather than the other due to technical
reasons.

The gluing operations of boundaried incidence graphs and boundaried CSP instances
are defined analogously as for standard boundaried graphs. Observe that if G1 and G2 are
t-boundaried incidence graphs of I1 and I2, respectively, then G1 ⊕G2 is also an incidence
graph; furthermore, ψ(G1 ⊕G2) is well-defined and can be reconstructed from I1 and I2.

3 Backdoor-Treewidth

In this section we give a formal definition of the notion of backdoor-treewidth.

I Definition 4. Let G be a graph and X ⊆ V (G). We denote by TorsoG(X) the following
graph defined over the vertex set X. For every pair of vertices x1, x2 ∈ X, we add the edge

R. Ganian, M. S. Ramanujan, and S. Szeider 36:7

(x1, x2) if (a) (x1, x2) ∈ E(G) or (b) x1 and x2 both have a neighbor in the same connected
component of G −X. That is, we begin with G[X] and make the neighborhood of every
connected component of G−X, a clique. When G is an incidence graph of the instance I
and X is a set of variables of I, we also refer to TorsoG(X) as TorsoI(X).

IDefinition 5. Let F be a class of CSP instances and I be a CSP instance. Then the backdoor-
treewidth of I with respect to F , denoted btwF (I), is the smallest value of tw(TorsoI(X))
taken over all strong backdoors X of I into F . If F = CSP(Γ) for some constraint language
Γ, then we call btwF the backdoor-treewidth with respect to Γ.

As an example, observe that in Figure 1 the graph TorsoG(X) is a path. Throughout
this paper, we sometimes refer to backdoors of small treewidth simply as backdoors of small
width. Next, we show how backdoors of small treewidth can be used to solve CSP and #CSP.

I Lemma 6. Let I be a CSP instance over domain D and X be a strong backdoor of I to the
class F . There is an algorithm that, given I and X, runs in time O(|D|tw(Torso(X))|I|O(1))
and correctly decides whether I is satisfiable or not. Furthermore, if F is #-tractable and
X is a strong backdoor to F , then in the same time bound one can count the number of
satisfying assignments of I.

Sketch of Proof. The algorithm is a standard dynamic programming procedure over a
bounded treewidth graph and hence we only sketch it briefly. Let G denote the incidence
graph of I and let H denote the graph Torso(X) and let (T,X) be a tree-decomposition of
H of width tw(H). Now, for every v ∈ T , we define the instance Iv as the subinstance of I
induced on the variables in Xv, the bags below it in (T,X), and the constraints whose scope
is completely contained in the union of Xv and the bags below it. The key observation is
that for any connected component of G−X, there is a vertex v ∈ V (T) such that the bag
Xv contains the neighbors of this component.

To solve CSP, for each v ∈ T we define a function τv which maps assignments of the
variables in Xv to 0 to 1. Let γ : Xv → D be an assignment to the variables in Xv. We define
τv(γ) = 1 if there is a satisfying assignment for Iv that extends γ and τv(γ) = 0 otherwise.
Let v∗ denote the root of T . Clearly, the instance I is satisfiable if and only if there is a
γ : Xv∗ → D such that τv∗(γ) = 1. At this point it suffices to describe how to dynamically
compute the function τv for each node in the tree-decomposition; this step can be facilitated
by the use of so-called nice tree-decompositions. The algorithm to solve #CSP is similar;
there τv is extended by information about how many ways there are to extend an assignment
to the variables in Xv to a satisfying assignment for Iv. J

As the width of a backdoor can be arbitrarily smaller than its size, the width provides a
much better measure of how far away an instance is from a tractable base class. In particular,
the width lower-bounds both the primal treewidth and the backdoor size. We formalize this
below.

I Proposition 7. Let I be a CSP instance and F be a class of CSP instances. Let q be
the primal treewidth of I and r be the minimum size of a strong backdoor to F in I. Then
btwF (I) ≤ min(q, r).

In order to prove Theorem 1, we give an FPT algorithm for the problem of finding strong
backdoors parameterized by their width (formalized below). We note that since we state our
results in as general terms as possible, the dependence on k is likely to be sub-optimal for
specific languages and could be improved using properties specific to each language.

