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Abstract
We consider the non-adaptive bit-probe complexity of the set membership problem, where a
set S of size at most n from a universe of size m is to be represented as a short bit vector in
order to answer membership queries of the form “Is x in S?” by non-adaptively probing the
bit vector at t places. Let sN (m,n, t) be the minimum number of bits of storage needed for
such a scheme. Buhrman, Miltersen, Radhakrishnan, and Srinivasan [4] and Alon and Feige [1]
investigated sN (m,n, t) for various ranges of the parameter t. We show the following.

General upper bound (t ≥ 5 and odd): For odd t ≥ 5, sN (m,n, t) = O(tm
2

t−1n1− 2
t−1 lg 2m

n ).
This improves on a result of Buhrman et al. that states for odd t ≥ 5, sN (m,n, t) = O(m

4
t+1n).

For small values of t (odd t ≥ 3 and t ≤ 1
10 lg lgm) and n ≤ m1−ε (ε > 0), we obtain adaptive

schemes that use a little less space: O(exp(e2t)m
2

t+1n1− 2
t+1 lgm).

Three probes (t = 3) lower bound: We show that sN (m,n, 3) = Ω(
√
mn) for n ≥ n0 for

some constant n0. This improves on a result of Alon and Feige that states that for n ≥ 16 lgm,
sN (m,n, 3) = Ω(

√
mn
lgm ). The complexity of the non-adaptive scheme might, in principle, depend

on the function that is used to determine the answer based on the three bits read (one may assume
that all queries use the same function). Let sfN (m,n, 3) be the minimum number of bits of storage
required in a three-probe non-adaptive scheme where the function f : {0, 1}3 → {0, 1} is used to
answer the queries. We show that for large class of functions f (including the majority function
on three bits), we in fact have sN (m,n, 3) = Ω(m1− 1

cn ) for n ≥ 4 and some c > 0. In particular,
three-probe non-adaptive schemes that use such query functions f do not give any asymptotic
savings over the trivial characteristic vector when n ≥ logm.
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1 Introduction

The set membership problem is a fundamental problem in the area of data structures and
information compression and retrieval. In its abstract form we are given a subset S of size
at most n from a universe of size m and required to represent it as a bit string so that
membership queries of the form “Is x in S?” can be answered using a small number of probes
into the bit string. The characteristic function representation provides a solution to this
problem: just one bit-probe is needed to answer queries, but all sets are represented using
m-bit strings (which is very wasteful when n is promised to be small).

∗ A part of this work was done when the first author was at the Tata Institute of Fundamental Research.
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38:2 Set Membership with Non-Adaptive Bit Probes

The trade-off between the number of bits in the representation and the number of probes
is the subject of several previous works: it was studied by Minsky and Papert in their 1969
book Perceptrons [11]; more recently, Buhrman, Miltersen, Radhakrishnan and Venkatesh [4]
showed the existence of randomized schemes that answer queries with just one bit probe
and use near optimal space. In contrast, they showed that deterministic schemes that
answer queries by making a constant number of probes cannot use optimal space. The
deterministic worst-case trade-off for this problem was also considered in the same paper and
in several subsequent works (e.g., Radhakrishnan, Raman and Rao [12], Alon and Feige [1],
Radhakrishnan, Shah and Shannigrahi [14], Viola [15], Lewenstein, Munro, Nicholson and
Raman [8], Garg and Radhakrishnan [5]). For sets where each element is included with
probability p, Makhdoumi, Huang, Médard and Polyanskiy [10] showed, in particular, that no
savings over the characteristic vector can be obtained in this case for non-adaptive schemes
with t = 2.

In this work, we focus on deterministic schemes with non-adaptive probes, where the
probes are made in parallel (or equivalently the location of probes do not depend on the value
read in previous probes). Such schemes have been studied in several previous works. Let
sN (m,n, t) be the minimum number of bits of storage required in order to answer membership
queries with t non-adaptive probes.

I Definition 1. A non-adaptive (m,n, s, t)-scheme consists of a storage function and a query
scheme. The storage function has the form φ :

([m]
≤n
)
→ {0, 1}s that takes a set of size at most

n and returns its s-bit representation. The query scheme associates with each element x the t
probe locations (i1(x), . . . , it(x)) ∈ [s]t and a function fx : {0, 1}t → {0, 1}. We require that
for all S ∈

([m]
≤n
)
and all x ∈ [m]: x ∈ S iff fx(φ(S)[i1(x)], φ(S)[i2(x)], . . . , φ(S)[it(x)]) = 1.

Let sN (m,n, t) denote the minimum s such that there is an (m,n, s, t)-scheme.

In our discussion, we use s(m,n, t) (without the subscript N) to denote the minimum space
required for adaptive schemes. Using the above notation, we now describe our results and
their relation to what was known before. All asymptotic claims below hold for large m.

1.1 General non-adaptive schemes
I Theorem 2 (Result 1, non-adaptive schemes). For odd t ≥ 5, we have

sN (m,n, t) = O(tm
2

t−1n1− 2
t−1 lg 2m

n
).

