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Abstract
We solve a long-standing open problem on word equations by proving that if the words x0, . . . , xn

satisfy the equation xk
0 = xk

1 · · ·xk
n for three positive values of k, then the words commute. One

of our methods is to assign numerical values for the letters, and then study the sums of the letters
of words and their prefixes. We also give a geometric interpretation of our methods.
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1 Introduction

We say that words x0, . . . , xn commute if xixj = xjxi for all i, j ∈ {0, . . . , n}. One of the early
results on word equations is the result of Lyndon and Schützenberger [13] that if xk = ymzn

for some words x, y, z and numbers k, m, n ≥ 2, then x, y, z commute (or, equivalently, x, y, z

are powers of a common word). Many generalizations have been studied, for example by
Lentin [11] and by Shyr and Yu [17]. We are interested in the generalizations where the
right-hand side can have more than two powers, but all exponents are equal (here k ≥ 1):

xk
0 = xk

1 · · ·xk
n. (1)

In particular, we are interested in systems of equations where the words x0, . . . , xn satisfy (1)
for many values of k. An even more general family of equations that could be studied is
formed by equations of the form

s0xk
1s1 · · ·xk

msm = t0yk
1 t1 · · · yk

ntn. (2)

Let us briefly mention some connections and applications of the above equations (1) and
(2) (more details can be found in the references given). The first application is in the theory
of test sets. A subset K of a language L is called a test set if, for all morphisms f and g,
either f(x) 6= g(x) for some x ∈ K or f(x) = g(x) for all x ∈ L. This means that to check
whether f and g agree on L, it is sufficient to check whether they agree on K. Connections
between the above equations and test sets are explained, for example, in [7]. As a second
application, the equations come up when studying pumping properties of formal languages.
For example, in the article [3], pumping the computations of transducers in two places leads
to equations of the form (2) with m = n = 2. The equations naturally arise in many other
settings as well. As a third application, equations (1) are related to the construction of large
independent systems of word equations [9, 15]. In fact, a counterexample to Conjecture 1
(stated below and proved in this article) would have improved the best known lower bounds
for the size of independent systems. Our last example is that the pair of equations (1) for
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55:2 Word Equations Where a Power Equals a Product of Powers

k = 1, 2 is connected to Sturmian words, and this connection leads to a large family of
interesting solutions [14].

The main question about equations (1) is when do they imply that x0, . . . , xn commute.
Sometimes a single equation is enough: Appel and Djorup [1] proved that if k = n in
(1), then the words x0, . . . , xn must commute. Their result was generalized by Harju and
Nowotka [5] for certain equations which have many different exponents k1, k2, . . . instead
of just one exponent k. On the other hand, there are many examples of words x0, . . . , xn

such that xixj 6= xjxi for some i, j, but (1) holds for two different values of k. For instance,
(ababa)k = (ab)kak(ba)k for k ∈ {1, 2}. No such examples are known for three different values
of k. In fact, the following conjecture is well-known.

I Conjecture 1. If x0, . . . , xn are words and k1, k2, k3 ≥ 1 are different numbers such that
(1) holds for k ∈ {k1, k2, k3}, then x0, . . . , xn commute.

In some form, this conjecture has been open for at least about two decades. The case
{k1, k2, k3} = {1, 2, 3} appeared as a question (and was proved for n ≤ 5) in an article by
Hakala and Kortelainen [4], and as an explicit conjecture in an article by Plandowski [15],
and a prize for a proof was offered by Holub in 20091. The case where one of k1, k2, k3 is 1
was asked as a question in [6], and the case k1, k2, k3 ≥ 2 was proved in [7] by Holub. If (1)
holds for k = 1, then the other equations can be replaced by

(x1 · · ·xn)k = xk
1 · · ·xk

n, (3)

so the conjecture often appears in the following form: If (3) holds for two values of k ≥ 2,
then x1, . . . , xn commute.

For equations (2), we could ask the following question: For how many values of k

does (2) need to hold to guarantee that it holds for all k ≥ 0? This was first studied by
Kortelainen [10]. Currently it is known that m + n different values of k are sufficient [16].
Holub and Kortelainen [8] proved that a constant number of different values is sufficient in
some special cases, but it is not known whether this is true in general.