STACS 2017

36:8 Combining Treewidth and Backdoors for CSP

Width Strong-CSP(Γ) Backdoor Detection Parameter: k

Input: CSP instance I, integer k.
Objective: Return a set X of variables such that X is a strong backdoor of I to CSP(Γ)
of width at most k or correctly conclude that no such set exists.

The main technical content of the article then lies in the proof of the following theorem.

I Theorem 8. Width Strong-CSP(Γ) Backdoor Detection is FPT for every finite Γ.

Before we proceed to the description of the algorithms, we state the following simple and
obvious preprocessing routine (correctness is argued in the full version of this paper, available
at https://arxiv.org/abs/1610.03298) which will allow us to infer certain structural
information regarding interesting instances of this problem.

I Reduction Rule 9. Given a CSP instance I and an integer k as an instance of Width
Strong-CSP(Γ) Backdoor Detection, if there is a constraint in I of arity at least
p+ k + 2 where p is the maximum arity of a relation in Γ, then return NO.

4 The Finite State Lemma

In this section, we prove that the problem Width Strong-CSP(Γ) Backdoor Detection
has finite state; this will allow us to construct a finite set of bounded-size representatives
(Section 5) which will play a crucial role in the proof of Theorem 8 (Section 6). Let Γ
be a finite constraint language; throughout the rest of the paper, we work with this fixed
constraint language. We begin by defining a relation over the set of boundaried incidence
graphs.

I Definition 10. Let k, t ∈ N and let (G1, Z1) and (G2, Z2) be t-boundaried incidence graphs
of CSP instances I1 and I2 with boundaries Z1 and Z2 respectively. Then, we say that
(I1, Z1) ∼t,k (I2, Z2) (or (G1, Z1) ∼t,k (G2, Z2)) if for every t-boundaried CSP instance I3
with incidence graph G3, the instance ψ(G1 ⊕ G3) has a strong backdoor set of width at
most k into CSP(Γ) if and only if the instance ψ(G2 ⊕ G3) has a strong backdoor set of
width at most k into CSP(Γ).

It is clear that ∼t,k is an equivalence relation. Generally speaking, the high-level goal
of this section is to prove that ∼t,k has finite index. This is achieved by introducing a
second, more technical equivalence ≡t,h,ε which captures all the information about how a
t-boundaried incidence graph (G,Z) contributes to the (non)-existence of a strong backdoor
of small width after gluing. Observe that for a set X which has vertices from ‘both’ sides of
a boundary the graph Torso(X) may have edges crossing this boundary. Since we need to
take this behaviour into account, proving this lemma is in fact much more involved than
might be expected at first glance.

To define ≡t,h,ε, we will first need the notion of a configuration, which can be thought of
as one possible way a t-boundaried graph can interact via gluing; this is then tied to the
notion of a realizable configuration, which is a configuration that actually can occur in the
graph (G,Z). We let (G1, Z1) ≡t,h,ε (G1, Z1) if and only if both boundaried graphs have
the same set of realizable configurations. Before we proceed to the technical definition of a
configuration, we need one more bit of notation. Since we will often be dealing with labeled
minors, we fix a pair of symbols � and ♦ and express all relevant label sets using these
symbols. Specifically, for r, s ∈ N we let L(r, s) denote the set 2{�1,...,�r}

⋃
{♦1,...,♦s}.

https://arxiv.org/abs/1610.03298

R. Ganian, M. S. Ramanujan, and S. Szeider 36:9

I Definition 11. Let h, t ∈ N. A (t, h)-configuration is a tuple (P,w,w′,P,P ′, γ,H),
where:
1. P is a subset of [t],
2. w,w′ ∈ N and w′ ≤ (w + 1)t,
3. P = {Q1, . . . , Qr} is a partition of [t] \ P ,
4. P ′ ∈ 2(P

2) × 2([w′]
2) × 2P×[w′],

5. γ : P → 2P × 2[w′],
6. H is a collection of labeled graphs on at most h vertices where the label set is L(t, w′).

For a set Q ∈ P with γ(Q) = (J1, J2), we denote by γi(Q) the set Ji for each i ∈ {1, 2}.
A (t, h)-configuration (P,w,w′,P,P ′, γ,H) is called a (t, h, ε)-configuration if w ≤ ε and
we denote the set of such (t, h)-configurations by S(t, h, ε).

