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Abstract
Consider an unweighted, directed graph G with the diameter D. In this paper, we introduce the
framework for counting cycles and walks of given length in matrix multiplication time Õ(nω).
The framework is based on the fast decomposition into Frobenius normal form and the Hankel
matrix-vector multiplication. It allows us to solve the following problems efficiently:

All Nodes Shortest Cycles – for every node return the length of the shortest cycle containing it.
We give an Õ(nω) algorithm that improves Yuster [30] Õ(n(ω+3)/2) algorithm for unweighted
digraphs.
We show how to compute all D sets of vertices lying on cycles of length c ∈ {1, . . . , D} in
time Õ(nω) randomized time. It improves upon [9] where algorithm that computes a single
set is presented.
We present a functional improvement of distance queries [32] for directed, unweighted graphs.
All Pairs All Walks – we show almost optimal Õ(n3) time algorithm for all walks counting
problem. We improve upon the naive O(Dnω) time algorithm.
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1 Introduction

The All-Pairs Shortest Paths (APSP) problem asks to find distances between all pairs of
vertices in a graph. For a directed graphs with weights in R, there is a classical O(n3) time
algorithm Floyd and Warshall [12, 28]. Currently best upper bound for this problem is due
to Williams [29] O( n3

2Ω(log n)0.5 ) algorithm. It is asymptotically faster than O(n3/ logc n) for
any c > 0 (see survey [6] for earlier algorithms). Showing any algorithm that would work in
O(n3−ε) time for some ε > 0 is a major open problem [29].

If we consider unweighted, directed graphs there are subcubic algorithms that exploit
fast matrix multiplication. For the undirected graph Seidel [22] presented the optimal Õ(nω)
time algorithm, where ω < 2.373 is the matrix multiplication exponent [17]. For the directed
case Zwick [33] presented an O(n2.575) time algorithm that is based on the fast rectangular
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matrix multiplication. Moreover, if we are interested in small integer weights from the set
{−M, . . . ,M} we have O(M0.68n2.575) algorithm [33].

Because APSP in undirected graphs can be solved in Õ(nω), diameter, radius, shortest
cycle, etc. can be determined in Õ(nω) time as well. It is surprising that for a directed case,
where merely O(n2.575) APSP is known there are also Õ(nω) algorithms for determining
these properties. After a long line of improvements Cygan et al. [9] showed an Õ(Mnω)
time algorithms for finding minimum weight perfect matching, shortest cycle, diameter and
radius. Also, they showed an application of their techniques that improves upon Yuster [30]
Õ(Mnωt) time algorithm for the following problem: determine the set of vertices that lie on
some cycle of length at most t. Cygan et al. [9] managed to solve this problem in Õ(Mnω)
time using Baur-Strassen’s theorem.

All of these algorithms are effective only in the case of a dense graphs. For graphs with
the small number of edges there are better algorithms (e.g., APSP in Õ(|V ||E|) time [26]).
But these algorithms are Θ(n3) when |E| = Θ(n2).

2 Related Work

2.1 Distance Queries
Yuster and Zwick [32] considered the weighted, directed graphs with weights in {−M, . . . ,M}.
They showed an algorithm that needs Õ(Mnω) preprocessing time. After preprocessing each
distance δ(u, v) in the graph can be computed exactly in O(n) query time. In the special
case M = 1 they showed Õ(nω) algorithm that solves Single Source Shortest Paths (SSSP).

We will match their bounds (up to the polylogarithmic factors) using Frobenius normal
form. Next we will extend their algorithm so it will return more information about a graph
in the same query/preprocessing time.

2.2 Counting Cycles
For a given graph G determining whether G contains a simple cycle of length exactly k
is NP-hard (in particular determining whether a graph contains a Hamiltonian cycle is
NP-complete). However, if we fix k to be a constant this problem can be solved in polynomial
time.