In this article, we will prove Conjecture 1. As mentioned above, it would be sufficient to
prove it in the case k1 = 1, but our proof works for all values. This also makes the paper
self-contained; to understand the proof, it is only necessary to be familiar with some basics
of combinatorics on words, see, e.g., [12]. The possibility of applying the techniques of this
paper to the more general equations (2) remains open.

The basic idea behind our proof is to assign numerical values for the letters in a specific
way (so that the sum of the letters of x0 is zero), and then study the sums of the letters of
words and their prefixes. We will also give a geometric interpretation of our methods; using
geometric intuition was crucial when trying to prove the result.

2 Preliminaries

Let Γ be an alphabet. We can assume that Γ is a subset of R. This allows us to define Σ(w)
to be the sum of the letters of a word w ∈ Γ∗, that is, if w = a1 · · · an and a1, . . . , an ∈ Γ,
then Σ(w) = a1 + · · ·+ an. The mapping Σ is a morphism from the free monoid Γ∗ to the
additive monoid R. Words w such that Σ(w) = 0 are called zero-sum words.

1 http://www.karlin.mff.cuni.cz/~holub/soubory/prizeproblem.pdf

http://www.karlin.mff.cuni.cz/~holub/soubory/prizeproblem.pdf
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The notation a1 · · · an of course means the word consisting of the letters a1, . . . , an and
not a product of numbers. When we actually want to compute the product of two numbers,
it should be clear from context. If w1, . . . , wn are words, we can also use the notation

n∏
i=1

wi = w1 · · ·wn

for their concatenation.
Whenever the symbol Γ appears in this article, it is always used to denote an alphabet.

Occasionally we will use other alphabets as well. All of them can be assumed to be subsets
of R. Alphabets are also assumed to be finite, unless otherwise specified.

Let a1, . . . , ak ∈ Γ. The prefix sum word of w = a1 · · · ak is the word psw(w) = b1 · · · bk,

where bi = Σ(a1 · · · ai) for all i. Of course, psw(w) is usually not a word over Γ, but over
some other alphabet. The word psw(w) has the same length as w and the last letter is Σ(w).

The mapping psw is injective. It is not a morphism, but we can give a simple formula for
the prefix sum word of a product by using the notation pswr(w) = c1 · · · ck, where r ∈ R
and ci = bi + r for all i. Then, for w1, . . . , wn ∈ Γ∗,

psw(w1 · · ·wn) =
n∏

i=1
pswΣ(w1···wi−1)(wi).

If w1, . . . , wn are zero-sum, then we have the simpler formula

psw(w1 · · ·wn) =
n∏

i=1
psw(wi),

so in this case the mapping psw actually does behave like a morphism. For the nth power of
a word w, we get the formula

psw(wn) =
n∏

i=1
psw(i−1)Σ(w)(w).

If w is zero-sum, then we have psw(wn) = psw(w)n.

Because letters are real numbers, there is a natural order relation for them. The largest
and smallest letters in a word w can be denoted by max(w) and min(w), respectively. The
length of w is denoted by |w|, and the number of occurrences of a letter a in w is denoted by
|w|a. The size of a set S is denoted by |S|.

I Example 2. Let w = bbcaac, where a = 1, b = 2, and c = −3. We have |w| = 6,
max(w) = 2, and min(w) = −3. Because Σ(w) = 2 + 2 − 3 + 1 + 1 − 3 = 0, w is a
zero-sum word. The prefix sum word of w is psw(w) = 241230, and max(psw(w)) = 4 and
min(psw(w)) = 0.

When studying words from a combinatorial point of view, the choice of the alphabet is
arbitrary (except for the size of the alphabet). Therefore, we can assign numerical values to
the letters in any way we like, as long as no two letters get the same value. The next lemma
shows in a formal way that, given any word w, the alphabet can be normalized so that w

becomes a zero-sum word.

I Lemma 3. Let w ∈ Γ∗. There exists an alphabet ∆ and an isomorphism h : Γ∗ → ∆∗
such that h(w) is zero-sum.