Let us informally break down the intuition behind the above definition. t corresponds
to the size of the boundary of the associated t-boundaried incidence graph (as we will see
in the next definition), and h is an upper bound on the size of forbidden minors for our
target treewidth. The (t, h)-configuration then captures the following information about
interactions between a t-boundaried incidence graph (G1, Z1) and a potential solution after
gluing:
(a) P represents the part of the boundary that intersects a backdoor of small width,
(b) w′ represents neighbors of the remainder of the boundary outside of G1,
(c) w represents the target treewidth of the torso,
(d) P represents how the part of the boundary outside of the strong backdoor will be

partitioned into connected components, i.e., how it will ‘collapse’ into the torso,
(e) P ′ represents all the new edges that will be created in the torso due to collapsing of

parts outside of the torso,
(f) γ represents connections between connected components in the boundary outside of the

strong backdoor and relevant variables in the strong backdoor, which is the second part
of information needed to encode the collapse of these components into the torso,

(g) H represents ‘parts’ of all minors of size at most h present in the torso inside G1.
In order to formally capture the intuition outlined above, we define the result of ‘applying’

a configuration on a t-boundaried incidence graph.

I Definition 12. Let h, t ∈ N, (G,Z) be the t-boundaried incidence graph of a t-boundaried
CSP instance I and ω = (P,w,w′,P,P ′, γ,H) be a (t, h)-configuration. We associate with
G and ω an incidence graph Gω which is defined as follows. We begin with the graph G,
add w′ new variables lω1 , . . . , lωw′ , denoting the set comprising these vertices by Lω. For every
J ⊆ [w′], we denote by J(Lω) the set {lωi |i ∈ J}. For each Q ∈ P, let (JQ1 , J

Q
2) = γ(Q)

and add |Q| − 1 redundant binary constraints CQ1 , . . . , C
Q
|Q|−1 (we have assumed that Γ also

contains a tautological relation of arity 2) and connect these with the variables in Q(G,Z)
to form a path which alternates between a vertex/variable in Q(G,Z) and a vertex/variable
in {CQ1 , . . . , C

Q
|Q|−1}. Following this, for every variable u in J1(G,Z) ∪ J2(Lω), we add a

redundant binary constraint Cu and set var(Cu) as u and an arbitrary variable in Q(G,Z).
This completes the definition of Gω. We also define the graph G̃ω as the graph obtained
from Gω by doing the following. Let P ′ = (X1, X2, X3) where X1 ⊆

(
P
2
)
, X2 ⊆

([w′]
2
)
and

X3 ⊆ P × [w′]. For every pair (i, j) ∈ X1, we add the edge (i(G,Z), j(G,Z)). Similarly, for
every pair (i, j) ∈ X2, we add the edge (lωi , lωj). Finally, for every pair (i, j) ∈ X3, we add
the edge (i(G,Z), lωj). This completes the description of G̃ω.

The graph Gω defined above can be seen as an enrichment of G by (1) adding strong
backdoor variables which will be affected by a collapse of the boundary into the torso

STACS 2017

36:10 Combining Treewidth and Backdoors for CSP

(lω1 , . . . , lωw′) and (2) enforcing the assumed partition of part of the boundary into connected
components (as per P) and (3) adding connections of these components both into the rest
of the boundary and vertices lωi (as per γ). The graph G̃ω is then an extension of Gω by
edges which will be created in the torso. Note that while Gω is an incidence graph, G̃ω is
not necessarily a bipartite graph.

With G̃ω in hand, we can finally formally determine whether the information contained
in a given configuration is of any relevance for the given graph. This is achieved via the
notion of realizability.

I Definition 13. Let h, t ∈ N, (G,Z) be the t-boundaried incidence graph corresponding to a
t-boundaried CSP instance I and let ω = (P,w,w′,P,P ′, γ,H) be a (t, h)-configuration. We
say that ω is a realizable configuration in (G,Z) if, and only if, there is a subset S∗ ⊆ V(G)
with the following properties:
1. S∗ ∩ Z = P (G,Z),
2. tw(TorsoG̃ω (S∗ ∪ Lω)) is at most w,
3. H is precisely the set of all labeled minors of (TorsoG̃ω (S∗ ∪ Lω),Λω) with at most h

vertices,
4. S∗ is a strong backdoor of ψ(G) into CSP(Γ).
If the above conditions hold, we say that S∗ realizes ω in (G,Z).

