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Abstract
Markov chains defined on the set of permutations of 1, 2, . . . , n have been studied widely by
mathematicians and theoretical computer scientists [15, 4, 1]. We consider chains in which a
position i < n is chosen uniformly at random, and then σ(i) and σ(i+1) are swapped with
probability depending on σ(i) and σ(i+1). Our objective is to identify some conditions that
assure rapid mixing.

One case of particular interest is what we call the “gladiator chain,” in which each number g
is assigned a “strength” sg and when g and g′ are swapped, g comes out on top with probability
sg/(sg + sg′). The stationary probability of this chain is the same as that of the slow-mixing
“move ahead one” chain for self-organizing lists, but an open conjecture of Jim Fill’s implies that
all gladiator chains mix rapidly. Here we obtain some positive partial results by considering cases
where the gladiators fall into only a few strength classes.
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1 Introduction

For any arbitrary natural number n ∈ N, we define Sn to be the set that contains all the
permutations of numbers 1, 2, . . . , n. A natural Markov chain on Sn is the chain which picks
a number 1 ≤ i ≤ n−1 uniformly at random and operating on σ ∈ Sn, puts σ(i+1) ahead
of σ(i) w.p. pσ(i),σ(i+1). We call such chains adjacent transposition Markov chains. These
chains have been studied widely for various choices of pi,j [15, 5, 1, 2].

In this paper, we consider the total variation mixing time, which is defined as the time
it takes until the total variation distance between the distribution of the current state and
stationarity is less than ε (where ε is some fixed quantity in (0,1)). For a Markov chainM
we denote this time by tε(M), or if ε = 1/4, simply by t(M).

Jim Fill1 conjectured that: If the adjacent transposition Markov chain is monotone, then
it is rapidly mixing (meaning the mixing time is polynomial in n). Monotonicity in this
context means that for all i, j satisfying 1 ≤ i < j ≤ n, pi,j ≥ 1/2 and pi,j−1 ≤ pi,j and
pi+1,j ≤ pi,j . [5].

Here we provide a brief history of the results on adjacent transposition Markov chains.
All of the chains below are monotone and rapidly mixing. Wilson and Benjamini’s papers
[15, 1] led to Fill’s conjecture [5]; Bhakta et al. [2] verified the conjecture in two cases.

∗ Research supported by NSF grant DMS-1162172.
1 Fill considered the spectral gap (another measure of mixing) in his study. Here, we are interested in

total variation mixing time, which in this case is within a polynomial factor of the spectral gap.
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41:2 Mixing of Permutations by Biased Transposition

1. The simple chain. In the case where pi,j = 1/2 for all i and j, the chain will have a
simple description: Given a permutation σ, pick two adjacent elements uniformly at random,
and flip a fair coin to decide whether to swap them. We call this chain, whose stationary
distribution is uniform, the simple chain. Ironically, proving precise mixing results for this
chain was not simple. Many papers targeted this problem [4, 3], and finally Wilson [15]
showed the mixing time for this chain is Θ(n3 logn) (proving lower and upper bounds within
constant factors).

2. The constant-bias chain. After Wilson’s paper, Benjamini et al. [1] studied the case
where pi,j = p > 1/2 for all i < j, and pj,i = 1−p, and they showed the constant-bias chain,
mixes in Θ(n2) steps.

3. “Choose your weapon" and “league hierarchy" chains. The following two special
cases were studied by Bhakta et al. [2]: the choose your weapon chain where pi,j is only
dependent on i, and the league hierarchy chain given by a binary tree T with n leaves. Each
interior node v of T is labeled with some probability 1/2 ≤ qv ≤ 1, and the leaves are labeled
by numbers 1 . . . n. The probability of putting j ahead of i for j > i is equal to pi,j = qj∧i
where j ∧ i is the node that is the lowest common ancestor of i and j in T . Bhakta et
al. showed that the choose your weapon chain mixes in O(n8 logn) steps and the league
hierarchy chain mixes in O(n4 logn) steps.

Here we are interested in gladiator Markov chains which constitute a subclass of the
monotone adjacent transposition chains. These chains have a connection to self organizing
lists, and were introduced by Jim Fill.

Fill was interested in probabilistic analysis of algorithms for self-organizing lists (SOLs).
Self-organizing lists are data structures that facilitate linear searching in a list of records; the
objective of a self-organizing list is to sort the records in non-decreasing order of their access
frequencies [13]. Since these frequencies are not known in advance, an SOL algorithm aims to
move a particular record ahead in the list when access on that record is requested. There are
two widely used SOL algorithms: the move ahead one algorithm (MA1) and the move to front
algorithm (MTF). In MA1, if the current state of the list is (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)
and the ith record is requested for access, it will go ahead in the list only one position and the
list will be modified to (x1, x2, . . . , xi, xi−1, xi+1, . . . , xn). In MTF it will go to the front and
the list will be modified to (xi, x1, x2, . . . , xi−1, xi+1, . . . , xn). It appears that MA1 should
perform better than MTF when the list is almost sorted and worse when the low frequency
records are standing in front; however, this has not been analytically studied [6]. Considering
the adjacent transposition Markov chain corresponding to MA1, Fill shows [5] that there are
cases in which the chain is not rapidly mixing. Hence, he poses the question of sampling
from the stationary distribution of MA1, and he introduces the gladiator chain which has
the same stationary distribution as MA1 and seems to be rapidly mixing for arbitrary choice
of parameters.

