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ABSTRACT

Ethereum is a framework for cryptocurrencies which uses
blockchain technology to provide an open global comput-
ing platform, called the Ethereum Virtual Machine (EVM).
EVM executes bytecode on a simple stack machine. Pro-
grammers do not usually write EVM code; instead, they can
program in a JavaScript-like language, called Solidity, that
compiles to bytecode. Since the main purpose of EVM is
to execute smart contracts that manage and transfer digital
assets (called Ether), security is of paramount importance.
However, writing secure smart contracts can be extremely
difficult: due to the openness of Ethereum, both programs
and pseudonymous users can call into the public methods
of other programs, leading to potentially dangerous com-
positions of trusted and untrusted code. This risk was re-
cently illustrated by an attack on TheDAO contract that
exploited subtle details of the EVM semantics to transfer
roughly $50M worth of Ether into the control of an attacker.
In this paper, we outline a framework to analyze and verify
both the runtime safety and the functional correctness of
Ethereum contracts by translation to F*, a functional pro-
gramming language aimed at program verification.

1. INTRODUCTION

Blockchain technology, pioneered by Bitcoin [7], provides
a globally-consistent append-only ledger that does not rely
on a central trusted authority. In Bitcoin, this ledger records
transactions of a virtual currency, which is created by a pro-
cess called mining. In the proof-of-work mining scheme, each
node of the network can earn the right to append the next
block of transactions to the ledger by finding a formatted
value (which includes all transactions to appear in the block)
whose SHA256 hash matches some difficulty threshold. The
system is designed to ensure that blocks are mined at a con-
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stant rate: when too many blocks are submitted too quickly,
the difficulty increases, thus raising the computational cost
of mining.

Ethereum similarly founds a virtual currency, called the
Ether, on a blockchain based on proof-of-work. Ethereum’s
ledger is significantly more general than Bitcoin’s: it stores
Turing-complete programs, in the form of Ethereum Virtual
Machine (EVM) bytecode, and it enables transactions as
function calls into that code, with additional data in the
form of arguments. Programmable contracts may also access
non-volatile storage and log events, both recorded in the
ledger. Figure 1 shows a high-level view of the workflow in
the Ethereum network.

The initiator of a transaction pays a fee for its execution,
measured in units of gas. The miner who manages to ap-
pend a block including the transaction gets to claim the fee
converted to Ether at a specified gas price. Some operations
are more expensive than others: for instance, writing to the
ledger or initiating a transaction is four orders of magnitude
more expensive than an arithmetic operation on stack val-
ues. Therefore, Ethereum can be thought of as a distributed
computing platform where anyone can run code (theirs and
others) by paying for the associated gas charges.

The integrity of the system relies on the honesty of a ma-
jority of miners: a miner may try to cheat by not running
the program, or running it incorrectly, but honest miners
will reject the block and fork the chain. Since the longest
chain is the one considered valid, (notably for paying fees
and block rewards) each miner is incentivized not to cheat,
and to check each other’s work. Still, integrity only ensures
that contract code is executed correctly, as specified by the
EVM semantics, not that the contract behaves as intended
by its programmer, which is the focus in this paper.

Ethereum currently runs smart contracts that manage
millions of dollars, making their security highly sensitive.
For instance, a variant of a well-documented reentrancy at-
tack was recently exploited in TheDAO [2], a contract that
implements a decentralized autonomous venture capital fund,
leading to the theft of more than $50M worth of Ether. Re-
covering the funds required a hard fork of the blockchain,
contrary to the code is law premise of the system. Such
attacks raise the question of whether similar bugs could be
prevented by static analysis [6], before uploading contracts
to Ethereum.
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Figure 2: Outline of our verification architecture

In this paper, we outline a framework to analyze and
formally verify Ethereum smart contracts using F* [9], a
functional programming language aimed at program verifi-
cation. Such contracts are generally written in Solidity [3], a
JavaScript-like language, and compiled down to EVM byte-
code. However, analyzing lower-level EVM code is also
useful, inasmuch as the Solidity compiler may not be fully
trusted, and malicious code may be crafted in bytecode in-
stead of Solidity. While it is clearly favorable to obtain both
Solidity source code and EVM bytecode for a given smart
contract, we design our architecture with the assumption
that the verifier may only have the bytecode. At the mo-
ment of this writing, only 396 out of 112,802 contracts have
their source code available on http://etherscan.io.