We let S((G,Z), h, ε) denote the set of all realizable (|Z|, h, ε)-configurations in (G,Z).
We ignore the explicit reference to Z in the notation if it is clear from the context. We let
h∗(k) denote the upper bound on the size of forbidden minors for graphs of treewidth at
most k given in [39]. For technical reasons, we will be in fact concerned with minors of size
slightly greater than h∗(k), and hence for t ∈ N we set h∗(k, t) = h∗(k) + t · (k + 1).

We use Υ(t, h, ε) to denote a computable upper bound on the number of (t, h, ε)-
configurations. Observe that setting Υ(t, h, ε) = 2t · ε · εt · tt · 2(t

2) · 2((ε+1)t
2) · 2t2(ε+1) ·

2t2(ε+1) · 2(h
2)h2(ε+1)t is sufficient. We now give the formal definition of the refined equivalence

relation.

I Definition 14. Let t, h ∈ N and let (I1, Z1) and (I2, Z2) be t-boundaried CSP instances
with t-boundaried incidence graphs (G1, Z1) and (G2, Z2) respectively. Then, (I1, Z1) ≡t,h,ε
(I2, Z2) (or (G1, Z1) ≡t,h,ε (G2, Z2)) if S((G1, Z1), h, ε) = S((G2, Z2), h, ε).

From these definitions, it is straightforward to verify that ≡t,h,ε is indeed an equivalence
and the number of equivalence classes induced by this relation over the set of all t-boundaried
incidence graphs is at most 2Υ(t,h,ε). The main lemma of this section, Lemma 15, then links
≡t,h,ε to ∼t,k, and in particular shows that the former is a refinement of the latter. We note
that the more refined ≡t,h,ε is used throughout the paper; it is not merely a tool for showing
finite-stateness of ∼t,k.

I Lemma 15. Let k, t ∈ N and let (G1, Z1), (G2, Z2) be two t-boundaried incidence graphs
satisfying (G1, Z1) ≡t,h∗(k,t),k (G2, Z2). Then, (G1, Z1) ∼t,k (G2, Z2).

5 Computing a Bound on the Size of a Minimal Representative
of ∼t,k

In this section, we define a function α such that for every t, k ∈ N, every equivalence class of
∼t,k contains a boundaried incidence graph whose size is bounded by α(t, k). In order to do
so, we use the fact the relation ≡t,h∗(k,t),k refines ∼t,k. The following is a brief sketch of the
proof strategy.

R. Ganian, M. S. Ramanujan, and S. Szeider 36:11

In the first step, we show that for any t-boundaried incidence graph (G,Z) whose
treewidth is bounded as a function of t and k and size exceeds a certain bound also
depending only on t and k, there is a strictly smaller t-boundaried graph (G′, Z ′) such
that (G,Z) ≡t,h∗(k,t),k (G′, Z ′). This in turn implies that for any t-boundaried incidence
graph (G,Z) whose treewidth is bounded by a function of t and k there is a t-boundaried
graph (G′, Z ′) such that (G,Z) ≡t,h∗(k,t),k (G′, Z ′) and the size of G′ is bounded by a
function of t and k.
In the second step, we show that for any t-boundaried incidence graph (G,Z), there is a
t-boundaried incidence graph (G′, Z ′) such that G′ has treewidth bounded by a function
of k and t and (G,Z) ∼t,k (G′, Z ′). Combining these two steps, we obtain the following
lemma.

I Lemma 16. Let k, t ∈ N. There exists a computable function y(t, k) and a set Fs(t, h∗(k, t),
k) of at most y(t, k) t-boundaried CSP instances that contains a t-boundaried CSP instance
from every equivalence class of ∼t,k. Furthermore, given k and t, the set Fs(t, h∗(k, t), k)
can be computed in time O(|Fs(t, h∗(k, t), k)|).