In comparison, for odd t ≥ 5, Buhrman et al. showed that sN (m,n, t) = O(m
4

t+1n). The
exponent of m in their upper bound result is roughly four times the exponent of m appearing
in their lower bound result. Their schemes are non-adaptive and use the MAJORITY function
to answer membership queries. We exhibit schemes that still use MAJORITY but need less
space. Buhrman et al. also show a lower bound of s(m,n, t) = Ω(tm 1

t n1− 1
t ) valid (even for

adaptive schemes) when n ≤ m1−ε (for ε > 0 and t� lgm). Note that the exponent of m in
our result is twice the exponent of m appearing in the lower bound result. These schemes,
as well as the non-adaptive scheme for t = 4 due to Alon and Feige [1], have implications for
the problem studied by Makhdoumi et al. [10]; unlike in the case of t = 2, significant savings
are possible if t ≥ 4, even with non-adaptive schemes1. Using a similar proof idea, we obtain
slightly better upper bound with adaptive schemes when t is small and n is at most m1−ε.

1 We are grateful to Tom Courtade and Ashwin Pananjady for this observation.
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I Theorem 3 (Result 2, adaptive schemes). For odd t ≥ 3 and t ≤ 1
10 lg lgm and for n ≤ m1−ε

(ε > 0), we have s(m,n, t) = O(exp(e2t)m
2

t+1n1− 2
t+1 lgm).

Technique. To justify our claim, we need to describe the query scheme, that is, (i1(x), i2(x),
. . . , it(x)) for each x ∈ [m] and the query function fx : {0, 1}t → {0, 1}. For fx we use
the MAJORITY on t bits (t is odd). The locations to be probed for each element will be
obtained using a probabilistic argument. Once a query scheme is fixed, we need to show how
the assignment to the memory is obtained. For this, we describe a sequential algorithm. We
show that the random assignment of locations ensures sufficient expansion allowing us to
start with a greedy argument arrange that most queries are answered correctly, and then use
Hall’s bipartite graph matching theorem to find the required assignment for the remaining
elements. Versions of this argument have been used in previous works [9, 4, 7, 1, 5].

1.2 Three non-adaptive probes
For one probe and m ≥ 2, it is easy to show that no space can be saved over the characteristic
vector representation. For two non-adaptive probes, only for the special case n = 1, some non-
trivial savings over the characteristic vector representation are possible: sN (m, 1, 2) = θ(

√
m)).

For n ≥ 2, Buhrman et al. [4] showed sN (m,n, 2) = m. The smallest number of probes
for which the complexity of problem with non-adaptive probes is not settled is three.
Observe that any scheme with two adaptive probes can be converted to a scheme with
three non-adaptive probes; the two probe decision tree has at most three nodes. Thus,
using the two adaptive probes upper bound result of Garg and Radhakrishnan [5], we
have sN (m,n, 3) ≤ s(m,n, 2) = O(m1− 1

4n+1 ). Thus, non-trivial savings in space over the
characteristic vector representation is possible when n = o(lgm). Consequently, the question
is whether more space can be saved or is this upper bound tight? We are not aware of any
three-probe non-adaptive scheme that manages with o(m) space for sets of size ω(lgm). Alon
and Feige [1] show the following lower bound: sN (m,n, 3) = Ω(

√
mn
lgm ) for n ≥ 16 lgm.

In order to obtain better lower bounds for three-probe non-adaptive schemes, we proceed
as follows. In any three-probe non-adaptive scheme, the query scheme specifies, for each
element, the three locations to probe and a three variable boolean function to be applied on
three values read. In principle, for different elements, the query scheme can specify different
boolean functions. But since there are only a finite number (256) of boolean functions
on three variables, some set of at least m/256 elements of the universe use a common
function. We may thus restrict attention to this part of the universe, and assume that the
function being employed to answer queries is always the same. Furthermore, we may place
functions obtained from one another by negating and permuting variables in a common
equivalence class, and restrict our attention to one representative in each class. For three
variable boolean functions, Pólya counting yields that there are twenty-two equivalence
classes. This classification of the 256 functions into twenty-two classes is already available in
the literature [16]. We show the following.

I Theorem 4 (Result 3).
(a) If the query function f : {0, 1}3 → {0, 1} is not equivalent to (x, y, z) 7→ (x ∧ y)⊕ z or

(x, y, z) 7→ 1 iff x+ y + z = 1, then sN (m,n, 3) = Ω(m1− 1
cn ) for n ≥ 4 and some c > 0.

(b) If the query function f : {0, 1}3 → {0, 1} is equivalent to (x, y, z) 7→ (x ∧ y) ⊕ z or
(x, y, z) 7→ 1 iff x+ y + z = 1, then sN (m,n, 3) = Ω(

√
mn).

(c) If the query function f : {0, 1}3 → {0, 1} is equivalent to (x, y, z) 7→ (x ∧ y) ⊕ z and
lgm ≤ n ≤ m

lgm , then sN (m,n, 3) = Ω(
√
mn

lg m
n

lg lgm ).