Our smart contract verification architecture uses a two-
pronged approach, summarized in Figure 2. We develop a
language-based approach for verifying smart contracts, and
present two prototype tools based on shallow embeddings in
F* (that is, contracts are translated to F* programs that call
an F* runtime library for all Ethereum operations):

Solidity* compiles Solidity contracts to F* (Section 2). It
allows us to verify, at the source level, functional cor-
rectness specifications (such as contract invariants) and
safety with respect to runtime errors.

EVM* decompiles EVM bytecode into more succinct F*
code, hiding the details of the stack machine (Sec-

tion 3). It allows us to analyze low-level properties,
such as bounds on the amount of gas required to com-
plete a call or a transaction.

The F* language comes with a rich type system that includes
dependent types and monadic effects, which we apply to
generate automated queries for an SMT solver that can then
statically verify such properties of contracts.

This paper presents preliminary results for these two forms
of verification, but in the future, we plan to use our tools to
also test the correctness of the Solidity compiler on a case-
by-case basis. Given a Solidity program and allegedly func-
tionally equivalent EVM bytecode, we will translate both
into F* and verify their equivalence using relational reason-
ing [1].

2. FROM SOLIDITY TO F*

In the spirit of previous work on type-based analysis of
JavaScript programs [8], we advocate an approach where
the programmer can verify high-level goals of a contract by
embedding it in F*. In this section, we present both a tool
to translate Solidity to F* and a sample automated analysis
of embedded F* contracts based on F* typechecking.

Solidity programs consist of a number of contract declara-
tions. Once compiled to EVM, contracts are installed using
a special kind of account-creating transaction, which allo-
cates an address to the contract. Unlike Bitcoin, where an
address is the hash of the public key of an account, Ethereum
addresses can refer indistinguishably to a contract or a user
public key. Similarly, there is no distinction between trans-
actions and method calls: sending Ether to a contract will
implicitly call the fallback function (the unnamed method
of the Solidity contract).

In fact, compiled contracts in the blockchain consist of
a single entry point that decides depending on the incom-
ing transaction (treated as a received message msg) which
method code to invoke. The methods of a Solidity con-
tract have access to ambient global variables that contain
information about the contract (such as the current bal-
ance of the contract in this.balance), the transaction used
to invoke the contract’s method (such as the source ad-
dress in msg.sender and the amount of Ether received in
msg.value), or the block in which the invoking transaction is
mined (such as the miner’s timestamp in block.timestamp).
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Figure 3: Syntax of the Solidity subset supported by Solidity*

In this exploratory work, we consider a restricted sub-
set of Solidity, specified in Figure 3. Notably, the fragment
we consider does not include loops, but does support recur-
sion. The three main types of declarations within a contract
are type declarations, property declarations and methods.
Type declarations consist of C-like structs and enums, and
mappings (associative arrays implemented as hash tables).
Although properties and methods are reminiscent of object
oriented programming, it is somewhat a confusing analogy:
contracts are “instantiated” by the account creating transac-
tion; this will allocate the properties of the contract in the
global storage and call the constructor (the method with the
same name as the contract). Despite the C++/Java-like ac-
cess modifiers, all properties of a contract are stored in the
Ethereum ledger, and as such, the internal state of all con-
tracts is completely public. Methods are compiled in EVM
into a single function that runs when a transaction is sent
to the contract’s address. This transaction handler matches
the requested method signature with the list of non-internal
methods, and calls the relevant one. When no match is
found, a fallback handler is called.

2.1 Translation to F*

Our translation of Solidity to F* proceeds as follows:
1. contracts are translated to F* modules;

2. type declarations are translated to type declarations:
enums become sums of nullary data constructors, structs
become records, and mappings become F* maps;

3. all contract properties are packaged together within a
state record, where each property is an F* reference;

4. contract methods are translated to F* functions;

5. if statements that have a continuation are rewritten,
depending on whether one branch ends in return or

throw (moving the continuation in the other branch)
or not (we then duplicate the continuation in each
branch).