Alon et al. [4] introduced a color coding technique. For a fixed k if a graph G(V,E)
contains a simple cycle of size exactly k then such cycle can be found in Õ(|V |ω) time.
Unfortunately, their algorithm depends exponentially 2O(k) on the length of the cycle and
in consequence is inapplicable for large k. In the next years, Alon et al. [5] showed (using
a different technique) that for k ≤ 7 it is possible to count the number of cycles of length
exactly k in a graph in Õ(|V |ω) time. In [31] it is shown that for any even k, cycles of
length k can be found in O(|V |2) time in undirected graphs (if they contain such a cycle).
Alon et al. [5] showed more methods that depend solely on a number of edges in a graph.
For example for odd k they showed O(E2− 2

k+1 ) algorithm for finding a cycles of length k.
However, for dense graphs these results are worse than Alon et al. [4].

It appears that to break the exponential dependence on the length of the cycle we can do
one of the following:

Consider non-simple cycles (the vertices can reoccur) of length exactly k,
Determine cycles of length at most k.

To detect whether a non-simple cycle of length exactly k exists one can use the folklore
algorithm. It starts by taking the adjacency matrix A of a graph G. Subsequently, in Õ(nω)
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time compute Ak by repeated squaring. If Tr
[
Ak
]
> 0 then a non-simple k length cycle

exists1.
Yuster [30] considered the following problem: for every vertex in a graph find a shortest

cycle that contains it. He called this problem All-Nodes Shortest Cycle (ANSC). He showed
a randomized algorithm that solves ANSC for undirected graphs with weights {1, . . . ,M}
in Õ(

√
Mn(ω+3)/2) time. He noted that for simple digraphs (directed graphs with no anti-

parallel edges) it is reduced to All-Pairs Shortest Paths problem. The fastest known APSP
algorithm for unweighted, directed graphs runs in O(n2.575) due to [33]. Here, we will show
how to solve ANSC in Õ(nω) for general, unweighted, directed graphs. Unfortunately, our
techniques will allow us only to find the length of such a cycle (not determining it). But
we can return the set of points, that lie on some cycle of a given length. Independently to
our work Agarwal and Ramachandran [3] proved that ANSC can be solved in Õ(nω) for
unweighted, undirected graphs using a completely different technique.

Yuster [30] also considered following problem: given a graph and an integer t. Let S(k)
denote the set of all vertices lying in a cycle of length ≤ k. Determine S(t). He considered
directed graphs with weights in {−M, . . . ,M} and showed Õ(Mnωt) algorithm

Recently, Cygan et al. [9] improved his algorithm. They showed that for a fixed t ∈ [0, nM ]
the set S(t) can be computed in Õ(Mnω) randomized time. We show, that for an unweighted
(M = 1) directed graphs we can compute sets S(1), S(2), . . . , S(D) in Õ(nω) time with high
probability.

3 Preliminaries

Let T (n) be the minimal number of algebraic operations needed to compute the product
of n × n matrix by an n × n matrix. We say that ω is the exponent of square matrix
multiplication. For now the best known upper bound on ω is due to Le Gall [17]:

I Theorem 1 (Le Gall [17]). For every ε > 0, T (n) < O(nω+ε) where ω < 2.37287.

In this paper, we will omit ε in definition and will assume (like in many other papers)
that O(nω) operations are needed to multiply two matrices. The best lower bound for the
exponent of matrix multiplication is ω ≥ 2. For convenience in this paper we will assume
that ω > 2. The Õ notation hides polylogarithmic factors in the complexity. We will use it
to emphasize that all our algorithms need the polylogarithmic number of calls to the fast
matrix multiplication algorithm.

I Theorem 2 (Storjohann [24]). The Frobenius canonical-form of a matrix can be computed
deterministically using Õ(nω) field operations.

The comprehensive description of Frobenius normal form will be presented in Section 4.
The properties of Frobenius normal form used in this paper are well known in literature [24,
23, 10]. There are also probabilistic algorithms that compute this form in expected Õ(nω)
with high probability over small fields [11]. In this paper, all algorithms are deterministic
if we set the upper bound on the number of distinct walks W . Then, due to the time of a
single field operation we need additional O(logW ) factor in the complexity. However, if we
are only interested if cycle/walk of a given length exists in a graph, we can set sufficiently
small field Zp (p has O(logn) bits). This way when algorithm returns nonzero we are sure

1 Tr [A] denotes the trace of a matrix A, i.e., the sum of elements on main diagonal.

STACS 2017
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that some walk exists there. If algorithm returns zero, then with high probability there is no
such walk.