STACS 2017



38:4 Set Membership with Non-Adaptive Bit Probes

The best upper bounds for non-adaptive schemes with four or more probes use the
MAJORITY function to answer membership queries. Our result implies that for three non-
adaptive probes, when queries are answered by computing MAJORITY, the space required
is at least Ω(m1− 1

cn ) for some constant c. In fact, similar lower bound holds if membership
queries are answered using most boolean functions. Our results do not yield a similar lower
bound for (x, y, z) 7→ (x ∧ y) ⊕ z and (x, y, z) 7→ 1 iff x + y + z = 1 types. For these two
types of query functions, we get a slightly better lower bound than what is implied by [1].
Thus, further investigations on three probes non-adaptive schemes need to focus on just
(x, y, z) 7→ 1 iff x+ y + z = 1 and (x, y, z) 7→ (x ∧ y)⊕ z as the query functions.

Technique. As mentioned above, there are twenty-two types of functions for which we
need to prove a lower bound. Seven of the twenty-two classes contain functions that can be
represented by a decision tree of height at most two. Thus, for these functions, the two probe
adaptive lower bound in [5] implies the result. These functions are: constant 0, constant
1, the DICTATOR function (x, y, z) 7→ x, the function (x, y, z) 7→ x ∧ y, its complement
(x, y, z) 7→ x̄ ∨ ȳ, (x, y, z) 7→ (x ∧ y) ∨ (x̄ ∧ z), and (x, y, z) 7→ (x ∧ y) ∨ (x̄ ∧ ȳ).

After this, fifteen classes remain. Functions in some eleven of the remaining fifteen classes
admit a density argument, similar in spirit to the adaptive two-probes lower-bound proof
in [5]. To streamline the argument, we classify these eleven classes into two parts. The
first part contains the MAJORITY function. The second part contains the AND function,
the ALL-EQUAL function, the functions (x, y, z) 7→ (x ⊕ y) ∧ z, (x, y, z) 7→ (x ∨ y) ∧ z,
(x, y, z) 7→ (x ∧ y ∧ z) ∨ (ȳ ∧ z̄), and their complements. For functions in the second part
we deal with two functions—a function and its complement—with a single proof. In these
proofs, we produce sets S and T of size at most n such that storing S and not storing T
leads to a contradiction. The proof for the complement function works with a small twist:
storing T and not storing S leads to the contradiction. Thus, these eleven cases are handled
by six proofs. In each of these proofs we roughly argue (sometimes probabilistically) that if
the scheme is valid, it must conceal a certain dense graph that avoids small cycles. Standard
graph theoretic results (the Moore bound) that relate density and girth then gives us the
lower bound.

For the remaining four classes, we employ linear-algebraic arguments. Representatives
chosen from these classes are PARITY, (x, y, z) 7→ 1 iff x+ y + z 6= 1, (x, y, z) 7→ (x ∧ y)⊕ z,
and (x, y, z) 7→ 1 iff x+ y + z = 1. For PARITY and (x, y, z) 7→ 1 iff x+ y + z 6= 1, we show
using standard dimension argument, that if the space used is smaller than the universe size
m, then there is some element u ∈ [m] that is (linearly) dependent on the other elements.
Not storing the other elements, leaves the scheme with no choice for u, thus leading to a
contradiction. For (x, y, z) 7→ (x∧ y)⊕ z and (x, y, z) 7→ 1 iff x+ y + z = 1 a modification of
an algebraic argument of Radhakrishnan, Sen and Venkatesh [13] implies a lower bound of√
mn. (Interestingly, we need to choose an appropriate characteristic of the field (2 or 3)

based on which function we deal with.) For (x, y, z) 7→ (x∧y)⊕ z, we further improve on this
argument by employing random restrictions. These results together improve the previous
best lower bound (due to Alon and Feige [1]) irrespective of the query function used.

2 General non-adaptive upper bound

In this section, we prove the general non-adaptive upper bound result: Theorem 2.

I Definition 5. A non-adaptive (m, s, t)-graph is a bipartite graph G with vertex sets
U = [m] and V (|V | = ts). V is partitioned into t disjoint sets: V1, . . . , Vt; each Vi has s
vertices. Every u ∈ U has a unique neighbour in each Vi. A non-adaptive (m, s, t)-graph
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naturally gives rise to a non-adaptive (m, ts, t)-query scheme TG as follows. We view the
memory (an array L of ts bits) to be indexed by vertices in V . On receiving the query “Is
u in S?”, we answer “Yes” iff the MAJORITY of the locations in the neighbourhood of u
contain a 1. We say that the query scheme TG is satisfiable for a set S ⊆ [m], if there is
an assignment to the memory locations (L[v] : v ∈ V ), such that TG correctly answers all
queries of the form “Is x in S?”.

We now restrict attention to odd t ≥ 5. First, we identify an appropriate property of the
underlying non-adaptive (m, s, t)-graph G that guarantees that TG is satisfiable for all sets S
of size at most n. We then show that such a graph exists for some s = O(m

2
t−1n1− 2

t−1 lg 2m
n ).

I Definition 6 (Non-adaptive admissible graph). We say that a non-adaptive (m, s, t)-graph
G is admissible for sets of size at most n if the following two properties hold:
(P1) ∀R ⊆ [m] (|R| ≤ n +

⌈
2n lg 2m

n

⌉
): |ΓG(R)| ≥ t+1

2 |R|, where ΓG(R) is the set of
neighbors of R in G.

(P2) ∀S ⊆ [m] (|S| = n): |TS | ≤
⌈
2n lg 2m

n

⌉
, where TS = {y ∈ [m] \ S : |ΓG(y) ∩ ΓG(S)| ≥

t+1
2 }.