6. assignments are translated as follows: we keep an en-
vironment of local, state, and ambient global variable
names: local variable declarations and assignments are
translated to let bindings; globals are replaced with
library calls; state properties are replaced with update
on the state type;

7. built-in method calls (e.g. address.send()) are re-
placed by library calls.

Figure 4 shows an example Solidity contract and its F*
translation. The only type annotation added by the trans-
lation is a Eth effect on the contract’s methods, explained in
Section 2.2. The translated contract uses the Solidity li-
brary, which defines the mapping type (a reference to a map)
and the associated functions update_map and lookup. This
library also defines the base numeric type uint, for unsigned
256-bit integers, and arithmetic operators.

2.2 An effect for detecting vulnerable patterns

The example in Figure 4 illustrates two major pitfalls of
Solidity programming. First, many contract writers fail to
realize that send and its variants are not guaranteed to suc-
ceed (send returns a bool). This language feature is sur-
prising for Solidity programmers because all other runtime
errors (such as running out of gas or call stack overflows)
trigger an exception. Such exceptions, including those trig-
gered by throw, safely revert all transactions and all changes
to the contract’s properties. This is not the case of send: the
programmer needs to undo any side effects manually when
it returns false, e.g. by writing if(laddr.send(x)) throw.

The other pitfall illustrated in MyBank is reentrancy. Since
transactions are also method calls, transferring funds to an-



contract MyBank {
mapping (address = uint) balances;

function Deposit() {
balances[msg.sender] += msg.value;

}

function Withdraw(uint amount) {
if(balances[msg.sender| > amount) {
msg.sender.call.value(amount)();
balances[msg.sender] —= amount;
}
}

function Balance() constant returns(uint) {
return balances[msg.sender];

}
}

module MyBank
open Solidity

type state = { balances: mapping address uint; }
val store : state = {balances = ref empty_map}

let deposit () : Eth unit =

update_map store.balances msg.sender
(add (lookup store.balances msg.sender) msg.value)

let withdraw (amount:uint) : Eth unit =

if (ge (lookup store.balances msg.sender) amount) then
call_fallback msg.sender amount;
update_map store.balances msg.sender
(sub (lookup store.balances msg.sender) amount)

let balance () : Eth uint =

lookup store.balances msg.sender

Figure 4: A simple bank contract in Solidity translated to F*

other contract (either using send, or calling directly the fall-
back method) is a transfer of program control. In fact, My-
Bank suffers from a behavior similar to the one that allowed
to drain TheDAO. Consider the malicious contract below:
contract Malicious {
address owner;

uint amount;
MyBank bank;

function Malicious(MyBank _bank) {
bank = _bank;
owner = msg.sender;

}

function Drain() {
amount = msg.value;
bank.Deposit.value(amount)(); // forwards all gas
bank.Withdraw.value(0)(amount);

}

function Claim() { owner.send(this.balance); }

function () { // fallback method
if(msg.gas > 50000)
bank.Withdraw.value(0) (amount);
}

}

This contract can drain the balance of a MyBank con-
tract by calling recursively into it at a point where it trans-
fers Ether. The attack is triggered by calling the Drain
method, which deposits and immediately withdraws from
MyBank. When the Withdraw method transfers the funds
back, it also transfers control back to Malicious by calling
into its fallback method, which in turn issues a reentrant
call to Withdraw. The if condition in the second With-
draw call is still satisfied because the balance is updated
only after the original call to Malicious yields control, and
as a result the same amount of Ether can be transferred
more than once. Further re-entrant calls are only limited
by the gas supplied to the initial call to Drain. Observe
also that returning from a subsequent call to the fallback
method of Malicious would result in decrementing the en-
try in the balances mapping more than once, causing an
integer underflow. A variant of the attack could corrupt the
balance in this way before freely withdraw any remaining
funds from the bank. Note that using send (amount) instead

of msg.sender.call.value(amount) in MyBank would miti-
gate the attack, because unlike method calls, send allocates
only 2,300 gas for the call.