6 The FPT Algorithm for Width Strong-CSP(Γ) Backdoor Detection

An often-used approach in the design of FPT algorithms for graph problems is that of
finding a sufficiently small separator in the graph and then reducing one of the sides. In
the technique of ‘recursive understanding’ introduced by Grohe et al. [32], this is achieved
by performing this step recursively until we arrive at a separator where the side we want
to reduce has certain connectivity-based structure using which we can find a way reduce it
without recursing further. This approach has been combined with various problem specific
reduction rules at the bottom to obtain parameterized algorithms for several well-studied
problems. These include the k-way Cut problem, solved by Kawarabayashi and Thorup
[36], Steiner Cut and Unique Label Cover – both solved by Chitnis et al. [12]. In this
section, we will employ this technique to design our algorithm for Width Strong-CSP(Γ)
Backdoor Detection. We begin by defining a notion of nice instances which basically
capture the kind of instances we will be dealing with at the bottom of our recursion.

6.1 Solving Nice Instances
I Lemma 17. There is a function Z : N2 → N and an algorithm that, given a CSP instance
I with incidence graph G and positive integers β, k ∈ N, runs in time O(Z(β, k)|G|2) and
either computes a strong backdoor into CSP(Γ) of width at most k or correctly concludes that
I has no backdoor set X of width at most k that satisfies the following properties:
1. G−X has exactly one connected component C of size at least β + 1.
2. |V (G) \N [C]| ≤ β
We now give the definition of ‘nice’ instances. Generally speaking, these are instances which
fall into either the bounded ‘classical’ treewidth case or bounded backdoor size case.
I Definition 18. Let k, β ∈ N and I be a CSP instance with incidence graph G. We say
that I is (β, k)-nice if tw(G) ≤ β + k or if I has some strong backdoor set of width at most
k, then it also has a strong backdoor set X of width at most k such that G−X has exactly
one connected component C of size at least β + 1, and |V (G) \N [C]| ≤ β.
We now formally show that given a (β, k)-nice incidence graph, one can detect strong backdoor
sets of small width in FPT time parameterized by β + k. This will later be used to compute
small representatives of large boundaried CSP instances (specifically, in Lemma 23).

STACS 2017

36:12 Combining Treewidth and Backdoors for CSP

I Lemma 19. There is a function X̂ : N → N and an algorithm that, given β, k ∈ N, a
(β, k)-nice CSP instance I with the incidence graph G, runs in time O(X̂(β + k)|G|2) and
either computes a strong backdoor set into CSP(Γ) of width at most k or correctly detects
that such a set does not exist.

Proof. If tw(G) ≤ β + k, then we can solve the problem directly by applying Courcelle’s
Theorem [15], as follows. First, recall that the arity of any constraint which appears in
the CSP instance ψ(G) is upper-bounded by k plus the maximum arity of relations in Γ.
Hence we can assume that the number of relations which appear in the constraints of ψ(G)
is bounded by a function of k, and we can think of G as having vertex labels which specify
which relation is used in each constraint vertex and edge labels which specify the order
in which variables appear in the incident constraint. Second, for a j-ary relation R which
appears in a constraint C in ψ(G), we say that a subset α of {1, . . . , j} is a valid choice if
the variables occurring in positions α in C form a strong backdoor for {C} into CSP(Γ).
Note that the set of valid choices for all of the relations which occur in a constraint in ψ(G)
can be precomputed in advance. Then the problem can be formulated in Monadic Second
Order logic with a sentence stating the following: there exists a set T of variables such that
(1) for each constraint C with label R it holds that the edges between T and C correspond
to a valid choice for R, and (2) the torso of T does not contain any of the forbidden minors
for treewidth at most k. Indeed, condition (1) ensures that T forms a backdoor to CSP(Γ)
and condition (2) ensures that T has width at most k.

Otherwise, we execute the algorithm of Lemma 17 that runs in time O(Ẑ(α)|G|2). The
function X is obtained from the function Z and the dependence of the algorithm on β + k in
the case of bounded treewidth. J

6.2 Computing a Minimal Representative
In this subsection, we show that if a t-boundaried instance has a certain guarantee on the
(non-)existence of a small separator separating two large parts of the instance from each
other, then we can compute a t-boundaried instance of bounded size which is equivalent to it
under the relation ∼t,k.