In a gladiator chain, each element i can be thought of as a gladiator with strength s(i).
Every permutation of numbers 1, 2, . . . n can be thought of as a ranking of gladiators. In
each step of the Markov chain we choose 1 ≤ k < n uniformly at random, i.e. we choose
adjacent gladiators σ(k) = i and σ(k + 1) = j. These gladiators will fight over their position
in ranking. With probability pj,i = s(i)/(s(i) + s(j)), gladiator i will be the winner of the
game and will be placed ahead of j in σ if it isn’t already. With probability pi,j = 1− pj,i, j
is put ahead of i. If Fill’s conjecture holds the gladiator chain must mix rapidly.
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Another interesting Markov chain which has received a lot of attention is the exclusion
process ([11, 10]). In this Markov chain we have a graph G = 〈V,E〉 and m < |V | particles on
the vertices of G. The sample space is the set containing all the different placements of the
m particles on vertices of G. At each step of the Markov chain we pick a vertex v uniformly
at random with probability 1/|V | and one of its adjacent vertices, w with probability 1/d(v).
If there is a particle in one of the vertices and not the other one, we swap the position of the
particle with a constant probability p. We are interested in the exclusion process when the
graph is a finite path with n vertices. We will see that this chain has connections with the
gladiator chain. This chain was studied by Benjamini et al. [1] and is known to mix in Θ(n2)
steps2.

Our Contribution. We study the gladiator chain when the gladiators fall into a constant
number of teams, and gladiators in each team have the same strength (Definition 1). We
then extend the definition of the exclusion process (studied by Benjamini et al.) by allowing
particles of different types to swap their positions on a linear line. We call this new chain a
linear particle system (Definition 2). We show that mixing results for linear particle systems
can produce mixing results in gladiator Markov chains (Theorem 4).

We study the linear particle system in which there are three particle types, and in
Theorem 5 we extend Benjamini et al.’s result by showing the three particle system mixes
rapidly; this is our main result. Having Theorem 5 we conclude that the following adjacent
transposition chains mix rapidly, and hence confirming Fill’s conjecture in these cases: the
gladiator chain when there are three teams of same-strength gladiators, and the league
hierarchy chain for ternary trees (extending Bhakta et al.’s work [2]).

I Remark. We believe the linear particle systems, like the exclusion processes are interesting
Markov chains that may appear as components of other Markov chains, and thus would
facilitate studying mixing times of other chains (For instance see Corollary 7 in which we
extend a result about binary trees to ternary trees).

Definitions and results are presented in Section 2, along with the correspondence between
gladiator chains and linear particle systems. Section 3 contains the proof that the three-type
system mixes rapidly under certain conditions.

2 Definitions and Results

I Definition 1. Gladiator chain (Playing in teams). Consider the Markov chain on state
space Sn that has the following properties: The set [n] (i.e. gladiators) can be partitioned
into subsets: T1, T2, . . . , Tk (k teams). We have the following strength function: s : [n]→ R,
s(g) = sj iff g ∈ Tj . At each step of Markov chain, we choose i ∈ [n−1] uniformly at random.
Given that we are at state σ, and σ(i) = g, σ(i+1) = g′, we put g ahead of g′ with probability

s(g)
s(g)+s(g′) . We denote a gladiator chain having n gladiators playing in k different teams by
Gk(n).3

2 Benjamini et al. use this result to prove that the constant-biased adjacent transposition chain is rapidly
mixing.

3 Although the notation Gk(n1, n2, . . . , nk) would be more precise (ni being cardinality of Ti), we avoid
using it for simplicity and also because our analysis is not dependent on n1, n2, . . . , nk.
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41:4 Mixing of Permutations by Biased Transposition

This is a reversible Markov chain and the stationary distribution π is

π(σ) =
n∏
i=1

s(i)σ
−1(i)/Z. (Z is a normalizing factor.) (1)

Note that by writing σ(i) = g we mean gladiator g is located at position i in σ. By
writing σ−1(g) we are referring to the position of gladiator g in the permutation σ. We
use this notation throughout the text and for permutations presenting both gladiators and
particles.