Our theorem will follow from the following claims.

I Lemma 7. If a non-adaptive (m, s, t)-graph G is admissible for sets of size at most n, then
the non-adaptive (m, ts, t)-query scheme TG is satisfiable for every set S of size at most n.

I Lemma 8. There is a non-adaptive (m, s, t)-graph, with s = O(m
2

t−1n1− 2
t−1 lg 2m

n ), that
is admissible for every set S ⊆ [m] of size at most n.

Proof of Lemma 7. Fix an admissible graph G. Thus, G satisfies (P1) and (P2) above. Fix
a set S ⊆ [m] of size at most n. We will show that there is a 0-1 assignment to the memory
such that all queries are answered correctly by TG.

Let S′ ⊆ [m] be such that S ⊆ S′ and |S′| = n. From (P2), we know |TS′ | ≤
⌈
2n lg 2m

n

⌉
.

Hence, |S′ ∪ TS′ | ≤ n+
⌈
2n lg 2m

n

⌉
. From (P1) and Hall’s theorem, we may assign to each

element u ∈ S′ ∪ TS′ a set Au ⊆ V such that (i) |Au| = t+1
2 and (ii) the Au’s are disjoint.

For each u ∈ S ⊆ S′, we assign the value 1 to all locations in Au. For each u ∈ (S′ ∪ TS′) \S,
we assign the value 0 to all locations in Au. Since t+1

2 > t
2 , all queries for u ∈ S

′ ∪ TS′ are
answered correctly.

Assign 0 to all locations in ΓG([m]\(S′∪TS′)). For y ∈ [m]\(S′∪TS′), |ΓG(y)∩ΓG(S)| ≤
t−1

2 . As a result, queries for elements in [m]\(S′∪TS′) are answered correctly, as the majority
evaluates to 0 for each one of them. J

Proof of Lemma 8. In the following, set

s =
⌈

60m
2

t−1n1− 2
t−1 lg 2m

n

⌉
.

We show that a suitable random non-adaptive (m, s, t)-graph G is admissible for sets of size
at most n with positive probability. The graph G is constructed as follows. Recall that
V =

⋃
i Vi. For each u ∈ U , one neighbor is chosen uniformly and independently in each Vi.

(P1) holds. If (P1) fails, then for some non-empty W ⊆ U , (|W | ≤ n+
⌈
2n lg 2m

n

⌉
), we have

|ΓG(W )| ≤ t+1
2 |W | − 1. Fix a set W of size r ≥ 1 and L ⊆ V of size t+1

2 r − 1. Let L
have `i elements in Vi; thus,

∑
i `i = t+1

2 r − 1. Then,

Pr[ΓG(W ) ⊆ L] ≤
t∏
i=1

(
`i
|Vi|

)r
≤
( ( t+1

2 )r − 1
ts

)tr
,

STACS 2017



38:6 Set Membership with Non-Adaptive Bit Probes

where the last inequality is a consequence of GM ≤ AM. We conclude, using the union
bound over choices of W and L, that (P1) fails with probability at most

n+d2n lg 2m
n e∑

r=1

(
m

r

)(
ts

t+1
2 r − 1

)( t+1
2 r − 1
ts

)tr
(1)

≤
n+d2n lg 2m

n e∑
r=1

(em
r

)r ( tes
t+1

2 r − 1

) t+1
2 r−1( t+1

2 r − 1
ts

)tr

≤
n+d2n lg 2m

n e∑
r=1

[
(e t+3

2 −
1
r )mr t−1

2 −1+ 1
r

(s 1
r )s t−1

2

]r
≤ 1

3 , (2)

where the last inequality holds because we have chosen s large enough.
(P2) holds. For (P2) to fail, there must exist a set S ⊆ [m] of size n such that |TS | >⌈

2n lg 2m
n

⌉
. Fix a set S of size n. Fix a y ∈ [m] \ S.

Pr[y ∈ TS ] ≤
(

t
t+1

2

)(n
s

) t+1
2 ≤ n

10m,

where the last inequality holds because of choice of s and m is large. Thus, E[|TS |] ≤ n
10 .

To conclude that |TS | is bounded with high probability, we will use the following version of
Chernoff bound: if X =

∑N
i=1 Xi, where each random variable Xi ∈ {0, 1} independently,

then if γ > 2eE[X], then Pr[X > γ] ≤ 2−γ . Then, for all large m,

Pr[|TS | > 2n lg 2m
n

] ≤ 2−2n lg 2m
n .

Using the union bound, we conclude that

Pr[(P2) fails] ≤
(em
n

)n
2−2n lg 2m

n ≤ 1
3 .

Thus, with probability at least 1
3 the random graph G is admissible. J

3 Three non-adaptive probes lower bound

In this section, we prove the three probe lower bound result: Theorem 4.

I Definition 9 (Equivalent). Two boolean functions are called equivalent if one can be
obtained from the other by negating and permuting the variables.

I Proposition 10. Let f, g : {0, 1}t → {0, 1} be equivalent. If s1 and s2 are the minimum bits
of space required for non-adaptive (m,n, s1, t) and (m,n, s2, t)-schemes with query functions
f and g respectively, then s1 = s2.

