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Abstract

In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we
will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive
twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be
considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify
the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF)
metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form
deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.
& 2016 Society of CAD/CAM Engineers. Publishing Services by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the automotive industry, and particularly, in the shape
design optimization field, the most of problems faced are
multicriteria ones. Indeed, one way to solve these problems is
to identify the Pareto front. To do this, there are often two
issues to confront, the first one is how to reduce the
computational time required by the conventional methods used
to solve this kind of optimization problem, and the second one
is how can we generate the 3D shapes of the automotive part
studied in the optimization process. To overcome the first
issue, it is necessary to couple methods for capturing the
Pareto front with metamodels aimed at cheap costs’ evalua-
tions. For the second issue, there are several versions of FFD
technique used to do this [1–3].

The Twist beam suspension (Fig. 1) is widely used as rear
wheel suspension systems for front wheel driven passenger
vehicles, it is composed of several components such as swing
10.1016/j.jcde.2016.01.003
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or trailing arms, bushings and the twist beam which is the
object of our study.
For our work, we focus on optimizing the shape of a twist

beam undergoing linear elastic deformation (Hooke's law) [4–6]
to improve certain mechanical criteria such as the rigidity and the
resistance to fatigue of this automotive part (Fig. 1). Firstly, for
the identification of the Pareto front with a reasonable calculation
time, we use the (NBI RBF) algorithm built using a coupling
between the NBI method [7–10] and the RBF metamodel [11–
15], the idea is to lead optimization with the metamodel and only
do the exact evaluations of the metamodel obtained solutions
[16–20]. Secondly, for the generation of 3D shapes during the
optimization process, we use a developed version of the free
form deformation technique using radial basis functions (FFD
RBF) [21–23].

2. Methodology

This section will be divided into three parts, the first one is
a reminder of the multicriteria optimization basics and
fundamentals, then, we present the two main methods used
ier. This is an open access article under the CC BY-NC-ND license
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in our work which are the NBI RBF coupling and the FFD
RBF deformation technique. The first one will be briefly
presented, then, we give a complete description of the
second one.
Fig. 1. Example of a typical twist beam suspension [24].

Fig. 2. The results obtained by the NBI RBF coupling (blue points)
2.1. Multicriteria optimization and pareto optimality

A multicriteria optimization problem is given as follows:

min
x

FðxÞ ¼ f 1ðxÞ; f 2ðxÞ;…; f mðxÞ
� �T

;

mZ2Subject to

gjðxÞZ0; j¼ 1;…; J

phðxÞ ¼ 0; h¼ 1;…;H

xlowerrxrxupper

8><
>: ð1Þ

where m, J and H are the total numbers of the objective
functions, the inequality ðgjÞ and equality constraints ðphÞ,
respectively.
The Pareto front is defined as the set of non-dominated

designs. In the objective space, xnAD is non-dominated if
there is no other point, xnAD, such that

f iðxÞo f iðxnÞ; i¼ 1; €;m

with strict inequality for at least one index.
after filtering dominated points for different academic problems.
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2.2. The NBI RBF coupling

We had presented previously the algorithm of the NBI RBF
coupling in detail [25], which is why we give below just the
key points of this coupling. Let us consider the following
multicriteria optimization problem (m¼2):

min
x

FðxÞ ¼ f 1ðxÞ; f 2ðxÞ
� �T

Subject to

gjðxÞZ0; j¼ 1;…; J

phðxÞ ¼ 0; h¼ 1;…;H

xlowerrxrxupper

8><
>: ð2Þ

Let ~f 1ðxÞ and ~f 2 ðxÞ the approximations obtained from a
classical RBF for the initial functions f1 and f2, respectively.