In this paper, randomization occurs only because for some graphs number of walks can
be exponential (e.g., W = O(2n)) and the output requires to return them.

For matrices A ∈ Rn×k and B ∈ Rn×l the A⊕B ∈ Rn×(k+l) denotes the concatenation
of their columns. Ca,b ∈ Rn×(b−a) denotes a matrix constructed by concatenating columns
ca, ca+1, . . . , cb of the matrix C ∈ Rn×m.

4 Consequences of Frobenius Normal Form

Let K be a commutative field. For any matrix A ∈ Kn×n there exists an invertible U over
K such that:

U−1AU = F =


C1 0

C2
C3

. . .
0 Ck

 .

and F is the Frobenius-canonical-form 2 of A. The diagonal block Ci is called the companion
matrix:

Ci =



0 . . . 0 −c0
1 0 0 −c1

1
. . .

... −c2
. . . 0

...
1 0 −cr−2

0 1 −cr−1


∈ Kr×r.

Each companion matrix corresponds to the monic polynomial Ci(x) = xr + cr−1x
r−1 +

. . .+ c0 ∈ K [x] and is called the minimal polynomial of A. Each minimal polynomial has
a property that Ci(A) = 0. To guarantee that matrix has only one decomposition into
Frobenius normal form we require that every polynomial must divide the next one, i.e.,
Ci(x)|Ci+1(x). The final list of polynomials is called the invariant factors of matrix A [24].

4.1 Cyclic Subspaces
Frobenius decomposition can be used to get the desired power of a matrix (analogously to
the diagonal decomposition):

Ak = (UFU−1)k = UF (U−1U)F · · ·F (U−1U)FU−1 = UF kU−1.

Moreover, we will use the property that the power of block diagonal matrix F is block
diagonal:

F k =


Ck1 0

Ck2
Ck3

. . .
0 Ckl

 .

2 Sometimes called the rational-canonical form.
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 v1 v2 . . . vk . . . vn vn+1 . . . vk+n−1 . . . v2n



C1 Cn+1

Ck

Figure 1 Visualisation of the cyclic property (Definition 3).

Now, we need a property of companion matrices that will enable us to power them
efficiently.

I Definition 3 (Cyclic Property). Let v1, . . . , vn be the columns of a matrix C ∈ Kn×n. Let
vn+1, . . . , v2n be the columns of matrix Cn+1. If, for every 1 ≤ k ≤ n the columns of matrix
Ck are vk, vk+1, . . . , vk+n then the C has a cyclic property.

I Theorem 4 (Folklore [14], see [18] for generalization). Every companion matrix has a cyclic
property.

5 Matching Distance Queries on Directed Unweighted Graphs

In this section, we will present a simple algorithm that matches the best known upper bounds
of Yuster and Zwick [32] distance queries in directed unweighted graphs.

5.1 Answering Distance Queries by Using Frobenius Normal Form
We take the adjacency matrix A of a graph G (i.e., n×n matrix with au,v = 1 when (u, v) ∈ G
and 0 otherwise). The k-th power of the adjacency matrix of the graph G holds the number
of walks, i.e., an au,v element of Ak is the count of distinct walks from u to v of length k in
the graph. The shortest path between vertices u, v is the smallest k such that Ak has nonzero
element au,v. For a brief moment, we will forget about graph theory interpretation and focus
only on finding such k.

We decompose matrix A into the Frobenius normal form. Storjohann [24] showed an
algorithm that returns U and F deterministically in Õ(nω) time (note that matrix inverse
can also be computed in Õ(nω) time).

5.2 Single Invariant Factor
To better explain the idea, for a start we will consider a simple case when a number of
invariant factors of A is exactly 1. In that situation, the matrix F is a companion matrix
C ∈ Kn×n.

First, we compute the (n + 1)-th power of the companion matrix Fn+1. This can be
done in Õ(nω) time by repeated squaring (compute F, F 2, F 4, . . . , Fn+1 with O(logn) matrix
multiplications)3.