For three variable boolean functions, there are twenty-two equivalence classes (see [16]).
To prove Theorem 4, we provide proofs for these twenty-two query functions, each from a
different class. In many proofs below we assume that the memory consists of three arrays
of size s each, and the three probes are made on different arrays. Given any scheme that
uses space s, we can always modify it to meet our assumption, by expanding the space by
factor 3.
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3.1 Decision trees of height two
Seven of the twenty-two classes contain functions that can be represented by a decision tree of
height at most two. Thus, for these functions, the two probe adaptive lower bound [5] implies
the result. These functions are: constant 0, constant 1, the DICTATOR function (x, y, z) 7→ x,
the function (x, y, z) 7→ x ∧ y, its complement (x, y, z) 7→ x̄ ∨ ȳ, (x, y, z) 7→ (x ∧ y) ∨ (x̄ ∧ z),
and (x, y, z) 7→ (x ∧ y) ∨ (x̄ ∧ ȳ).

3.2 MAJORITY
Let Φ be a non-adaptive (m,n, s, 3)-scheme with MAJORITY as the query function. The
memory is a bit array A[1, · · · , s] of length s. For each element u ∈ [m], x(u), y(u), z(u) ∈ [s]
are the three distinct locations in A that are probed to determine whether u is in the set
or not. For each set S ⊆ [m] of size at most n, the assignment σ(S) ∈ {0, 1}s to A is such
that for all elements u ∈ [m], Maj(A[x(u)], A[y(u)], A[z(u)]) is 1 iff u ∈ S, where Maj is the
MAJORITY of 3 bits.

I Definition 11. (model-graph for Φ, third vertex, meet) Let Φ be a (m,n, s, 3)-scheme
with MAJORITY as the query function. Fix a graph G such that V (G) = [s], |E(G)| = m

and edge labels: {lab(e)|e ∈ E(G)} = [m] (there is a unique edge for each label in [m]). G is
called a model-graph for Φ if for each u ∈ [m] the edge labelled u has the set of endpoints
in {{x(u), y(u)}, {y(u), z(u)}, {z(u), x(u)}}. For example, the graph G = ([s], {x(u) u←→
y(u)|u ∈ [m]}) is a model graph for Φ.

In a model-graph for Φ, let e be the set of endpoints of the edge with label u. The element
in the singleton ({x(u), y(u), z(u)} \ e) is defined to be the third vertex of u.

Two edge-disjoint cycles C1 and C2 are said to meet in a model-graph for Φ if there exist
elements u, v ∈ [m] such that the third vertices of u and v are the same vertex and the edges
labelled u and v are in the different cycles C1 and C2 respectively.

I Definition 12. A model-graph G for an (m,n, s, 3)-scheme with MAJORITY as the query
function is said to be forced if at least one of the following three conditions hold.
(P1) ∃ edge-disjoint odd cycles C1, C2 in G with lengths at most n each that intersect at a

vertex.
(P2) ∃ edge disjoint even cycles C1, C2 in G with lengths at most n each and C1 and C2

meet.
(P3) ∃ an even cycle C of length at most n, such that some two edges in C, labelled e and

f say, have an even number of edges between them (while traversing the edges of the
cycle in order) and the third vertices of e and f are the same vertex.

I Lemma 13. A model-graph for a scheme with MAJORITY as the query function cannot
be forced.

I Lemma 14. Any (m,n,
⌊

1
6m

1− 1

bn
2 c+1

⌋
, 3)-scheme with MAJORITY as the query function

has a forced model-graph.

From lemmas 13 and 14, it follows that when MAJORITY is used as the query function,

sN (m,n, 3) > 1
6m

1− 1

bn
2 c+1 .

Proof of Lemma 13. Fix a (m,n, s, 3)-scheme Φ with MAJORITY as the query function.
Fix a model-graph G for Φ. Assume G is forced, that is, it satisfies (P1) or (P2) or (P3)
above.

STACS 2017



38:8 Set Membership with Non-Adaptive Bit Probes

Case: (P1) holds. (P1) implies that there are edge-disjoint cycles C1 and C2 in G such that,

C1 : u0
e1−→ u1

e2−→ · · · e2k+1−→ u2k+1 = u0,

C2 : u0
f1−→ v1

f2−→ · · · f2l+1−→ v2l+1 = u0,

and 2k + 1, 2l + 1 ≤ n. Let S0 = {e1, e3, · · · , e2k+1} ∪ {f2, f4, · · · , f2l} and S1 =
{e2, e4, · · · , e2k}∪{f1, f3, · · · , f2l+1}. Note that |S0| = |S1| ≤ n. We claim that Φ cannot
represent any set S such that

S0 ⊆ S ⊆ S̄1.