I Definition 2. Linear particle systems. Assume we have k types of particles and of each
type i, we have ni indistinguishable copies. Let n =

∑k
i=1 ni. Let Ωn1,n1,...nk be the state

space containing all the different linear arrangements of these n particles. If the current
state of the Markov chain is σ, choose i ∈ [1, n − 1] uniformly at random. Let σ(i) be of
type t and σ(i+ 1) be of type t′. If t = t′ do nothing. Otherwise, put σ(i) ahead of σ(i+ 1)
w.p. pt,t′ and put σ(i+ 1) ahead of σ(i) w.p. 1− pt,t′ . We denote the linear particle system
having n particles of k different types by Xk(n).

This chain is also a reversible Markov chain. In a special case where pt,t′ = s(t)
s(t)+s(t′) the

stationary distribution π is

π(σ) =
n∏
i=1

s(i)σ
−1(i)/Z ′. (Z ′ is a normalizing factor.) (2)

I Proposition 3. By regarding gladiators of equal strength as indistinguishable particles, we
associate to any gladiator system a linear particle system.

Note that the state space of the gladiator system has cardinality n! for n different
gladiators but the linear particle system has only n!/(n1!n2! . . . nk!) states, since particles of
the same type are indistinguishable. Thus, Z ′ � Z. The following theorem, whose proof will
be presented later, shows the connection between the mixing times of the two chains.

I Theorem 4. Let t(Xk) and t(Gk) be respectively the mixing times for a linear particle
system and its corresponding gladiator chain. Then, t(Gk) ≤ O(n8) t(Xk).

Our main result, which extends the results of Benjamini et al. [1] on exclusion processes,
is the following:

I Theorem 5. Let X3(n) be a linear particle system of Definition 2, having particles of type
A, B and C. Assume that we have strength functions assigned to each particle type, namely
sA < sB < sC , and thus swapping probabilities pB,A = sA/(sA + sB), pB,C = sC/(sC + sB)
and pA,C = sC/(sA + sC). If sA/sB , sB/sC < 1/2, then the mixing time of X3(n) satisfies
t(X3(n)) ≤ O(n10).

I Remark. The condition sA/sB , sB/sC ≤ 1/2 comes from the following simple bound on
q-binomials that the reader should be able to verify easily: If q < 1/2 then,

(
m
r

)
q
< 2r < ( 1

q )r.
Better bounds on q-binomials would allow the result to be improved.

We will prove Theorem 5 in Section 3. Having Theorem 5, we deduce the following case
of Fill’s conjecture:

I Corollary 6. The mixing time of G3(n) satisfies t(G3(n)) ≤ O(n18), if sA/sB < 1/2 and
sB/sC < 1/2, where C is the strongest playing team among the three, and the gladiators in
team B are stronger than the gladiators in team A.

Proof. From Theorems 5 and 4. J
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I Corollary 7. (Generalization of league hierarchies) Let T be a ternary tree with n leaves.
The children of each interior node v are labeled with labels A(v), B(v), and C(v), and they
have strength values sA(v), sB(v), and sC(v). The leaves are labeled by numbers 1, 2, . . . , n.
The probability of putting j ahead of i for j > i is equal to pi,j = sX(v)/(sX(v) + sY (v)) where
v is the node that is the lowest common ancestor of i and j in T , and X(v) is the child of v
which is an ancestor of j, and Y (v) is the child of v which is an ancestor of i. If for each
v ∈ T , sA(v), sB(v), and sC(v) satisfy the conditions in Theorem 5, then the mixing time of
the league hierarchy chain is O(n10 logn).

Proof. A correspondence between the league hierarchies for binary trees (having n leaves)
and a product of n−1 copies of the simple exclusion processes is presented in [2]. Using
this correspondence and employing Benjamini’s result ([1]), Bhakta et al prove that the
binary tree league hierarchies mixes rapidly. The correspondence introduced in [2] is in fact
a correspondence between the k-ary league hierarchy chains and Xk, and they prove that the
mixing times of the league hierarchy and the linear particle system are related. Theorem 5
can be used to extend the results in [2] to ternary trees satisfying the restrictions. J

We finish this section by proving Theorem 4.

2.1 Gladiators and Particles (Proof of Theorem 4)
Consider the gladiator chain Gk(n) for arbitrary n being the number of gladiators and k the
number of teams. Assume that we have ni gladiators playing at team i; hence,

∑k
i=1 ni = n.