STACS 2017
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•

•

•

•

•

•

•

•
(|w|, Σ(w))

max(psw(w))

min(psw(w))

Figure 1 Geometric representation of the word psw(w), where w = aaabbaa, a = 1, and b = −2.
We have |w| = 7, Σ(w) = 1, max(psw(w)) = 3, and min(psw(w)) = −1.

Proof. If w is the empty word, it is already zero-sum. Otherwise, let d = Σ(w)/|w|.
We can define an alphabet ∆ = {a − d | a ∈ Γ} and a morphism h : Γ∗ → ∆∗ by
h(a) = a − d for all a ∈ Γ. Clearly, h is a bijection and therefore an isomorphism, and
Σ(h(w)) = Σ(w)− d|w| = 0. J

By the next lemma, every zero-sum word can be written as a product of minimal zero-sum
words in a unique way. Later we will use this to “compress” zero-sum words by replacing
these factors by letters. The free monoid in the lemma can be either trivial (just the empty
word) or infinitely generated.

I Lemma 4. The set of zero-sum words over Γ is a free monoid.

Proof. Clearly zero-sum words form a monoid. This monoid is right unitary, that is, if u

and uv are zero-sum, then so is v. It is well-known that a right unitary submonoid of a free
monoid is free. (The claim could easily be proved directly as well.) J

3 Geometric intuition

In this section, we give some geometric intuition, which is not necessary for the proofs, but
it might be helpful in understanding them (at least it was helpful in inventing the proofs).

The above definitions have the following geometric interpretation: Let w = a1 · · · ak.
The word psw(w) (or the word w depending on the point of view) can be represented by a
polygonal chain by starting at the origin, moving a1 steps up and one step to the right, a2
steps up and one step to the right, and so on. If psw(w) = b1 · · · bk, then this curve is also
obtained by connecting the points (0, 0), (1, b1), . . . , (k, bk). The last point is (|w|, Σ(w)). If
we start counting from the point (1, b1) instead of (0, 0), then the biggest y-coordinate is
max(psw(w)) and the smallest y-coordinate is min(psw(w)). See Figure 1 for an example.
The word pswr(w) could be represented in a similar way by starting at the point (0, r)
instead of (0, 0). The curve of psw(uv) consists of the curve of psw(u) followed by the curve
of psw(v) translated in such a way that its starting point matches the endpoint of the curve
of psw(u).

The geometric interpretation is similar to the relation between Dyck words and Dyck
paths, or the definition of Sturmian words as mechanical words. Representations of words as
paths (or paths as words) can also be used in discrete geometry. This can, for example, lead
to connections between word equations and tilings of a plane, see [2] for a survey.
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x0, . . . , xn ∈ Γ∗

Σ(x0) = 0

∀i : Σ(xi) = 0 ∃i : Σ(xi) 6= 0

x0 /∈ 0∗ x0 ∈ 0∗

∃y0, . . . , yn :
K(x0, . . . , xn)
= K(y0, . . . , yn)
and |y0| < |x0|

∀i : xi ∈ 0∗ or
K(x0, . . . , xn) = ∅

|K(x0, . . . , xn)| ≤ 2

Lemma 3

Lemma 6

Lemma 8

repeat with y0, . . . , yn

in place of x0, . . . , xn

Figure 2 Structure of the proof.

4 Idea of the proof

For x0, . . . , xn ∈ Γ∗, let

K(x0, . . . , xn) = {k ∈ Z+ | xk
0 = xk

1 · · ·xk
n}.

We are going to prove that either x0, . . . , xn commute or K(x0, . . . , xn) contains at most two
numbers. This proves Conjecture 1.