In particular, Φ cannot represent the set S0. Assume Φ represents such an S. We claim
that u0 cannot be assigned a 0. If u0 is assigned a 0, then since e1 ∈ S, u1 must be
assigned a 1. Otherwise, Maj(A[x(e1)], A[y(e1)], A[z(e1)]) = Maj(0, 0, b) = 0, where b is
the bit assigned to the location in {x(e1), y(e1), z(e1)} \ {u0, u1}. Since, u1 is assigned a
1 and e2 /∈ S, u2 must be assigned a 0. Similarly, since e3 ∈ S, u3 must be assigned a 1
and so on. Finally, u2k+1 = u0 must be assigned a 1. A contradiction. Hence u0 cannot
be assigned a 0.
Again, we claim u0 cannot be assigned a 1. For if u0 is assigned a 1, since f1 /∈ S, v1
must be assigned a 0. Again, since f2 ∈ S, v2 must be assigned a 1 and so on. Finally,
v2k+1 = u0 must be assigned a 0. A contradiction.
Since u0 can neither be assigned a 0 or a 1, we get a contradiction.
I Remark. In the proofs below, we will often encounter similar arguments, where we
will have a cycle of dependencies: assigning a particular bit to a location will force the
assignment to the next location along the cycle.

Case: (P2) holds. (P2) implies that there are edge-disjoint cycles C1 and C2 in G such that,

C1 : u0
e1−→ u1

e2−→ · · · e2k−→ u2k = u0,

C2 : v0
f1−→ v1

f2−→ · · · f2l−→ v2l = v0,

2k, 2l ≤ n, and the third vertices of e1 and f1 are the same vertex w. Let S0 =
{e1, e3, · · · , e2k−1} ∪ {f2, f4, · · · , f2l} and S1 = {e2, e4, · · · , e2k} ∪ {f1, f3, · · · , f2l−1}.
Note that |S0| = |S1| ≤ n. We claim that Φ cannot represent any set S such that

S0 ⊆ S ⊆ S̄1.

In particular, Φ cannot represent the set S0. Assume Φ represents such an S. Since e1 ∈ S,
either the location u0 or the location u1 of the memory A must be assigned a 1, otherwise
Maj(A[x(e1)], A[y(e1)], A[z(e1)]) = Maj(A[u0], A[u1], A[w]) = Maj(0, 0, A[w]) = 0. Assume
u1 is assigned a 1. Then, since e2 is not in the set, using a similar argument, u2 must
be assigned a 0. Similarly, u3 must be assigned a 1 and so on. Finally, u2k = u0 must
be assigned a 0. Similarly, if u0 was assigned a 1, then u1 must be assigned a 0. Thus,
Maj(x(e1), y(e1), z(e1)) = Maj(0, 1, A[w]) = A[w]. Hence w must be assigned a 1.
Again, since f1 is not in S, either v0 or v1 is assigned a 0. If v1 is assigned 0, v2
must be assigned a 1, v3 a 0, and so on. Finally, v2l = v0 must be assigned a 1.
Similarly, if v0 is assigned 1, then v1 is assigned a 0. Therefore, Maj(x(f1), y(f1), z(f1)) =
Maj(A[v0], A[v1], A[w]) = Maj(0, 1, A[w]) = A[w]. Since f1 /∈ S, w must be assigned a 0.
A contradiction.
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Case: (P3) holds. (P3) implies that there is a cycle C:

v0
e1−→ v1 · · ·

e2k−→ v2k · · ·
e2l−→ v2l = v0,

2k ≤ 2l ≤ n and the third vertices of e1 and e2k are the same vertex w. Let S0 =
{e1, e3, · · · , e2l−1} and S1 = {e2, e4, · · · , e2k, · · · , e2l}. Note that |S0| = |S1| ≤ n. We
claim that Φ cannot represent any set S such that

S0 ⊆ S ⊆ S̄1.

In particular, Φ cannot represent the set S0. Assume Φ represents such an S. Since
e1 ∈ S, either v0 or v1 must be assigned a 1. Assume that v1 is assigned a 1. Then,
since e2 /∈ S, v2 must be assigned a 0. Again, since e3 ∈ S, v3 must be assigned a
1 and so on. All locations in R := {v2r|0 ≤ r ≤ l} must be assigned a 0 and all
locations in Q := {v2r+1|0 ≤ r ≤ l − 1} must be assigned a 1. Else if v0 is assigned
a 1, then all locations in R must be assigned a 1 and all locations in Q must be
assigned a 0. Now, Maj(x(e1), y(e1), z(e1)) = Maj(A[v0], A[v1], A[w]) = Maj(0, 1, A[w]) =
A[w]. Since e1 ∈ S, w must be assigned a 0. Similarly, Maj(x(e2k), y(e2k), z(e2k)) =
Maj(A[v2k−1], A[v2k], A[w]) = Maj(0, 1, A[w]) = A[w]. Since e2k /∈ S, w must be assigned
a 1. A contradiction. J

In order to prove Lemma 14 we will make use of the following proposition, which
is a consequence of a theorem of Alon, Hoory and Linial [2] (see also Ajesh Babu and
Radhakrishnan [3]).

I Proposition 15. Fix a graph G such that the average degree d ≥ 2. Then,

(d− 1)k > |V (G)| =⇒ ∃ a cycle C ⊆ E(G), |C| ≤ 2k.

Proof of Lemma 14. Fix an (m,n,
⌊

1
6m

1− 1

bn
2 c+1

⌋
, 3)-scheme Φ that uses MAJORITY as

the query function. Note that s :=
⌊

1
6m

1− 1

bn
2 c+1

⌋
implies

m ≥ s
1+ 1

bn
2 c + 4s+ 1. (?)