At each step of the chain, one of two things is happening:
1. Whisking: gladiators of the same team are fighting.
2. Sifting: gladiators of different teams are fighting.
If we were restricted to whisking steps the chain would be equivalent to a product of several
simple chains analyzed by Wilson [15]. If we were restricted to sifting steps the chain would
be the linear particle system chain introduced in Definition 2. In order to study the mixing
time of the gladiator chain we analyze sifting and whisking steps separately, and then we
employ the following decomposition theorem:

I Theorem 8 (Decomposition Theorem [9]). Let M be a Markov chain on state space Ω
partitioned into Ω1,Ω2, . . . ,Ωk. For each i, letMi be the restriction ofM to Ωi that rejects
moves going outside of Ω. Let πi(A) = π(A ∩ Ωi)/π(Ωi) for A ⊆ Ωi. We define the Markov
chain M̄ on state space {1, . . . k} as follows: PrM̄(i, j) =

∑
x∈Ωi,y∈Ωj πi(x)PrM(x, y), where

PrM and PrM̄ are transition probabilities ofM and M̄ respectively. Then:

t(M) ≤ 2t(M̄) max
i
{t(Mi)}.

To apply the decomposition theorem, we partition Sn to Sσ1,σ2,...,σk for all choices of
σ1 ∈ Sn1 , σ2 ∈ Sn2 , . . . , σk ∈ Snk ; each Sσ1,σ2,...,σk being the set of all permutations in Sn in
which all the gladiators corresponding to particle i preserve the ordering associated to them
by σi. The restriction of Gk(n) to Sσ1,σ2,...,σk is equivalent to Xk(n). We define Ḡ to be the
Markov chain on

∏k
i=1 Sni with the following transition probabilities:

PrḠ(Sσ1,σ2,...,σi,...,σk , Sσ1,σ2,...,σ′i,...,σk
) = 1

π(Sσ1,σ2,...,σi,...,σk)
∑

x∈Sσ1,σ2,...,σi,...,σk ,
y∈Sσ1,σ2,...,σ′i,...,σk

π(x)PrG(x, y),

STACS 2017



41:6 Mixing of Permutations by Biased Transposition

where σi and σ′i are only different in swapping j and j+1st elements and PrG(x, y) = 1/2(n−1)
iff j and j+1st copies of particle i are adjacent in x and swapped in y. Moreover, we observe
that:

1
π(Sσ1,σ2,...,σi,...,σk)

∑
x∈Sσ1,σ2,...,σi,...,σk ,
y∈Sσ1,σ2,...,σ′i,...,σk

π(x) ≥ 1/(n− 1).

We can verify the above equation by the following reasoning: consider an arbitrary permuta-
tion z ∈ Sσ1,σ2,...,σi,...,σk in which jth and j+1st copies of particle i are not adjacent. We
can map z to two other permutations z1 and z2 where in z1 we take the the jth copy of
particle i down to make it adjacent to the j+1st copy, and in z2 we take the the j+1st copy
of particle i up to make it adjacent to the jth copy. We will have π(z)/π(z1) = π(z2)/π(z),
and hence one of π(z1) or π(z2) will be larger than π(z). This mapping is in worst case n−1
to 1, hence the above equation holds.

Having the above observations, we realize Ḡ is the product of k adjacent transposition
Markov chains, and in each of these Markov chains we swap two adjacent elements with
probability at least 1/2(n − 1)2. Let these chains be Ḡ1, Ḡ2, . . . , Ḡk. By comparing the
conductance (for more information about conductance, see [8]) of this chain to the simple
chain analyzed by Wilson [15], for each i we will have t(Ḡi) ≤ n8

i . We know by a result
of Bhakta et al. [2] that if Ḡ is a product of k independent Markov chains {Ḡi}ki=1 and it
updates each Ḡi with probability pi, then

tε(Ḡ) ≤ max
i=1,...,n

2
pi
t ε

2k
(Ḡi).

Plugging in pi = ni/n, we have t(Ḡ) ≤ max(2n/ni)n8
i ≤ 2n8. Summing up and employing

the Decomposition Theorem,

t(Gk(n)) ≤ 4n8t(Xk(n)).

3 Three Particle Systems (Proof of the Main Theorem)

In this section we prove Theorem 5 which states that t(X3(n)) ≤ O(n10) if sA/sB , sB/sC ≤
1/2.

Assume that we have a copies of particle A, b copies of particle B, and c copies of particle
C. We denote the set containing all the different arrangements of these particles by Ωa,b,c.
We introduce another Markov chain Xt(n) on the same sample space Ωa,b,c. Using the
comparison method (see [12]) we will show that the mixing times of X3(n) and Xt(n) are
related.

Then we will use the path congestion technique to show Xt(n) mixes in polynomial time,
and hence we deduce Theorem 5.

mixing time of X3(n) Comparison←−−−−−−−
technique

mixing time of Xt(n)

Notation. We denote the substring σ(i)σ(i+ 1) . . . σ(j) by σ[i, j], and by Bt we refer to a
string which is t copies of particle B.

I Definition 9. Let Xt(n) be a Markov chain on state space Ωa,b,c and n = a+ b+ c. If the
current state is σ, we choose natural numbers 1 ≤ i < j ≤ n uniformly at random and swap
them following these rules (Figure 1):
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Jump :

C A
B B
B B
. $ .
. .
. .
B B
A C

Hop :

B A
B B
B B
. $ .
. .
. .
B B
A B

B C
B B
B B
. $ .
. .
. .
B B
C B

Figure 1 Jumps and Hops are the transitions in the Markov chain Xt.