3 One can compute F n+1 even faster. Namely, in Õ(n2) time by applying the cyclic property (see
Definition 3)

STACS 2017
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v1 . . . vk . . . vn vn+1 . . . vk+n−1 . . . v2n

UF kU =


u1
u2
...
un


Figure 2 Construction of UF k from matrices UF and UF n+1.

If the matrix UF has columns v1, . . . , vn and the matrix UFn+1 has columns vn+1, . . . , v2n,
then the columns vk, . . . , vk+n−1 construct UF k (see Figure 2). It is because the matrix F
has the cyclic property.

This step takes just 2 matrix multiplications, because we need to multiply U times F
and Fn+1. The preprocessing phase takes only Õ(nω) time.

Now, if a user wants to know the number of distinct walks from vertices u to v of length
exactly k he takes:

The u-th row of matrix UF k (n numbers),
The v-th column of matrix U−1,
Multiplies them in O(n) time (dot product of n dimensional vectors).

This will give us the u, v element of matrix UF kU−1 = Ak. To get the length of the
shortest path (i.e., the minimal k that wu,v > 0), we will modify our matrices slightly to get
the number of walks of length ≤ k. At the end, we will fit in Õ(n) query time (by using
binary search) and Õ(nω) preprocessing time.

Basically, for a given k we need to get the u, v element of matrix A+A2 + · · ·+Ak. It
suffices to add consecutive columns of matrix UF ⊕ UFn+1 = v1 ⊕ v2 ⊕ . . . ⊕ v2n in the
following manner 4:

M ′ =
[
v1 v1 + v2 v1 + v2 + v3 . . .

∑k
i=1 vi . . .

∑2n
i=1 vi

]
∈ Rn×2n.

Now, to get A+A2 + · · ·+Ak one needs to multiplyM ′k,k+n−1U
−1 and subtractM ′1,nU−1

for a balance 5.
We can transform matrices U and F to matrix M ′ in O(n2) time during preprocessing.

During query, we need to compute 2 dot products (u-th row of M ′k,k+n−1 times v-th column
of U−1 and u-th row of M ′1,n times v-th column of U−1) and subtract them.

We have an algorithm that for a given vertices u, v ∈ G and integer k ∈ {1, . . . , n} can
answer: how many walks from u to v of length less or equal k are in the graph G in Õ(n)
query and Õ(nω) preprocessing.

Because the result of the query is increasing in k we can use binary search. We can
determine the first k for which the query will answer nonzero value in O(logn) tries. Hence,
in Õ(n) we can find the length of the shortest path. This generalized query can easily return
the number of walks of length exactly k, i.e., q(u, v, k)− q(u, v, k − 1).

For now, we only matched the result of Yuster and Zwick [32] for unweighted graphs with
a single, invariant factor. In the next section, we will show how to generalize our technique for

4 Operation ⊕ denotes concatenation.
5 Xa,b denotes a matrix constructed by concatenating columns xa, xa+1, . . . , xb of a matrix X.
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graphs with any number of invariant factors. Then, we will extend the Yuster and Zwick [32]
algorithm. Namely, we will show that in Õ(nω) preprocessing time and Õ(n) query time we
can get D numbers (where D is the graph diameter): w1

u,v, w
2
u,v, . . . , w

D
u,v. The number wiu,v

tells how many walks of length exactly i are from vertex u to v.
With such an algorithm we can easily implement Yuster and Zwick [32] distance queries

by linearly scanning (see Section 6). Thus, for the multiple invariant factors we will skip
the description of algorithm that returns the number of walks of length smaller than k (the
technique is the same).

5.3 Multiple Invariant Factors
Now, we will consider a case when k ≥ 1, i.e., matrix F has multiple invariant factors. First
of all, we need to note that this generalization is not perfect and will allow only the walks of
length up to D (the longest distance in a graph, i.e., diameter).

In the real world applications of our framework (detecting cycles, determining distance
between nodes, etc.) we do not need walks longer than the longest possible distance in a
graph. It is natural that the diameter is considered to be a bound of an output in graph
problems [8, 9, 1, 2].