Before the formal treatment in Section 5, let us outline the strategy (also illustrated in
Figure 2): First we use Lemma 3 to change the alphabet so that x0 becomes zero-sum. If all
xi are zero-sum, then either x0 is unary or we can use Lemma 6 to compress them so that
the set K(x0, . . . , xn) is preserved. The compression can possibly be repeated several times,
but only finitely many times. After that we end up either in the unary case, in which case
also the original words xi commute, or in the case where some xi is not zero-sum. If some xi

is not zero-sum, then we can use Lemma 8 to prove that K(x0, . . . , xn) contains at most two
numbers; this is the most complicated part of the proof. The idea in Lemma 8 is to compare
the number of occurrences of a certain letter in the words psw(xk

0) and psw(xk
1 · · ·xk

n). If
these are different, then k /∈ K(x0, . . . , xn), because k ∈ K(x0, . . . , xn) is equivalent to
psw(xk

0) = psw(xk
1 · · ·xk

n).

I Example 5. Consider the case x0 = abbaabbaab, x1 = abba, x2 = ab, and x3 = baab.
Our alphabet is {a, b}, and we can choose arbitrary numerical values for a and b. We

want x0 to be zero-sum, so let a = 1 and b = −1. Then also x1, x2 and x3 are zero-sum. We
can do the compression, formalized in Lemma 6, by writing the words as products of the
zero-sum words ab and ba, and then replacing ab with a letter c and ba with a letter d. We
get the words y0 = cdcdc, y1 = cd, y2 = c, and y3 = dc, and K(x0, . . . , xn) = K(y0, . . . , yn).

Our new alphabet is {c, d}, and we can choose arbitrary numerical values for c and d.
We want y0 to be zero-sum, so let c = 2 and d = −3. Then y1, y2 and y3 are not zero-sum.
Lemma 8 shows that |K(y0, . . . , yn)| ≤ 2. The idea in Lemma 8 is to compare the number of

STACS 2017
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occurrences of a certain letter in the words psw(yk
0 ) and psw(yk

1 · · · yk
n). In this particular

example, it is sufficient to look at the largest letters: We see that max(psw(yk
0 )) = 2 for all

k, but max(psw(yk
1 yk

2 yk
3 )) ≥ Σ(yk

1 yk
2 ) = k. Thus yk

0 = yk
1 yk

2 yk
3 can hold only for k ∈ {1, 2},

and it does hold for these two numbers, so K(x0, . . . , xn) = {1, 2}.

5 Proof of the conjecture

In this section we will prove our main result, Theorem 9. It is preceded by three lemmas:
Lemma 6 and Lemma 8 were already mentioned in Section 4, and Lemma 7 is needed in the
proof of Lemma 8.

I Lemma 6. Let x0, . . . , xn ∈ Γ∗ be zero-sum words. If x0 is not unary (or equivalently,
if x0 contains a nonzero letter), then there are words y0, . . . , yn such that |y0| < |x0|,
K(x0, . . . , xn) = K(y0, . . . , yn), and y0, . . . , yn commute if and only if x0, . . . , xn commute.

Proof. By Lemma 4, we can let Z be the basis of the free monoid of zero-sum words over
Γ, ∆ be an infinite alphabet, and h : Z∗ → ∆∗ be an isomorphism. Let yi = h(xi) for all
i. Because h is an isomorphism, the words y0, . . . , yn satisfy exactly the same equations as
x0, . . . , xn. In particular, yk

0 = yk
1 · · · yk

n is equivalent to xk
0 = xk

1 · · ·xk
n, and yiyj = yjyi is

equivalent to xixj = xjxi.
It remains to be shown that |y0| < |x0|. There are words z1, . . . , zm ∈ Z such that

x0 = z1 · · · zm. Then h(zi) ∈ ∆ for all i. The words zi cannot be empty, and at least one of
them contains a nonzero letter, because x0 is not unary. This means that at least one of
them has length at least 2. Thus |y0| = m < |z1|+ · · ·+ |zm| = |x0|. J

In Lemma 8, we will study the words psw(xk
0) and psw(xk

1 · · ·xk
n). If si = Σ(x1 · · ·xi−1)

for i ∈ {1, . . . , n}, then

psw(xk
1 · · ·xk

n) =
n∏

i=1
pswksi

(xk
i ),

so we will also need to study the words pswksi
(xk

i ) that appear in this product. The following
technical lemma will be used to analyze these words.