I Definition 20. Let G be an incidence graph and (A,S,B) be a partition of V (G) where
S ⊆ V(G) and N(A), N(B) ⊆ S. We call (A,S,B) a (q, k)-separation if S has size at most
k, and A and B have size at least q.

I Lemma 21. Let G be the incidence graph of a CSP instance I. If G has no (q, k + 1)-
separation then I is (q, k)-nice.

I Lemma 22. Let t ∈ N and I1 be a t-boundaried CSP instance with t-boundaried incidence
graph (G,Z). Let k, q ∈ N be such that G does not admit a (8q, k + 1)-separation, and let
(H,J) be the t-boundaried incidence graph of a t-boundaried CSP instance I2 such that the
size of V (H) is at most some r ∈ N. Then the incidence graph G⊕H corresponding to the
instance I1 ⊕ I2 has no (8q + r, k + 1)-separation.

For the following lemma, recall the definition of the set Fs(t, h∗(k, t), k) (Lemma 16).
The proof relies on Lemmas 22, 21, and 19.

I Lemma 23. Let t ∈ N and I1 be a t-boundaried CSP instance with incidence graph G and
boundary Z. Further, let k, q ∈ N be such that t ≤ 2(k+1), |V (G)| > q, and G does not admit
a (8q, k + 1)-separation. Let (H,J) be the t-boundaried incidence graph of a t-boundaried

R. Ganian, M. S. Ramanujan, and S. Szeider 36:13

CSP instance I2 in Fs(t, h∗(k, t), k). Then the instance I1⊕ I2 is (8q +α(k, 2(k+ 1)), k)-nice.
Furthermore, if q = α(k, 2(k+ 1)) then one can compute in time O(M(k)|G|2) a t-boundaried
CSP instance I∗1 of size at most q such that I1 ∼t,k I∗1, for some function M.

6.3 Solving the Problem via Recursive Understanding
In this subsection, we complete our algorithm for Width Strong-CSP(Γ) Backdoor
Detection by describing the recursive phase of our algorithm and the way we utilize the
subroutines described earlier to solve the problem. We note that variants of Lemma 24,
Lemma 25 and Lemma 27 are well-known in literature (see for example [12]). However the
parameters involved in these lemmas are specific to the application. Furthermore, our proofs
are simpler and avoid the color coding technique employed in [12]. Following that, we use
Lemma 24 to obtain the final ingredient for our algorithm.

I Lemma 24. There is an algorithm that, given an incidence graph G and q, k ∈ N, runs in
time O((2q)k · |G|2) and either computes a (q, k)-separation or concludes correctly that there
is no (q, k)-separation (A,S,B) where A and B are connected.

I Lemma 25. There is an algorithm that, given an incidence graph G and q, k ∈ N, runs
in time O((q + k)k|G|2) and either computes a (q, k)-separation in G or correctly concludes
that G has no (8q, k)-separation.

I Observation 26. Let (G,Z) be a t-boundaried graph with |V (G)| > q and t ≤ 2(k+ 1) and
let (A,S,B) be a (q, k + 1)-separation in G. Then, one of the pairs (G[A ∪ S], S ∪ (Z ∩A))
or (G[B ∪ S], S ∪ (Z ∩B)) is a t′-boundaried graph with t′ ≤ 2(k + 1).

I Lemma 27. There is an algorithm that, given a t-boundaried graph (G,Z) with |V (G)| > q

and t ≤ 2(k + 1), in time O((q + k)k|G|3) returns a t′-boundaried graph (G′, Z ′) where G′ is
a subgraph of G,
(a) |V (G′)| > q,
(b) t′ ≤ 2k + 1, and
(c) G′ has no (8q, k + 1)-separation.