5.3.1 Relation of the Graph Diameter and Frobenius Normal Form
We begin with relating the graph diameter to the Frobenius normal form. It turns out that
the graph diameter is bounded by the degree of a smallest invariant factor.

I Theorem 5 ([7]). Given a directed, unweighted graph G with a diameter D. Let µ denote
the degree of the smallest invariant factor (i.e., the dimension of the smallest block in the
Frobenius matrix F ) of an adjacency matrix of the graph G. Then D ≤ µ.

The bounds of this inequality are tight. There are graphs with diameter D = µ and
graphs with µ = n and arbitrary small diameter [7]. Our algorithms are able to return walks
up to the length µ. We use the bound on D solely because it is easier to interpret diameter
than the smallest degree of the invariant factor.

5.3.2 Generalization to Multiple Invariant Factors
Let k denote the number of blocks in the Frobenius matrix F and µ be the number of
columns of the smallest block. To multiply matrix U by F we can start by multiplying strips
of matrix U by appropriate blocks of F and concatenate them later (see Figure 3).

We start by splitting the matrix U into k strips with rows corresponding to the appropriate
blocks of F (strip Ui has as many columns as block Fi). Then we multiply UF and have k
strips: U1F1, U2F2, . . . UkFk (each with at least µ columns). Next, we multiply UFµ and we
keep k strips: U1F

µ
1 , U2F

µ
2 , . . . , UkF

µ
k . Our goal is to get a data structure such that if we

need UF k, we can quickly choose appropriate columns and append them.
The matrix UiFi has li columns: v1, . . . , vli . Because Fi is a companion matrix, the UiFµi

has the cyclic property (Definition 3). And the matrix UiFµi has columns: vµ, . . . , vµ+li .
There are some duplicate columns in UiFi and UiFµi , when µ < li. Hence, we only need to
keep columns v1, . . . , vµ+li for this strip. We do this for all strips (see Figure 4).

We are left with a matrix that has at most 2n columns (because l1 +µ+l2 +µ+ . . . lk+µ =
kµ+

∑n
i=1 li = n+ kµ ≤ 2n). To generate it we need to power F to µ and do multiplications

U · F and U · Fµ. This can be computed in Õ(nω) time.

STACS 2017
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U−1

F1

F2

F3

U1F1 U2F2 U3F3U1 U2 U3

Figure 3 Multiplication of the block matrix. Example for 3 invariant factors.

U1F1 U1F
µ
1 U2F2 U2F

µ
2 U3F3 U3F

µ
3

Figure 4 Combining strips into a single matrix.

5.3.3 Queries with Multiple Invariant Factors

When a query for the number of walks of length k from node u to v comes, we do:
1. For each strip i take the u-th row of UiFi ⊕ UiFµi concatenate them (see Figure 5) into

vector ū,
2. Take v-th column of U−1 matrix and denote it v̄,
3. Return the dot product ū · v̄.

Because l1 + l2 + . . .+ lk = n the vector ū ∈ Kn. Query needs O(n) time.
Finally, this dot product is au,v element of the matrix UF kU−1, for a fixed k ≤ µ.

Analogously to Section 5.2 one can extend this result to return the number of walks of length
less or equal k. This matches (up to the polylogarithmic factor) the result of Yuster and
Zwick [32]. However in the next section we will show a more general result.

6 Almost Optimal Query

In the previous section, we showed how to preprocess a directed, unweighted graph in Õ(nω)
time in such a way that in O(n) query we can return a number of distinct walks of a length
k from vertex u to v. However, in linear time O(n) we return only a single number. Our
goal is to get far richer information in Õ(n) query time.

I Theorem 6. Let G = (V,E) be a directed, unweighted graph with n vertices and a diameter
D. There exists an algorithm that after some preprocessing can answer queries for any given
u, v ∈ V :
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U1F1 ⊕ U1F
µ
1

i i+ l1

U2F2 ⊕ U2F
µ
2

i i+ l2

U3F3 ⊕ U3F
µ
3

i i+ l3

Figure 5 Schema of obtaining vector ū for the cycles of length i.

Query returns {wi | 1 ≤ i ≤ D}, where wi is the number of distinct walks from u to v of
length exactly i,
Preprocessing takes Õ(nω) and query takes Õ(n) field operations.