For Φ we will come up with a model-graph which is forced, that is, one of (P1), (P2) or (P3)
holds. We will start with an initial model-graph G for Φ. We will observe that the average
degree of G is high and invoke Proposition 15 to find a small cycle C. If |C| is odd, we will
bin it in ODD, delete C and repeat. If |C| is even and all the third vertices of the labels of
edges in C are distinct, we will bin C in EVEN, delete the edges of C and repeat; otherwise,
we will either discover that property (P3) holds or we will modify our model-graph and find
an odd cycle in it and bin it in ODD, delete it and repeat. The moment the sum of the
lengths of the deleted cycles exceeds 2s, we know either the sum of the lengths of odd or
even cycles exceeds s and two odd cycles intersect or even cycles with distinct third vertices
meet, which means either (P1) or (P2) holds. Formally, the procedure can be described as
below. We will maintain the following invariant. EVEN will contain edge-disjoint cycles of
length even and at most n each and the third vertices of the labels in such a cycle will be all
distinct. ODD will contain edge-disjoint cycles of length odd and at most n. Furthermore
([s], E(G) ∪ EVEN ∪ODD) will always be a model-graph for Φ.

Step 0: Initialization. EVEN = ∅. ODD = ∅. G = ([s], {x(u) u←→ y(u)|u ∈ [m]}). Observe
G is a model-graph for Φ.
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Step 1. If
∑
C∈EVEN∪ODD |C| > 2s , END (this ensures that either (P1) or (P2) holds).

Else, using Proposition 15 fix a cycle C ⊆ E(G) such that |C| ≤ n.
Step 2. If |C| is odd, ODD← ODD ∪ {C} and E(G)← E(G) \ C and GOTO Step 1.
Step 3. If |C| is even and all the third vertices of the labels of edges in C are distinct,

EVEN← EVEN ∪ {C} and E(G)← E(G) \ C and GOTO Step 1.
Step 4. If |C| is even and the third vertices of the labels of two edges in C which have an

even number of edges between them while traversing the edges of C in order, then END
(Note this means that (P3) holds).

Step 5. If |C| is even and the third vertices of the labels of two edges in C have an odd
number of edges between them (while traversing the edges of C in order), then represent
C as

C : v0
e1−→ v1 · · · v2k

e2k+1−→ v2k+1 · · ·
e2l−→ v2l = v0,

such that the third vertices of e1 and e2k+1 are the same vertex w. We modify the
model-graph G by changing the endpoints of the edges appearing with labels e1, e2k+1
from {v0, v1}, {v2k, v2k+1} to {v1, w}, {v2k, w} respectively, thus obtaining a shorter odd
cycle C ′ in G:

E(G)← (E(G) \ {v0
e1←→ v1, v2k

e2k+1←→ v2k+1}) ∪ {v1
e1←→ w, v2k

e2k+1←→ w}

(Observe: G with E(G) ∪ {e|e ∈ ODD ∪ EVEN} continues to be a model-graph for Φ).

C ′ ⊆ E(G) : w e1−→ v1
e2−→ v2 · · · v2k

e2k+1−→ w

is an odd length cycle of length at most n in G.
ODD← ODD ∪ {C ′}. E(G)← E(G) \ C ′. GOTO Step 1.

In Step 1, if |E(G)| ≤ 2s, then the average degree d is at least m−2s
s > s

1

bn
2 c + 2 (from ?)

and (d− 1)b
n
2 c > s which implies from Proposition 15 that there is a cycle of length at most

n.
We claim that the procedure terminates only by encountering an END statement in Step

1 or in Step 4. Observe that once the procedure finds a cycle in Step 1, then exactly one
of the four if conditions in Steps 2-5 holds. If the procedure does not encounter an END
statement in Step 4, then the procedure moves to Step 1 again as each of the Steps 2, 3 and
5 end in a ‘GOTO Step 1’ statement.

If the procedure encounters the END statement in Step 4, then (P3) holds. If the
procedure encounters the END statement in Step 1, then from the pigeonhole principle,
either

∑
C∈ODD |C| > s or

∑
C∈EVEN |C| > s. In the first case, (P1) holds. In the second

case, since each edge in a cycle in EVEN has a distinct third vertex, two cycles in EVEN
meet.

Finally, we observe that the procedure terminates. If the procedure does not terminate
in Step 4, then the procedure repeatedly finds edge disjoint cycles and deletes them. If the
number of edges in the deleted cycle exceeds 2s, then the procedure will terminate when it
encounters the END statement in Step 1. J

3.3 Degree argument
In this section we provide lower bound proofs for the query functions (x, y, z) 7→ (x ∧ y)⊕ z
and (x, y, z) 7→ 1 iff x+ y + z = 1.
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3.3.1 (x, y, z) 7→ (x ∧ y)⊕ z

Let Φ be a scheme with (x, y, z) 7→ (x ∧ y)⊕ z as the query function. The memory consists
of three distinct bit arrays: A[1, · · · , s], B[1, · · · , s] and C[1, · · · , s]. For any element u ∈ [m],
the scheme probes three locations x(u) ∈ A, y(u) ∈ B and z(u) ∈ C to determine if u is in
the set or not. We treat each location as a boolean variable. Given any set S ⊆ [m] of size at
most n the assignment σ(S) ∈ {0, 1}3s to A,B and C is such that for all elements u ∈ [m],
(x(u) ∧ y(u))⊕ z(u) is 1 iff u ∈ S.