We will solve the following problem equivalent to the
original one (2), replacing the objective functions with their
approximate functions constructed using the RBF metamodel,
Fig. 3. Comparison between the results obtained by NBI RBF approach (in re
by the NBI method:

min
x

~FðxÞ ¼ ~f 1ðxÞ; ~f 2ðxÞ
� �T

Subject to

gjðxÞZ0; j¼ 1;…; J

phðxÞ ¼ 0; h¼ 1;…;H

xlowerrxrxupper

8><
>: ð3Þ

Fig. 2 presents the solutions obtained by the NBI RBF
coupling after filtering dominated points for some academic
test cases [27] and it clearly shows the effectiveness of the
algorithm developed for capturing the Pareto front.
To show the effectiveness of our developed algorithm at the

computing time reduction (i.e. cost evaluation of objective
functions), we solve the problems “A, B, C and D” with our
new algorithm “NBI RBF coupling” and the conventional
method NBI without coupling, then, we make a comparison
d), and the exact solutions NBI (in blue) after filtering dominated points.
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between the results obtained (the number of functions’ call
needed by each method).

The results, Fig. 3 and Table 1, show that the coupling NBI
RBF converges to the Pareto frontier with an approximately
58%, 94%, 80% and 84% fewer number of objective functions’
calls compared to a conventional NBI for Fonseca, Tanaka,
Poloni and Hanna problem, respectively.
2.3. The FFD RBF technique

In this section, we present a version of the free form
deformation (FFD) which is a geometric technique used to
model simple deformations of rigid objects using a technique
based on radial basis functions (RBF). These mathematical
functions can be used for the creation of a smooth interpolation
between values known only to a discrete set of positions.

Let f : R3-R be a scalar-valued function.
Suppose that this function is known on a M distinct discrete

set of points in three dimensional space (xi, f ðxiÞ).
Let gðriÞ : R-R be a radial basis function where ri is the

distance from the point x we seek to evaluate and xi already
known (one among the M points). The function FRBF provides
us a way to create a smooth interpolation function of f in the
whole field of R3. FRBF is written as a sum of M estimates of
Table 1
Functions call number required by NBI and NBI RBF methods.

Problem Method used Prescribed pareto points (N) Functions calls

Fonseca NBI 25 305
NBI RBF 25 128

Tanaka NBI 25 942
NBI RBF 25 50

Poloni NBI 50 668
NBI RBF 50 128

Hanna NBI 100 1024
NBI RBF 100 162

Fig. 4. (A) A flat surface, (B) all the points constituting the flat surface (blue points
the radial basis function gðriÞ and it is given by the following
formulation:

FRBFðxÞ ¼
XM
i ¼ 1

wigðJx�xi JÞþc0þc1xþc2yþc3z; x¼ ðx; y; zÞ

ð4Þ
where wi are scalar coefficients and the last four terms are a
first degree polynomial with coefficients c0; c1; c2 and c3, these
terms describe an affine transformation which can be achieved
by the radial functions.
Since the M known values of the function f ðxi; yi; ziÞ ¼ Fi,

we can assemble a linear system of equations of order Mþ4:

GA¼ F ð5Þ
where F¼ ðF1;F2;…;FM ; 0; 0; 0; 0ÞT , A¼ ðw1;w2;…;wM ; c0;
c1; c2; c3ÞT and G is a matrix of order ðMþ4Þ � ðMþ4Þ
defined as follows:

G¼

g11 g12 � � � g1M 1 x1 y1 z1
g21 g22 � � � g2M 1 x2 y2 z2

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

gM1 gM2 � � � gMM 1 xM yM zM
1 1 � � � 1 0 0 0 0

x1 x2 � � � xM 0 0 0 0

y1 y2 � � � yM 0 0 0 0

z1 z2 � � � zM 0 0 0 0

2
66666666666666666664

3
77777777777777777775

ð6Þ

where gij ¼ gðJxi�xj JÞ. For the choice of the radial basis
function, there are several known in the scientific literature. For
our work, we use the gaussian function gðtÞ ¼ expð�ðktÞ2Þ with
k¼3. Now we can easily solve Eq. (5) to obtain the Mþ4
coefficients to be used in the expression (4) for the interpolation.
, K¼121), (C) the points used for interpolation FFD RBF (red points, M¼44).