1. If σ(i) = A and in σ(j) = C or vice versa and σ[i+1, j−1] = Bj−i−1. Then, put σ(i) and
σ(j) in increasing order of their strength w.p. (sC/sA)(j−i)/(1 + (sC/sA)(j−i)). With
probability 1/(1 + (sC/sA)(j−i)), put them in decreasing order. We call this move a Jump
and we denote it by J ji (A,C) if σ(i) = A and σ(j) = C; and J ji (C,A) for vice versa.

2. If σ[i, j−1] = Bj−i and σ(j) = A or if σ[i+ 1, j] = Bj−i and σ(i) = A. Then, put σ(i)
and σ(j) in increasing order of their strength w.p. (sB/sA)j−i/(1 + (sB/sA)j−i). With
probability 1/(1 + (sB/sA)j−i), put them in decreasing order. We call this move a Hop,
and we denote it by Hji (A,B) if σ(i) = A and σ(j) = B; and Hji (B,A) for vice versa.
Similar rules and notation apply when swapping B and C.

3. Else, do nothing.

It can be easily checked that Xt is reversible and its stationary distribution is the π in
Equation 2.

I Lemma 10. t(X3(n)) ≤ 2n4 t(Xt(n)).

Proof. We use the comparison technique4 in the proof of Lemma 10 (see [3, 12]). To
any edge (σ, τ) in Xt, we correspond a path from σ to τ in X3. Let ei(p, p′) be a move
in X3 which swaps particles p and p′ located at positions i and i + 1 in an arrange-
ment. To e = (σ, τ) making J ji (A,C) in Xt, we correspond the following path in X3:
ei(A,B), ei+1(A,B), . . . ej−2(A,B), ej−1(A,C), ej−2(B,C), . . . ei(B,C). We denote this path
by γστ , and the set contaning all such paths by ΓJ . Similarly, to e = (σ, τ) makingHji (A,B) in
Xt, we correspond the following path in X3: ei(A,B), ei+1(A,B), . . . ej−2(A,B), ej−1(A,B).
We denote this path by γσ,τ , and the set contaning all such paths by ΓH. Let Γ =
{γσ,τ}σ,τ∈Ωa,b,c = ΓJ ∪ ΓH.

We now bound the congestion placed by Γ on edges of X3. Consider an arbitrary
e = (α, β) making swap ei(A,B) and assume α[i − t − 1, i + d + 1] = pBtABdp′ where p
and p′ are particles different from B. For any σ and τ in Ωa,b,c if e ∈ γσ,τ then, there must
be i − t ≤ j ≤ i − 1 and i + 1 ≤ k ≤ i + d such that γστ corresponds to Hkj (A,B) or it
corresponds to J i+d+1

j (A, p′). Thus, the congestion placed on e only by paths in ΓH is:∑
{σ,τ |e∈γστ∈ΓH} |γσ,τ |C(σ, τ)

C(e) =
i−1∑
j=i−t

i+d∑
k=i+1

|γσ,τ |(sB/sA)i−j(1 + sB/sA)
(1 + (sB/sA)k+1−j)

≤ 2(d+t)
t∑

j′=1

d∑
k′=1

(sB/sA)j′(sB/sA)
(1 + (sB/sA)j′+k′) ≤ 2t(d+t)

d∑
k′=1

sB/sA
(sB/sA)k′ ≤ n

2.

4 The comparison method was introduced by Diaconis and Saloff-Coste [3] and then Randall and Tetali
extended it and employed it for analysis of Glauber dynamics [12]. For more information about this
method we encourage the reader to refer to [8].
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41:8 Mixing of Permutations by Biased Transposition

We can similarly show that the congestion placed on e by ΓJ is less than n2, where n is
the length of the arrangements or total number of particles. For each e ∈ E(M), let Ae be
the congestion Γ places on e. We will have Ae ≤ 2n2. We also know πmin ≥ qn(n+1), where
q = max{sA/sB , sB/sC} (we consider q to be a constant). Hence, employing the Comparison
Theorem we have

t(X3(n)) ≤ max
e∈E(M)

Aeπmint(Xt(n)) ≤ (2n4)t(Xt(n)). J

Having the above connection it suffices to bound the mixing time of Xt(n). In the rest of
this section our goal is to bound t(Xt). We use the path congestion theorem, which is stated
below. In particular, for any two arbitrary states σ, τ ∈ Ωa,b,c, we introduce a path γσ,τ .
Then we show that none of the edges of the Markov chain Xt(n) is congested heavily by these
paths. Formally, we employ Theorem 11 and in Theorem 13 we show that t (Xt(n)) ≤ O(n4).