We first prove that s = Ω(
√
mn) by specializing the lower bound proof in [13] to our case.

I Definition 16 (Field F2, vector space V , polynomials PS). Let F2 denote the field {0, 1}
with mod 2 arithmetic. The query function (x, y, z) 7→ (x∧y)⊕z is same as (x, y, z) 7→ xy+z
(over F2).

Let V be the vector space over the field F2 of all multilinear polynomials of total degree
at most 2n in the 3s variables: A[1], · · · , A[s], B[1], · · · , B[s], C[1], · · · , C[s] with coefficients
coming from F2.

For each set S ⊆ [m], we define the polynomial PS in 3s variables and coefficients coming
from the field F2 as follows:

PS =
∏
u∈S

(x(u)y(u) + z(u)).

We make PS multilinear by reducing the exponents of each variable using the identity
x2 = x for each variable x. This identity holds since we will be considering only 0-1 assignment
to the variables.

To prove the theorem for (x, y, z) 7→ (x ∧ y)⊕ z, we use the following two lemmas.

I Lemma 17. The set of
(
m
n

)
multilinear polynomials {PS : |S| = n} is linearly independent

in the vector space V .

I Lemma 18. V has a spanning set of size at most
(3s+2n

2n
)
.

Using these two lemmas, we first prove the theorem and provide the proofs of the lemmas
later.

Proof. Now, since the size of a linearly independent set is at most the size of a spanning set,
using Lemmas 17 and 18, we have(

m

n

)
≤
(

3s+ 2n
2n

)
=⇒

(m
n

)n
≤
(
e(3s+ 2n)

2n

)2n

=⇒ 3s ≥ 2
e

√
n(
√
m− e

√
n)

=⇒ 3s ≥ 18
10e
√
mn (when n ≤ m

900{ =⇒ e
√
n ≤ 1

10
√
m}).

When n ≥ m
900 , the fact that the assignments to the memory for storing different sets of size

d m900e are different implies that the space required is at least lg
(

m
d m

900 e
)
≥ Ω(m) ≥ Ω(

√
mn). J

Now, we prove the two lemmas.
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Proof of Lemma 17. First observe that any S of size n, the polynomial PS has n factors of
degree 2 each. Hence, the degree of PS is at most 2n.

For sets S, S′ ⊆ [m] of size n each, the evaluation of the polynomial PS on the assignment
σ(S′) is

PS(σ(S′)) =
{

0 if S 6= S′

1 if S = S′.

Since S 6= S′ and |S| = |S′| = n ≥ 1, there exists u ∈ S such that u /∈ S′ and thus under
the assignment σ(S′), the factor x(u)y(u) + z(u) in PS(σ(S′)) evaluates to 0. While, when
S = S′, for each u ∈ S the factor x(u)y(u) + z(u) in PS(σ(S′)) evaluates to 1.

In particular, this proves that {PS : |S| = n} has size
(
m
n

)
. Further we use this observation

below to prove the lemma.
Let

∑
S:|S|=n αSPS = 0 where each αS ∈ F2. To show that the PS ’s are linearly

independent, we need to show that each αS is 0. Consider an arbitrary set S′ of size n,
consider the assignment σ(S′) to the variables in the above identity.

0 =
∑

S:|S|=n

αSPS(σ(S′))

= αS′PS′(σ(S′)) +
∑

S:S 6=S′,|S|=n

αSPS(σ(S′))

= αS′PS′(σ(S′)) (since, PS(σ(S′)) = 0 for each S 6= S′)
= αS′ (since, PS′(σ(S′)) = 1). J

Proof of Lemma 18. The monomials of total degree at most 2n form a spanning set; each
polynomial in V can be written as a linear combination of these monomials. Thus, the size
of this spanning set is

2n∑
k=0

(
3s
k

)
≤
(

3s+ 2n
2n

)
,

where the last inequality follows from the fact that T 7→ T ∩ [3s] is an onto map from
([3s+2n]

2n
)

to
( [3s]
≤2n
)
. J

3.3.2 (x, y, z) 7→ 1 iff x + y + z = 1
The lower bound proof for (x, y, z) 7→ 1 iff x+ y + z = 1 is similar to the lower bound proof
for (x, y, z) 7→ (x ∧ y)⊕ z. The only difference here is that instead of looking at the query
function over the field F2, we consider the query function over the field F3 (the set of three
elements {0, 1, 2} with mod 3 arithmetic). Over the field F3, the query function (x, y, z) = 1
iff x + y + z = 1 is same as (x, y, z) 7→ x + y + z + xy + yz + zx (a degree 2 polynomial).
Accordingly, the multilinear polynomial corresponding to a set S of size n is defined to be

PS =
∏
u∈S

(x(u) + y(u) + z(u) + x(u)y(u) + y(u)z(u) + z(u)x(u)).

where we reduce the exponents using the identity x2 = x for each variable x (this identity
holds as we consider only 0-1 assignments). Notice that PS has degree at most 2n and the
rest of the proof is same as before.

The proofs for functions from the remaining classes, the proofs of Theorems 4(c) and 3
are available in the full version of the paper [6].
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