I Lemma 7. Let x ∈ Γ∗, s ∈ R, and Σ(x) 6= 0 or s 6= 0. Let k1, k2, k3 ∈ Z+ and k1 < k2 < k3.
Let wk = pswks(xk). Let a ≥ max(wk1wk2wk3). Then |wk1 |a ≥ |wk2 |a.

Proof. Before the actual proof, let us give the intuitive idea using the geometric concepts in
Section 3. The heights of the endpoints of the curve of pswks(xk) are ks and ks + kΣ(x).
Their positivity or negativity does not depend on k, and at least one of them is nonzero
by the assumptions. If one of them is positive, then it becomes larger as k grows, and the
highest point on the curve becomes higher as k grows. This means that max(wk1wk2wk3) =
max(wk3) > max(wk2), and thus |wk2 |a = 0. If both of the heights of the endpoints are
negative, then they become smaller as k grows, and the highest point on the curve becomes
lower as k grows. This means that max(wk1wk2wk3) = max(wk1) > max(wk2), and thus
|wk2 |a = 0. If one of the heights of the endpoints is zero and the other is negative, then the
highest point on the curve remains the same as k grows, and also the number of times it
occurs remains the same, so |wk1 |a = |wk2 |a.

Let us now move on to the formal proof. For every k ∈ {k1, k2, k3}, we have

wk =
k−1∏
i=0

pswks+iΣ(x)(x) (4)
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and thus

max(wk) = max{ks + iΣ(x) | 0 ≤ i < k}+ max(psw(x))

=
{

ks + max(psw(x)) if Σ(x) ≤ 0,

k(s + Σ(x))− Σ(x) + max(psw(x)) if Σ(x) ≥ 0.
(5)

If Σ(x) ≤ 0 and s 6= 0 or if Σ(x) ≥ 0 and s + Σ(x) 6= 0, then (5) is strictly decreasing
or strictly increasing with respect to k, and either max(wk1) > max(wk2) or max(wk3) >

max(wk2). In this case, a > max(wk2) and thus |wk2 |a = 0, which proves the claim.
We still need to consider the case Σ(x) < 0 and s = 0, and the case Σ(x) > 0 and

s + Σ(x) = 0 (if Σ(x) = 0, then s = s + Σ(x) 6= 0 by the assumptions). If Σ(x) < 0 and s = 0,
then a can appear in the product (4) only in the term corresponding to i = 0, which is psw(x).
This does not depend on k, so |wk1 |a = |wk2 |a. Similarly, if Σ(x) > 0 and s + Σ(x) = 0,
then a can appear in the product (4) only in the term corresponding to i = k − 1, which is
psw−Σ(x)(x). This does not depend on k, so |wk1 |a = |wk2 |a. This completes the proof. J

Words u and v are called abelian equivalent if |u|a = |v|a for every letter a. (We could
replace abelian equivalence by equality in the next lemma; then the result would be weaker,
but still strong enough for our purposes.)

I Lemma 8. Let x0 be a zero-sum word, and let x1, . . . , xn be words not all of which have
zero sum. There are at most two positive integers k such that psw(xk

0) and psw(xk
1 · · ·xk

n)
are abelian equivalent.

Proof. Let s1 = 0 and si = Σ(x1 · · ·xi−1) for i ∈ {2, . . . , n}. Then

psw(xk
1 · · ·xk

n) =
n∏

i=1
pswksi

(xk
i ). (6)

Let

I0 = {i ∈ {1, . . . , n} | si = 0 and Σ(xi) = 0} and I1 = {1, . . . , n}r I0.

The set I1 is nonempty by the assumptions. We have

psw(xk
0) = psw(x0)k and pswksi

(xk
i ) = psw(xi)k for all i ∈ I0. (7)

Let psw(xk
0) and psw(xk

1 · · ·xk
n) be abelian equivalent for k ∈ {k1, k2, k3} and k1 < k2 < k3.

