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Abstract
During the last ten years, the discontinuous Galerkin time-
domain (DGTD) method has progressively emerged as a
viable alternative to well established finite-difference time-
domain (FDTD) and finite-element time-domain (FETD)
methods for the numerical simulation of electromagnetic
wave propagation problems in the time-domain. We dis-
cuss here about the development and application of such
a DTGD method for solving the system of time-domain
Maxwell equations coupled to material models relevant to
nanophotonics. Our efforts aim at improving the accuracy,
flexibility and efficiency of the method in view of the nu-
merical treatement of realistic problems.

1. Generalities about the DGTD method
The DGTD method can be considered as a finite element
method where the continuity constraint at an element in-
terface is released. While it keeps almost all the advan-
tages of the finite element method (large spectrum of appli-
cations, complex geometries, etc.), the DGTD method has
other nice properties which explain the renewed interest it
gains in various domains in scientific computing:

- It is naturally adapted to a high order approximation
of the unknown field. Moreover, one may increase
the degree of the approximation in the whole mesh
as easily as for spectral methods but, with a DGTD
method, this can also be done very locally. In most
cases, the approximation relies on a polynomial inter-
polation method but the method also offers the flexi-
bility of applying local approximation strategies that
best fit to the intrinsic features of the modeled physi-
cal phenomena.

- When the discretization in space is coupled to an ex-
plicit time integration method, the DG method leads
to a block diagonal mass matrix independently of
the form of the local approximation (e.g the type of
polynomial interpolation). This is a striking differ-
ence with classical, continuous finite element formu-
lations. Moreover, the mass matrix is diagonal if an
orthogonal basis is chosen.

- It easily handles complex meshes. The grid may be
a classical conforming finite element mesh, a non-
conforming one or even a hybrid mesh made of var-
ious elements (tetrahedra, prisms, hexahedra, etc.).

The DGTD method has been proven to work well
with highly locally refined meshes. This property
makes the DGTD method more suitable to the de-
sign of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation
degree p changes locally wherever it is needed).

- It is flexible with regards to the choice of the time
stepping scheme. One may combine the discontin-
uous Galerkin spatial discretization with any global
or local explicit time integration scheme, or even im-
plicit, provided the resulting scheme is stable.

- It is naturally adapted to parallel computing. As long
as an explicit time integration scheme is used, the
DGTD method is easily parallelized. Moreover, the
compact nature of methd is in favor of high computa-
tion to communication ratio especially when the in-
terpolation order is increased.

As in a classical finite element framework, a discontinuous
Galerkin formulation relies on a weak form of the contin-
uous problem at hand. However, due to the discontinuity
of the global approximation, this variational formulation
has to be defined at the element level. Then, a degree of
freedom in the design of a discontinuous Galerkin scheme
stems from the approximation of the boundary integral term
resulting from the application of an integration by parts to
the element-wise variational form. In the spirit of finite
volume methods, the approximation of this boundary in-
tegral term calls for a numerical flux function which can be
based on either a centered scheme or an upwind scheme, or
a blend of these two schemes.

In the early 2000’s, DGTD methods for time-domain
electromagnetics have been first proposed by mainly three
groups of researchers. One of the most significant contri-
butions is due to Hesthaven and Warburton [1] in the form
of a high order nodal DGTD method formulated on un-
structured simplicial meshes. The proposed formulation is
based on an upwind numerical flux, nodal basis expansions
on a triangle (2D case) and a tetrahedron (3D case) and
a Runge-Kutta time stepping scheme. In [2], Kakbian et
al. describe a rather similar approach. More precisely, the
authors develop a parallel, unstructured, high order DGTD
method based on simple monomial polynomials for spatial
discretization, an upwind numerical flux and a fourth-order
Runge-Kutta scheme for time marching. The method has
been implemented with hexahedral and tetrahedral meshes.



Finally, a high order nodal DGTD method formulated on
unstructured simplicial meshes has also been proposed in
the same time frame by Fezoui et al. [3]. However, contrary
to the DGTD methods discussed in [1] and [2], the method
proposed in [3] is non-dissipative thanks to a combination
of a centered numerical flux with a second-order leap-frog
time stepping scheme. The extension of this DGTD method
to higher-order leap-frog schemes is studied in [4].