Using the effect system of F*, we now show how to detect
some vulnerable patterns in translated contracts, such as not
checking the result of external calls. The base construction
is a combined exception and state monad (see [9] for details)
with the following signature:

EST (a:Type) = hO:heap // input heap

— send_failed:bool // send failure flag

— Tot (option (axheap) // result and heap, or exception
* bool) // new failure flag

return (a:Type) (x:a) : EST a = fun h0 b0 — Some (x, h0), b0

bind (a:Type) (b:Type) (f:EST a) (g:a - EST b) : EST b =
fun hO b0 —
match f hO b0 with
| None, bl — None, bl // exception in f: no output
| Some (x, hl), bl - gxhl bl // run g, carry flag

This F* code captures the type of F* computations that
return values of type a. The monad carries a send_failed
flag to record whether or not a send() or external call may
have failed so far. It is possible to enforce several different
styles based on this monad; for instance, one may want to
enforce that a contract always throws when a send fails, by
essentially coding a small reference monitor into the type
system. As an example, we defined the following effect based
on EST:

effect Eth (a:Type) = EST a

(fun _ b0 — not b0) // start in non-failure state
(fun hO bO r b1 —
// what to do when a send fails
bl =
(match r with

| None — True // exception
| Some (_, h1) — no_mods h0 h1)) // no writes

The standard library defines the post-condition of throw
as (fun h0 b0 r bl — b0=b1 A is_None r), and the post-condition
of send as (fun hO b0 r bl —r == Some (b1, h0)).

By typechecking extracted methods in the Eth effect, we
can prevent dangerous patterns, such as an external call fol-
lowed by an unconditional state update. These patterns trig-
ger an F* typechecking error at compile time. Note that the



safety condition imposed by Eth is not sufficient to prevent
reentrency attacks, as there is no guarantee that the state
modifications before and after an external call preserve the
functional invariant of the contract. Therefore, this analysis
is useful for detecting dangerous patterns and enforcing a
failure handling style, but it does not replace a manual F*
specification and proof for the contract.

2.3 Evaluation

Despite the limitations of our tool (in particular, it does
not support many syntactic features of Solidity), we were
able to translate and typecheck 46 out of the 396 contracts
we collected from https://etherscan.io. We could already
find several that are invalid in the Eth effect. While these
results are still preliminary, they indicate that a larger scale
analysis of published contracts would have substantial value.

3. DECOMPILING BYTECODE TO F*

In this section we present EVM*, a decompiler for EVM
bytecode that we use to analyze contracts for which the So-
lidity source is unavailable (as is the case for the majority
of live contracts in the Ethereum blockchain), and to check
low-level properties of contracts. A third use case of the de-
compiler that we do not further explore in this paper is to
use EVM* together with Solidity* to check the equivalence
between a Solidity program and the bytecode output by the
Solidity compiler, thus ensuring not only that the compiler
did not introduce bugs, but also that any properties verified
at the source level are preserved. This equivalence proof
may be performed, for instance, using rF* [1] a version of F*
with relational refinement types.

EVM* takes as input the bytecode of a contract as stored
in the blockchain and translates it into a representation in
F*. The decompiler performs a stack analysis based on sym-
bolic evaluation to identify jump destinations in the pro-
gram and detect stack under- and overflows. The result is
an equivalent F* program that, intuitively, operates on a
machine with an unbounded number of single-assignment
registers which we translate as functional let bindings.

The EVM is a stack-based machine with a word size of
256 bits [10]. Bytecode programs have access to a word-
addressed non-volatile storage modeled as a word array, a
word-addressed volatile memory modeled as an array of bytes,
and an append-only non-readable event log. The instruction
set includes the usual arithmetic and logic operations (e.g.
ADD, XOR), stack and memory operations (e.g. PUSH, POP,
MSTORE, MLOAD, SSTORE, SLOAD), control flow opera-
tions (e.g. JUMP, CALL, RETURN), instructions to inspect
the environment and blockchain (e.g. BALANCE, TIMES-
TAMP), as well as specialized instructions unique to EVM
(e.g. SHA3, CREATE, SUICIDE). As a peculiarity, the in-
struction JUMPDEST is used to mark valid jump destina-
tions in the code section of a contract, but behaves as a NOP
at runtime. This is convenient for identifying potential jump
destinations during decompilation, as jumping to an invalid
address would halt execution.