Before the actual proof, let us give the intuitive idea by using the geometric concepts in
Section 3. To simplify the explanation, we consider only the case x0 = x1 · · ·xn here. Because
x0 is zero-sum, the curve of psw(xk

0) consists of k copies of the curve of psw(x0), translated
horizontally but not vertically. If i ∈ I0, then the curve of psw(xi) appears here k times, also
translated horizontally but not vertically, by the definition of the set I0. Similarly, the curve
of psw(xi) appears k times in the curve of psw(xk

1 · · ·xk
n), again translated horizontally but

not vertically. Because we are only interested in abelian equivalence, we can cancel these
appearances out (in the formal proof, this corresponds to moving the sum related to I0 to
the left-hand side in (8)). Effectively, this means that we can assume that I0 is empty. Then,
let a be the largest letter appearing in psw(xk

0). The letter a does not depend on k, and the
number of occurrences grows as k grows. The number of occurrences of a in psw(xk

1 · · ·xk
n)

must be the same, but this leads to a contradiction with Lemma 7.

STACS 2017
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Let us now move on to the formal proof. For k ∈ {k1, k2, k3} and every letter a, we have
|psw(xk

0)|a = |psw(xk
1 · · ·xk

n)|a, so it follows from (6) that

|psw(xk
0)|a =

n∑
i=1
|pswksi

(xk
i )|a =

∑
i∈I0

|pswksi
(xk

i )|a +
∑
i∈I1

|pswksi
(xk

i )|a.

From (7) it then follows that

|psw(x0)k|a =
∑
i∈I0

|psw(xi)k|a +
∑
i∈I1

|pswksi
(xk

i )|a,

and, because |wk|a = k|w|a for all words w,

k
(
|psw(x0)|a −

∑
i∈I0

|psw(xi)|a
)

=
∑
i∈I1

|pswksi
(xk

i )|a. (8)

Consider the largest letter a which appears in pswksi
(xk

i ) for at least one i ∈ I1 and one
k ∈ {k1, k2, k3}. Such a letter must exist, because the set I1 is not empty. The right-hand
side of (8) is positive for this a and at least one k, so also the left-hand side must be positive
and thus

|psw(x0)|a −
∑
i∈I0

|psw(xi)|a > 0.

But then the left-hand side is positive for all k, and strictly increasing with respect to k. For
every i ∈ I1, we can use Lemma 7 with x = xi and s = si. The assumption Σ(x) 6= 0 or
s 6= 0 is satisfied because of the definition of I1, and the assumption a ≥ max(wk1wk2wk3) is
satisfied by the definition of a. It follows from Lemma 7 that the right-hand side of (8) cannot
be larger for k2 than for k1. This contradicts the left-hand side being strictly increasing, and
this contradiction proves the claim. J

Now we can state as a formal theorem and proof what was said at the beginning of
Section 4.

I Theorem 9. Let x0, . . . , xn ∈ Γ∗. If xk
0 = xk

1 · · ·xk
n for three positive integers k, then the

words x0, . . . , xn commute.

Proof. We assume that xixj 6= xjxi for some i, j and prove that |K(x0, . . . , xn)| ≤ 2. We
can assume that x0 is minimal in the sense that there does not exist words y0, . . . , yn such
that yiyj 6= yjyi for some i, j, K(y0, . . . , yn) = K(x0, . . . , xn), and |y0| < |x0|. By Lemma 3,
we can assume that x0 is zero-sum.

If x0 ∈ 0∗, then some xi /∈ 0∗ because of the assumption xixj 6= xjxi, and thus
K(x0, . . . , xn) = ∅. If x0 /∈ 0∗ and x1, . . . , xn are zero-sum, then Lemma 6 contradicts the
minimality assumption. If at least one of x1, . . . , xn is not zero-sum, then |K(x0, . . . , xn)| ≤ 2
by Lemma 8. This completes the proof. J

6 Conclusion

In this article, we have proved Conjecture 1. One possible direction for further research would
be to study equations of the form (2), or some subfamily of these equations (for example, the
equations with m = 1). Another direction would be to try to apply the methods used in this
paper (in particular, Lemma 3, prefix sum words, and the geometric intuition) to some other
entirely different problems on word equations. We hope and believe that, in addition to
the immediate impact of solving a major open problem, this article will also lead to further
advances in the future.
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