The algorithm is deterministic (but there are O(logW ) factors in derandomized version,
see Section 3 for explication).

This algorithm is a significant improvement over Yuster and Zwick [32]:
One can use Theorem 6 to find the distance between u, v by linearly scanning the array
and returning the first k such that wk > 0,
Theorem 6 can count cycles. In contrast the Yuster and Zwick [32] cannot, because the
distance from u to u is always 0 (we will see that in the next section),
Theorem 6 is almost optimal (when D = O(n) its output and time are O(n)).

On the other hand, Theorem 6 is only a functional improvement and it does not break
the Õ(nω) of the Single Source Shortest Paths (SSSP) for dense, directed graphs.

6.1 Hankel Matrix
Now, we will focus on the proof of Theorem 6. First, we need to introduce the Hankel matrix
and its properties.

H =


c1 c2 . . . cn
c2 c3 . . . cn+1
...

...
...

cn cn+1 . . . c2n−1


Hankel matrix is defined by its first row and last column (2n− 1 numbers define n× n

Hankel matrix). The numbers from the previous row are left-shifted by one and the new
number is added at the end. Hankel matrices have some similarities with Topelitz and
Circulant matrices.

The basic property we need is that the product of Hankel matrix and vector can be
computed in O(n logn) time (see [16, 25]) even though explicitly writing the Hankel matrix
as n× n matrix takes O(n2) time. The algorithm takes 2n− 1 parameters that define the
Hankel matrix and n parameters that define the vector. The technique is based on the Fast
Fourier Transformation [16, 25].

6.2 Using Hankel Matrices to Return Number of Walks
The algorithm from Section 5.3.3 concatenates the strips UiFi and builds a single vector.
Subsequently, that vector is multiplied by a column of matrix U−1. But we can also do
it in a different order: first we multiply the strip by a section of matrix U−1 and sum the

STACS 2017
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U1F1 U2F2 U3F3

U−1

Figure 6 Multiplication of strips by U−1 matrix. As you can see, matrix U−1 can be split into
sections, that multiply only UiFi strips.

results at the end. Thus, we perform k (number of strips) dot products of smaller vectors
(see Figure 6).

Consider the query for a number of walks of length exactly k. The strips in the matrix
U−1 do not depend on k (vector (u0, . . . , ul)). However, the vector taken from UiFi (vectors
(xi, . . . , xi+l)) will be left shifted if we want to compute the next one.

(x0 x1 x2 . . . xl)
(x1 x2 . . . xl xl+1)
(x2 . . . xl xl+1 xl+2)
...

...
(xµ . . . xµ+l)

×


u0

...

ul


As you can see, the subsequent rows can be written as the Hankel matrix (we need to

add some zeros and discard certain results to get square matrix, but it will not influence
asymptotic complexity). By using the fast Hankel matrix-vector multiplication we can
compute µ values for every strip i in time O(li log li) (li was defined as the length of i-th
strip). At the end, we need to sum all results into a single array. The total complexity is
O(
∑k
i=1 li log li)). Because

∑k
i=1 li = n the algorithm needs O(n logn) field operations. It

proves Theorem 6.
We need to address some issues regarding field operations. As mentioned in the Section 3,

the Õ notation hides the polylogarithmic factors. Here, we silently assume that the number
of walks is bounded by W . It means that the complexity is multiplied by O(logW ) factor
because of the cost of arithmetic operations. If the number of walks is exponential in n then
the cost increases by a linear factor. However, at the beginning we could randomly select the
prime number p with O(logn) bits and do arithmetic operations in the field Zp. In some
applications we can use our algorithm to answer whether with high probability there exists a
walk of a given length. The problem of large number of distinct walks is more of a theoretical
issue than a practical one.

6.3 All Pairs All Walks (APAW)
Now we will show the application of Theorem 6. We begin with almost optimal algorithm to
compute the number of all walks between all pairs of vertices. We are not aware of any other
research concerning this problem.