I Theorem 11 (Canonical Paths Theorem [7]). Let M be a Markov chain with stationary
distribution π and E the set of the edges in its underlying graph. For any two states σ and
τ in the state space Ω we define a path γσ,τ . The congestion factor for any edge e ∈ E is
denoted by Φe and is defined by Φe = 1

C(e)
∑

x,y
e∈γx,y

π(x)π(y). We can bound the mixing time

of M using the congestion factor: tε(M) ≤ 8Φ2(log π−1
min + log ε), where Φ = maxe∈E φe,

πmin = minx∈Ω π(x) and ε is the convergence parameter.

The Paths. For each σ, τ ∈ Ωa,b,c, we introduce the following path in Xt from σ to τ : We
partition σ and τ to b+ 1 blocks; the end points of these blocks are locations of Bs in τ . For
instance if in τ , the first B is located at position i and the second B is located at position
j then, the first block in both σ and τ is [1, i], and the second is [i + 1, j]. Starting from
the first block, we change each block in two steps, first we use Jump moves and change the
relative position of A and Cs in σ to become in the order in which they appear in τ . Then,
we bring the B in that block to its location in τ . Formally, we repeat the following loop:

Notation. By saying k = Bj(σ), we mean the jth copy of particle B is located at position
k in σ.
Starting from σ, we repeat the following steps until τ is reached.

Initially, let i, j = 1.
1. Let k = Bj(τ). We define the jth block of σ and τ to be the substring starting from i

and ending in k. Note that in τ , each blocks starts right after a B and ends with a B. In
the jth iteration, the goal is to change σ[i, k] until σ[1, k] = τ [1, k], i.e. the first j blocks
equal in σ and τ .

2. Using Jumps, and starting from the lowest index i, we bring particles C or A down until
A and C particles in the block [i, k] have the same order in σ and τ .

3. We use Hops and bring the jth B in σ to Bj(τ). In this process, we may need to bring
several copies of particle B out of the jth block in σ. In that case, we choose a random
ordering of Bs and move them with respect to that order (details explained in the proof
of Claim 12).

4. Set i = Bj(τ) + 1.
5. Increment j.

I Claim 12. Let {γσ,τ}σ,τ∈Ωa,b,c be the set of paths defined as above. Then, for any arbitrary
edge e in the Markov chain Xt the congestion Φe, defined in Theorem 11 satisfies Φe ≤ n.
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1st iteration: 2nd iteration: 3rd iteration:
C C C C C C C A

σ : A A A A A A A τ : C
B B B B B B C C
C C C C C C B B
A Jump A Jump A Jump A Hop A Hop B Hop B Jump B
C −→ C −→ A −→ A −→ B −→ A −→ A −→ A
B Step 1 B Step 1 B Step 1 B Step 2 A Step 2 A Step 2 A Step 1 A
C A C C C C C C
A C C C C C C C

Figure 2 We use the path congestion technique to bound t(Xt). In each iteration we fix a block
in σ until τ is reached.

9 = 4 + 4 + 1 9 = 4 + 3 + 2 9 = 3 + 3 + 3
τ1 :

C
B
C
C
C
B
B

τ2 :
C
C
B
C
B
C
B

τ3 :
C
C
C
B
B
B
C

Figure 3 Correspondence of partition functions with q-binomials: There are three integer
partitions of 9 that fit into a 3×4 rectangle, and there are three arrangements of gladiators in Ω0,3,4

with q(τ1) = q(τ2) = q(τ3) = q9. i.e. the coefficient for q9 in
(7

3

)
q
equals 3.

Proof. In order to verify the claim, we analyse the congestion of Jump and Hop edges
separately. In both of the analyses, we consider an edge e = (α, β), and to any σ, τ such that
e ∈ γσ,τ we assign a Fe(σ, τ) ∈ Ωa,b,c. The reverse image of F could be a subset of Ωa,b,c ×
Ωa,b,c. However, using q−binomials 5 we show that

∑
σ,τ are mapped to the same ζ π(σ)π(τ) is

bounded by a polynomial function of n multiplied by π(ζ), and then we conclude the claim. A
key factor of our analysis is the use of q-binomials. Note the following observations: Assume
that we have no copies of particle A, b copies of B, and c copies of particle C. Let M ∈ Ω0,b,c
be the arrangement with maximum stationary probability, i.e. M = BbCc. Note that for
each σ ∈ Ω0,b,c, π(σ)/π(M) = (sB/sC)t, where t is the number of transpositions needed to
get from M to σ. For a constant t, the number of σs requiring t transpositions is equal to
the number of integer partitions of t fitting in an b× c rectangle (see Figure 3). Thus:∑

σ∈Ω0,b,c

π(σ)
π(M) =

(
b+ c

b

)
q

; q = sB/sC .