1.1. DGTD method for time-domain nanophotonics

1.2. Overview of related works

Numerical modeling of electromagnetic wave propagation
in interaction with metallic nanostructures at optical fre-
quencies requires to solve the system of Maxwell equations
coupled to appropriate models of physical dispersion in the
metal. The most used are the Drude and Drude-Lorentz
models. Nevertheless, although Drude and Drude Lorentz
dispersion models are widely used among the numerical
physicist community and proved their efficiency, they can
fail to describe some materials (e.g. transition metals [5]-
[6] and graphene [7]). Furthermore at some scales, non-
local effects starts to play an important role [8]. When
dealing numerically with Drude and Drude-Lorentz mod-
els, the FDTD method is a widely used approach for solving
the resulting system of PDEs [9]. However, for nanopho-
tonic applications, the space and time scales, in addition to
the geometrical characteristics and the physical parameters
of the considered nanostructures (or structured layouts of
the latter), are particularly challenging for an accurate and
efficient application of the FDTD method. Thus, with all
their features (as described above), DG methods seem to
be well suited in the context of nanophotonics. They are
still not prominent compared to FDTD or FETD methods.
Nevertheless, recently, unstructured mesh based methods
have been developed and have demonstrated their potential-
ities for being considered as viable alternatives to the FDTD
method [10]-[11]-[12]-[13]-[14]-[15] for nanophotonics or
related applications. Besides, several studies have already
been conducted regarding the development of DGTD meth-
ods for dispersive media, such as, [16]-[17]-[10]-[12]-[18]
to cite a few. Noteworthy, all these studies adopt a DGTD
method with upwind numerical fluxes. Furthermore one
can find more studies focused on numerical analysis aspects
concerning dispersive media [19]-[20].

1.3. A non-dissipative DGTD method

Towards the general aim of being able to consider concrete
physical situations relevant to nanophotonics, one has to
take into account in the numerical treatment, a better de-
scription of the propagation of waves in realistic media.
The physical phenomenon that on has consider in the first
instance here is dispersion. In the presence of an elec-
tric field the medium cannot react instantaneously and thus
presents an electric polarization of the molecules or elec-
trons that itself influences the electric displacement. In the
case of a linear homogeneous isotropic media, there is a

linear relation between the applied electric field and the
polarization. However, above some range of frequencies
(depending on the considered material), the dispersion phe-
nomenon cannot be neglected and the relation between the
polarization and the applied electric field becomes complex.
In practice, this is modeled by a frequency dependent com-
plex permittivity. Several such models for the characteriza-
tion of the permittivity exist; they are established by consid-
ering the equation of motion of the electrons in the medium
and making some simplifications.

There are mainly two ways of handling the frequency
dependent permittivity in the framework of time-domain
simulations, both starting from models defined in the fre-
quency domain. A first approach is to introduce the po-
larization vector as an unknown field through an auxil-
iary differential equation which is derived from the origi-
nal model in the frequency domain by means of an inverse
Fourier transform. This is called the Direct Method or Aux-
iliary Differential Equation (ADE) formulation. Let us note
that while the new equations can be easily added to any
time-domain Maxwell solver, the resulting set of differen-
tial equations is tied to the particular choice of dispersive
model and will never act as a black box able to deal with
other models. In the second approach, the electric field
displacement is computed from the electric field through a
time convolution integral and a given expression of the per-
mittivity which formulation can be changed independently
of the rest of the solver. This is called the Recursive Con-
volution Method (RCM).

We have recently adapted the DGTD-Pp method ini-
tially introduced in [3] to deal with various dispersion mod-
els. An ADE formulation has been adopted. The result-
ing ADE-based DGTD method is detailed in [21] where
we also study the stability and a priori convergence of the
method. We first considered the case of Drude and Drude-
Lorentz models and, further extend the proposed ADE-
based DGTD method to be able to deal with a generalized
dispersion model in which we make use of a Padé approx-
imant to fit an experimental permittivity function. The nu-
merical treatment of such a generalized dispersion model is
also presented in [21]. In this talk, we will discuss about our
efforts regarding this DGTD method in order to improve its
accuracy, flexibility and efficiency in view of the numerical
treatement of large-scale nanophotonics applications. Nu-
merical results will be presented for several of 3D problems
ranging from academic test problems to more realistic con-
figurations.
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