The static analysis done by EVM* marks stack cells as
either of 3 types: 1. Void for initialized cells, 2. Local for
results of operations, and 3. Constant for immediate argu-
ments of PUSH operations The analysis identifies jumpable
addresses and blocks, contiguous sections of code starting at
a jumpable address and ending in a halting or control flow
instruction (we treat branches of conditionals as indepen-

dent blocks). A block summary consists of the address of
its entry point, its final instruction, and a representation of
the initial and final stacks summarizing the block effects on
the stack. An entry point may be either the 0 address, an
address marked with JUMPDEST, or a fall-through address
of a conditional.

Based on the static analysis, EVM* emits F* code, using
variables bound in let bindings instead of stack cells. Many
instructions can be eliminated in this way, so the analysis
keeps an accurate account of the offsets of instructions in the
remaining code. Because the instructions eliminated may
incur gas charges, we precisely keep track of their fuel con-
sumption by instrumenting the code with calls to burn, a li-
brary function whose sole effect is to accumulate gas charges,
equipped with an F* type that fully captures that effect.

let x 29 = pow [0x02uy] [0xAOuy] in

let x 30 = sub x_29 [0x01uy] in

let x 31 = get_caller () in

let x 32 = land x_31 x_30 in

burn 17; // opcodes SUB, CALLER, AND, PUSH1 00, SWAP1, DUP2
mstore [0x00uy] x_32;

burn 9; // opcodes PUSH1 20, DUP2, DUP2
mstore [0x20uy] [0x00uy];

burn 9; // opcodes PUSH1 40, SWAP1, SWAP2
let x 33 = sha3 [0x00uy] [0x40uy] in

let x_34 = sload x_33 in

burn 9; // opcodes PUSH1 60, SWAP1, DUP2
mstore [0x60uy] x_34;

loadLocal [0x60uy] [0x20uy| // returned value

Figure 5: Decompiled code of Balance method in the
MyBank contract, instrumented with gas consump-
tion.

Figure 5 shows the F* code decompiled from the Balance
method of the MyBank contract in Fig. 4; the corresponding
EVM bytecode is 396 bytes long.

We wrote a reference cost model for bytecode operations
that can be used to prove bounds on the gas consumption of
contract methods. As an example, Fig. 6 shows a type anno-
tation for the entry point of the MyBank contract decompiled
to F* that states that a method call to the Balance function
will consume at most 390 units of gas. This annotation can
then be automatically discharged by F* typechecking.

val myBank: unit —ST word
(requires (fun h —sel h mem = 0 Asel h gas =0 A
nonZero (eqw
(div (get_calldataload [0x00uy]) (pow [0x02uy] [0xEOuy]))
[0xF8uy; 0xF8uy; 0xA9uy; 0x12uy]))) // hash of Balance
(ensures (fun hO _ hl — sel hl gas < 390))

let myBank () =
burn 6; // opcodes PUSH1 60, PUSH1 40
mstore [0x40uy] [0x60uy];

let x 28 = eqw [0xF8uy; 0xF8uy; 0xA9uy; 0x12uy] x_3 in
burn 10; // opcode JUMPI
if nonZero x_28 then
begin (* offset: 165 *)
... // decompiled code of Balance method
end

Figure 6: A proof of a bound on the gas consumed
by a call to the Balance method of MyBank.



4. CONCLUSION

Our preliminary experiments using F* to verify smart con-
tracts suggests that the type and effect system of F* is flex-
ible enough to capture and prove properties of interest for
contract programmers. Our approach, based on shallow em-
beddings and typechecking within an existing verification
framework, is convenient for exploring the formal verifica-
tion of contracts coded in Solidity and EVM bytecode. On
the other hand, static tools dedicated to these languages
may be easier to use. (For instance, we miss tools to explain
F* typechecking errors in simple source-code terms.)

In parallel with this work, Luu et al. [6] use symbolic
execution to detect flaws in EVM bytecode programs, and
an experimental Why3 [5] formal verification backend is now
available from the Solidity web IDE [4].

The examples we considered are simple enough that we did
not have to write a full implementation of EVM in F*. We
plan to complete a verified reference implementation, and
use it to verify that the output of the Solidity compiler is
functionally equivalent to source contracts. We implemented
EVM* and Solidity* in OCaml. It would be interesting to
implement and verify parts of these tools using F* instead.
For instance, we may try to prove that the stack and control
flow analysis done in EVM”* is sound with respect to a stack
machine semantics.
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