I Definition 7 (All Pairs All Walks problem). Given a directed, unweighted graph G with a
diameter D. The task is to return an array A, such that for every pair of vertices u, v ∈ G
and every k ∈ {1, . . . , D} an element A[u, v, k] is the number of distinct walks from u to v of
length k.
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The only solution to this problem we are aware of needs O(Dnω) time. The naive
approach: take the adjacency matrix A of graph G and save it in A[u, v, 1]. Then, square it
to get A2 and save it in A[u, v, 2]. Continue until you fill out complete table. In the worst
case this algorithm needs D = O(n) matrix multiplications, thus its complexity is O(Dnω).
At the first glance it is surprising that we can improve it to Õ(n3) especially when ω > 2.

The Õ(n3) algorithm works as follows. First, preprocess the algorithm from Theorem 6
which takes Õ(nω) time. Then, for every pair of vertices u, v ask a query. A single query
takes Õ(n) time. Then, save it in the table A[u, v] (query gives D numbers w1, . . . , wD, such
that wi is the number of walks of length i and save it A[u, v, i] := wi).

Because there are O(n2) pairs and for each pair we need Õ(n) time, the complexity of
our solution is Õ(n3). The algorithm is almost optimal because the output in the worst case
may be O(n3).

7 Counting and Determining the Lengths of Cycles

We will use Theorem 6 to solve All-Nodes Shortest Cycles (ANSC) problem efficiently.

I Theorem 8. There exists an algorithm that for a given unweighted digraph G with a
diameter D:

For every vertex u returns D numbers: c1
u, c

2
u, . . . c

D
u ,

The cku is the number of non-simple cycles of length exactly k, that contain vertex u,
Algorithm works in Õ(nω logW ) time (where W is the maximum cku).

Proof. We will use Theorem 6. We start by preprocessing the graph G in time Õ(nω).
Theorem 6 allows us to ask for a number of walks from u to v and receive D numbers: wku,v.
So, we ask for the number of walks from vertex u to the same vertex u. This is exactly the
number of non-simple cycles of a given length that contain vertex u.

Because we need to ask only n queries (it is the number of vertices in a graph) and each
query takes Õ(n) time we have Õ(nω + n2) = Õ(nω) algorithm. J

7.1 Solving ANSC Faster
To solve ANSC problem in Õ(nω) time and beat Yuster [30] Õ(n(ω+3)/2) algorithm we do the
linear search on the output. For every vertex we search for the first nonzero element linearly.
This with high probability is the length of the shortest cycle that contains it. Because the
output contains O(n2) numbers the complexity is equal to the preprocessing time Õ(nω).

Similarly, we can scan the output to compute the set S(c) that contains all vertices that
lie on some cycle of length ≤ c. Then, by linear scan we can return the sets S(1), . . . , S(D).
This improves upon Cygan et al. [9].

8 Conclusion and Open Problems

We introduced the framework based on Frobenius normal form and used it to solve problems
on directed, unweighted graphs in matrix multiplication time. The main open question is to
use this framework to prove that APSP on such graphs can be solved in Õ(nω) or at least
O(n2.5). The promising way is to use the algorithms that determine operators of matrices of
polynomials (e.g., determinant, solving linear system [19, 15]). Additionally, algorithms for a
black-box polynomial degree determination seem to be a promising path.

STACS 2017
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Another interesting problem is to use this framework to obtain additive approximation
for APSP. Currently, the best additive approximation of APSP is due to [21]. However, none
of known additive approximation of APSP works in Õ(nω) time.

Application in dynamic algorithm also seems to be a promising approach. Frandsen and
Sankowski [13] showed an algorithm, that dynamically preserves Frobenius normal form in
O(kn2) time. Our algorithms use fast Hankel matrix-vector multiplication. The algorithm
behind fast Hankel matrix-vector multiplication is based on Discrete Fourier Transform
(DFT). Reif and Tate [20] presented an O(

√
n) time per request algorithm for DFT. Can we

use those approaches to obtain a faster dynamic algorithm?
Finally, it remains open how to apply the Frobenius normal form in the weighted directed

graphs with small, integer weights {−M, . . . ,M}. Cygan et al. [9] took degreeM polynomials
and used [19] to get radius and diameter in Õ(Mnω) time. We suspect that similar technique
can be applied to Frobenius normal form framework.
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