Consider an edge e = (α, β) corresponding to J k+g
k (C,A). Assume that k = Cl(α),

k + d = Am(α) (remember the notation k = pm(σ) meaning the mth copy of particle p is
located at position k in σ), i.e. this edge is swapping the lth C with the mth A in α.

It follows from the way we set the paths that, for some j, Am(α) ≤ j < Am+1(α), Am(σ) =

5 More information about q-binomials can be found in Richard Stanley’s course “Topics in Algebraic
Combinatorics,” Chapter 6 (see [14]). Here we use the the following bound which can be simply verified
by expanding the formula for q-binomials: if q < 1/2 then,

(
m
r

)
q
<
∏r

i=1 1/(1− q) < 2r < ( 1
q )r.
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✓
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��
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Figure 4 We define Fe(σ, τ) = ζ. To produce ζ we first concat σ[1, i − 1] and τ [i, n] then, we
substitute some particles.

j and for some i, Am−1(β) < i ≤ Am(β), Am(τ) = i. The preceding blocks of α have been
changed in accordance with τ , and the succeeding blocks of α have not been changed yet, hence
they resemble σ blocks. Therefore we have α[1, i−1] = τ [1, i−1] and α[j+1, n] = σ[j+1, n]
(see Figure 4).

We define the function Fe : Ωa,b,c × Ωa,b,c → Ωa,b,c as follows: For any σ, τ satisfying
e ∈ γσ,τ , let ξσ,τ := σ[1, i − 1]|τ [i, n] (the symbol | denotes concatenation.) Since the
arrangements of particles is changing we may have ξσ,τ /∈ Ωa,b,c. For instance we may have
τ [i, n] ∈ Ωx,y,z and σ[1, i− 1] ∈ Ωx′,y′,z′ but x+ x 6= a or y + y′ 6= b or z + z′ 6= c. However,
we know a − (x + x′) + (b − (y + y′)) + (c − (z + z′)) = 0, which means there is a way to
substitute the particles in σ[1, i−1] to change ξ to ζ so that ζ ∈ Ωa,b,c. We call this stage the
substitution stage, in which we identify the particle or particles with extra copies in σ[1, i−1],
and we substitute the lowest copies of them with inadequate particles and produce ζ ∈ Ωa,b,c.
Then, we define Fe(σ, τ) := ζ. For instance, if a− (x+ x′) + (b− (y + y′)) = −(c− (z + z′)),
then substitute the lowest c− (z + z′) copies of A and B with Cs, and produce Fe(σ, τ) = ζ.
The substitution stage will cause a substitution cost, we denote the substitution cost by
co(ζ), and define it as: co(ζ) = π(ζ)/π(ξ), where ξ = σ[1, i− 1]|τ [i, n]. Note that if we make
t substitutions, the substitution cost is at most (sC/sA)t. To make the analysis simpler
we only analyze the worst case in which we assume we have substituted t Cs with As in
σ[1, i− 1]. This assumption also means that in σ[i, j] we have t more As and t fewer Cs than
in α[i, j].

Consider σ, τ such that e ∈ γσ,τ . Let Fe(σ, τ) = ζ. We have,

π(ζ)
π(α) =

(
π(τ)
π(α)

)(
π(σ)
π(α)

)(
wi(α[i, j])
wi(σ[i, j])

)
co(ζ),

where the later term is the substitution cost, and wi(σ[i, j]) :=
∏j
k=i s(k)i+σ−1(k). Having

g = Am(α)− Cl(α) we will get:

Φe = (1 + (sA/sC)g)

 ∑
σ;

α[j+1,n]=σ[j+1,n]

π(σ)
π(α)

∑
τ ;

α[1,i−1]=τ [1,i−1]

π(τ)
π(α)

π(α)

Let St be the set of all σs with t substitutions. We have:

Φe ≤
∑

ζ needs t
substititions

1
co(ζ)

∑
τ

∑
σ∈St

(
π(Fe(σ, τ))

π(α)

)(
wi(σ[i, j])
wi(α[i, j])

)
π(α).
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Let Mt(α) be the arrangement that we get from replacing the lowest t copies of particle
C with copies of particle A in α[i, j]. We have:

∑
σ∈St

wi(σ[i,j])
wi(α[i,j]) = wi(Mt)QiB̄(Mt(α))

wi(α[i,j]) , where
wi(σ[i, j]) :=

∏j
k=i s(k)i+σ−1(k), andQi

B̄
(Mt(α)) :=

∑
σ:fix the positions of all Bs
in Mt(α) and rearrange
the rest of particles

π(σ)/π(Mt(α)).