Proof. We begin by executing the algorithm of Lemma 25. If this algorithm returns that G
has no (8q, k + 1)-separation then we terminate the algorithm and return the graph (G,Z)
itself. Otherwise, let (X,S, Y) be the (q, k + 1)-separation returned by this algorithm. By
Observation 26, we may assume w.l.o.g. that (G[X ∪ S], S ∪ (Z ∩X)) is a t′′-boundaried
graph where t′′ ≤ 2(k+ 1). We now set G := G[X ∪ S], Z := S ∪ (Z ∩X) and recurse. Since
the depth of recursion is bounded by the size of the input graph and each step takes time
O((q + k)k|G|2), the lemma follows. J

Algorithm for the Decision version of Theorem 8. Let I be the given input CSP instance
and let G be its incidence graph. We begin by setting q = α(k, 2(k + 1)), choosing the
boundary Z to be the empty set and then executing the algorithm of Lemma 27 to compute
a t-boundaried graph (G′, Z ′) where G′ is a subgraph of G, |V (G′)| > q and t ≤ 2(k + 1)
such that G′ has no (8q, k + 1)-separation. Next, we invoke Lemma 23 on the corresponding
CSP instance, say I′, to compute in time O(M(k)|G|2) a t-boundaried CSP instance I′′ such
that I′ ∼t,k I′′. We then set I = I′′ ⊕ (ψ(G − (V (G′) \ Z ′))) and recursively check for the
presence of a strong backdoor set of width at most k for this instance. Since we strictly
reduce the size of the instance in each step, the depth of the recursion is bounded linearly in
the size of the initial input, implying FPT running time.

STACS 2017

36:14 Combining Treewidth and Backdoors for CSP

Proof of Theorem 1 and Corollary 2. Using the self-reducibility of the problem and the
algorithm for the decision variant of Theorem 8, one can compute a strong backdoor set of
width at most k (if it it exists). Following this, one can execute the algorithm of Lemma 6
to solve CSP and #CSP. J

7 Concluding Remarks

We have introduced the notion of backdoor treewidth for CSP and #CSP by combining
the two classical approaches of placing structural restrictions and language restrictions,
respectively, on the input. Thus the presented results represent a new “hybrid” approach for
solving CSPand #CSP. Our main result, Theorem 1, is quite broad as it covers all tractable
finite constraint languages combined with the graph invariant treewidth. This can be seen
as the base case of a general framework which combines a specific graph invariant of the
torso graph with a specific class of constraint languages. Therefore, we hope it will stimulate
further research in this direction.

References
1 Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An algebraic

theory of graph reduction. J. ACM, 40(5):1134–1164, 1993. doi:10.1145/174147.169807.
2 Christian Bessiere, Clément Carbonnel, Emmanuel Hebrard, George Katsirelos, and Toby

Walsh. Detecting and exploiting subproblem tractability. In Francesca Rossi, editor, IJ-
CAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013. IJCAI/AAAI, 2013.

3 Hans L. Bodlaender and Babette de Fluiter. Reduction algorithms for constructing solu-
tions in graphs with small treewidth. In Jin-Yi Cai and Chak Kuen Wong, editors, CO-
COON’96, LNCS, pages 199–208. Springer, 1996.

4 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput., 27:1725–1746, 1998.

5 Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Inf. Comput., 167:86–119, 2001.

6 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. of the ACM, 53(1):66–120, 2006.

7 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log., 12(4):Art. 24, 66, 2011.

8 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. of
the ACM, 60(5):Art 34, 41, 2013.

9 Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. The complexity of maximal
constraint languages. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis,
editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 667–674. ACM, 2001.

10 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems:
a survey. Constraints, 21(2):115–144, 2016.

11 Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. On backdoors to tractable
constraint languages. In Principles and Practice of Constraint Programming – 20th Inter-
national Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume
8656 of Lecture Notes in Computer Science, pages 224–239. Springer Verlag, 2014.

12 Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk,
and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized con-

http://dx.doi.org/10.1145/174147.169807

R. Ganian, M. S. Ramanujan, and S. Szeider 36:15

tractions. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 460–469, 2012.

13 David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural tractability
for constraint satisfaction problems. J. of Computer and System Sciences, 74(5):721–743,
2008.

14 Martin C. Cooper, David A. Cohen, and Peter G. Jeavons. Characterising tractable con-
straints. Artificial Intelligence, 65(2):347–361, 1994.

15 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

16 Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal from Boolean formulae.
Discr. Appl. Math., 75(3):217–230, 1997.

17 Víctor Dalmau. A new tractable class of constraint satisfaction problems. In AMAI,
6th International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, USA, January 5-7, 2000, 2000.