Note that wi(Mt)QB̄(Mt) ≤ qt(t+1)−2twi(α[i, j]), where q = max{sA/sB , sB/sC}. This
inequality holds because QB̄(Mt) ≤

(
y
t

)
sA/sC

≤ q−2t and w(Mt)/w(α[i, j]) ≤ qt(t+1).
Moreover,

∑
ζ needs t

substititions

1
co(ζ) ≤

(
t+b′
t

)
q2 ≤ q−2t, where b′ is the number of Bs in σ[0, i−1]

and q = max{sA/sB , sB/sC}.
Putting all of the above inequalities together, we will have that each edge of Move 2 is

only congested by:

Φe ≤ (1 + qg)
∑
t

(qt(t+1)−4t) ≤ n.

So far, we showed that any Jump edge is only congested by a factor of a polynomial
function of n. Consider an edge corresponding to a Hop, namely e. We denote this edge by
e = (α, β). Assume we are swapping A and B.

Consider a state σ traversing e to get to τ , and assume we traversed e while fixing block
[i, j]. Since we are making a Hop, As and Cs in the block are fixed according to τ , and we
are bringing the kth B to its position in τ .

Before we proceed to the proof there is a subtlety about using a Hop that needs to be
explained. If Ak has to go down to reach its position in τ or if there is only one copy of it in
the block there is no complication. Let’s assume we have t copies of particle B in σ[i, j]. All
of the t copies of B should move up and stand out of block σ[i, j] to reach their position in
τ . In order to accomplish this, we choose a subset S of {1k, . . . 1t+k} uniformly at random
and we move the elements of S in decreasing order of their index out of the block.

Assume, when going from σ to τ we used e = (α, β) and in α[i, j] we have t copies of
particle B: Bk, . . . , Bk+t and swapping Bk+l, Bk+l+1, . . . , Bk+d with the next A. We have,
τ [1, i] = α[1, i], σ[j+ t, n] = α[j+ t, n] , and for any i if Bk+i(α) < Bl+k(α) then, Bk+i(α) =
Bk+i(σ). The following information about S can be determined by examining α and β:
Bk+d+1, . . . Bk+t /∈ S while S may contain any of Bk, . . . Bk+l. Therefore, among the random
paths connecting σ to τ , there are 2l subsets traversing through e and hence the congestion
they place on e is π(τ)π(σ)/2t−l.

To bound Φe for each e we introduce correspondence Fe : Ωa,b,c×Ωa,b,c → Ωa,b,c satisfying:

∀ζ ∈ Fe(Ωa,b,c);

∑
σ,τ ;

F−1
e (ζ)=(σ,τ)

π(σ)π(τ)

π(α) ≤ 2t−lπ(ζ); (3)

where c is the number of Cs in α[i, j] and Fe(σ, τ) 6= NULL if and only if, e = (α, β) ∈ γσ,τ .
Let σ and τ be two ends of a path traversing through e, we define Fe := σ[1, i− 1]|τ [i, n],

to verify Equation 3 take ζ = Fe(σ, τ). We have, π(σ)π(τ)
π(α) = π(σ)

π(α)
π(τ)
π(α)π(α). Thus,

π(ζ)
π(α) = π(ζ[1,i−1])

π(α[1,i−1])
π(ζ[i,j−1])
π(α[i,j−1])

π(ζ[j,n])
π(α[j,n]) = π(σ[1,i−1])

π(α[1,i−1])
π(τ [i,j−1])
π(α[i,j−1])

π(τ [j,n])
π(α[j,n])

= π(σ′)
π(σ)

π(σ)
π(α)

π(τ)
π(α) ,

where σ′ is the following arrangement: σ′ := α[1, i−1]|σ[i, j−1]|α[j, n]. We have π(σ′)/π(α) =
π(σ[i, j])/π(α[i, j]). Hence,∑

σ,τ ;F(σ,τ)=ζ

π(σ)π(τ)
π(α) =

∑
σ,τ

F(σ,τ)=ζ

π(σ′)
π(σ) π(ζ).
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Since we have t − l Bs with undecided position between j−i other elements we have∑ π(σ′)
π(σ) ≤

(
j−i+t−l
t−l

)
q
, where q = max{sA/sB , sB/sC}. Thus, we have

∑ π(σ′)
π(σ) ≤ 2t−l. Hence,

the congestion placed on e is:

Φe=(α,β) = (1 + qg)
∑
σ,τ

e∈γσ,τ

π(σ)π(τ)
π(α)2t−l ≤ 1.

Summing up, we showed the for any arbitrary edge e, Φe ≤ max{n, 1}. J

Having the above claim, we now use the path congestion Theorem (Theorem 11) to bound
t(Xt(n)):

I Theorem 13. If sA/sB , sB/sC ≤ 1/2, then t(Xt(n)) ≤ O(n4).

Proof. Since πmin ≥ qn(n+1), q being maximum of sA/sB and sB/sC , we can apply The-
orem 11 and we will have, tε(Xt) ≤ 8n2(n2 + ln(ε−1)) =⇒ t(Xt) ≤ 8n4. J

Finally, from Lemma 10 and Theorem 13 we conclude Theorem 5.
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