18 Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In Pascal Van Hentenryck, editor, Principles and
Practice of Constraint Programming – CP 2002, 8th International Conference, CP 2002,
Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in
Computer Science, pages 310–326. Springer Verlag, 2002.

19 Babette de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht Uni-
versity, 1997.

20 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

21 Tommy Färnqvist. Constraint optimization problems and bounded tree-width revisited. In
Nicolas Beldiceanu, Narendra Jussien, and Eric Pinson, editors, Integration of AI and OR
Techniques in Contraint Programming for Combinatorial Optimzation Problems – 9th In-
ternational Conference, CPAIOR 2012, Nantes, France, May 28 June1, 2012. Proceedings,
volume 7298 of Lecture Notes in Computer Science, pages 163–179. Springer Verlag, 2012.

22 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

23 Michael R. Fellows and Michael A. Langston. An analogue of the Myhill-Nerode theorem
and its use in computing finite-basis characterizations (extended abstract). In FOCS, pages
520–525, 1989.

24 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket Saur-
abh. Solving d-SAT via backdoors to small treewidth. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 630–641. SIAM, 2015.

25 Eugene C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32(4):755–
761, 1985.

26 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractab-
ility for constraint satisfaction and counting. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Janu-
ary 10-12, 2016, pages 1670–1681, 2016.

27 Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Zivny.
Backdoors into heterogeneous classes of SAT and CSP. In Carla E. Brodley and Peter Stone,
editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27-31, 2014, Québec City, Québec, Canada., pages 2652–2658. AAAI Press, 2014.

STACS 2017

36:16 Combining Treewidth and Backdoors for CSP

28 Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan
Szeider. Backdoors to q-horn. Algorithmica, 74(1):540–557, 2016. doi:10.1007/
s00453-014-9958-5.

29 Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 489–498. IEEE Computer Society, 2013.

30 G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
J. of Computer and System Sciences, 64(3):579–627, 2002.

31 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. of the ACM, 54(1), 2007.

32 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479–488,
2011.

33 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser.
B, 48(1):92–110, 1990.

34 Pavol Hell and Jaroslav Nesetril. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008.

35 Lane A. Hemaspaandra and Ryan Williams. SIGACT news complexity theory column 76:
an atypical survey of typical-case heuristic algorithms. SIGACT News, pages 70–89, 2012.

36 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160–169, 2011.

37 Phokion G. Kolaitis. Constraint satisfaction, databases, and logic. In IJCAI-03, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pages 1587–1595. Morgan Kaufmann, 2003.

38 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. of Computer and System Sciences, 61(2):302–332, 2000. Special issue on
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (Seattle, WA, 1998).

39 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73(1):7–40, 1998.

40 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. J. of the ACM, 60(6):Art. 42, 51, 2013.

41 Ugo Montanari. Networks of constraints: fundamental properties and applications to pic-
ture processing. Information Sciences, 7:95–132, 1974.

42 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International
Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Van-
couver, BC, Canada), pages 96–103, 2004.

43 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed parameter tractable. J. of
Computer and System Sciences, 75(8):435–450, 2009.

44 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

45 Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth revisited.
J. of Computer and System Sciences, 76(2):103–114, 2010.

46 Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages
216–226. ACM, 1978.

http://dx.doi.org/10.1007/s00453-014-9958-5
http://dx.doi.org/10.1007/s00453-014-9958-5

R. Ganian, M. S. Ramanujan, and S. Szeider 36:17

47 Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pages 1173–1178. Morgan Kaufmann,
2003.

48 Ryan Williams, Carla Gomes, and Bart Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In Informal Proc. of the Sixth In-
ternational Conference on Theory and Applications of Satisfiability Testing, S. Margherita
Ligure – Portofino, Italy, May 5-8, 2003 (SAT 2003), pages 222–230, 2003.

STACS 2017

	Introduction
	Preliminaries
	Backdoor-Treewidth
	The Finite State Lemma
	Computing a Bound on the Size of a Minimal Representative of sim-t,k
	The FPT Algorithm for Width Strong-CSP(Gamma) Backdoor Detection
	Solving Nice Instances
	Computing a Minimal Representative
	Solving the Problem via Recursive Understanding

	Concluding Remarks