Fig. 5. Example of the application of the FFD RBF technique to a flat surface (A) and the deformed surface obtained (B).

Fig. 6. The initial shape of the twist beam used—visualization from different
sides by the software Ls Dyna.

Fig. 7. Two criteria to be optimized “FR34 vs VM”: the first criterion and the
second one present the rigidity and the resistance to fatigue, respectively.
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2.4. Illustration of the FFD RBF technique

Let Forminitial a 3D geometry which we seek to deform

Forminitial ¼ ðx1initial ; x2initial ; x3initial ,….,xKinitial Þ: ð7Þ
First, we choose a set of M points, RBFdatabase, from the initial
geometry

RBFdatabase ¼ ðx1initial ; x2initial ,….,xMinitialÞAForminitial ðMoKÞ: ð8Þ
Then we start with the deformation of these points (deforma-
tion¼moving points in 3D space), this deformation is repre-
sented by a vector describing the 3D displacement of ui the
points chosen which has been positioned at xiinitial in the initial
geometry. The new position of the RBFdatabase points is
described by the vectors:

RBFdatabasenewposition ¼ ðx1new ; x2new ,….,xMnew Þ ð9Þ
where xinew ¼ xiinitial þuiði¼ 1;…;MÞ. Let xi ¼ xiinitial ¼ ðxi; yi; ziÞ
and ui ¼ ðuxi ; uyi ; uzi Þði¼ 1;…;MÞ. We consider the following
three linear systems:

GAx ¼ ðux1; ux2;…; uxM ; 0; 0; 0; 0ÞT
GAy ¼ ðuy1; uy2;…; uyM ; 0; 0; 0; 0ÞT
GAz ¼ ðuz1; uz2;…; uzM ; 0; 0; 0; 0ÞT

8><
>: ð10Þ

where G is assembled as described in the matrix (6). The
solutions of Ax, Ay and Az give us the interpolation coeffi-
cients for the predicted displacement in the three directions
ðx; y and zÞ of the expression (4), FRBFx ;FRBFy and FRBFz

respectively. Then the new geometry Formnew of the initial
geometry Forminitial is defined as follows:

Formnew ¼ ðxinew Þi ¼ 1;…;K ð11Þ
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where

xinew ¼
xiþui if xiARBFdatabase

xiþðFRBFx ðxiÞ;FRBFy ðxiÞ;FRBFzðxiÞÞ else

(

To illustrate the FFD RBF technique presented above, we
present a simple example which is the deformation of a flat
surface (Fig. 4). In fact, to deform the surface (A), we move
only the points selected, and we used the FFD technique that
allows us to have an approximation for the displacement of all
the other points (Fig. 5).
Fig. 8. (a) Visualization of the automotive twist beam, (b) zoom in to highlight
the belly of the automotive twist beam on the LSprepost LSDYNA software,
(c) the belly of the twist beam.

Fig. 9. Design variable: (a) extraction of the twist beam belly, (b) a 2D projection o
for the generation of new profiles by using the FFD method, (c) the displacements of
with 3 components.
Since the radial basis functions g(t) do not have a compact
support, the RBF approximation moves all the nodes around,
even though with a very small magnitude. We are then led to
enforce a null displacement at the boundary parts which are not
subject to deformation. In our example, 40 points are used in
order to get vanishing RBF approximation near the fixed
boundary.
3. Shape optimization of an automotive twist beam

3.1. Motivation

For the design of the automotive twist beam, it is important
to avoid permanent plastic deformation, in fact, its design must
be studied so as to ensure that the level of stresses does not
reach the elastic limit of the material. Hence the necessity to
seek new geometry with more rigidity (the first criterion to be
optimized) [28]. Similarly, it is essential to maximize the
resistance to fatigue of the twist beam which is its ability to
withstand a repeatedly applied load without failure (the second
criterion to be optimized) [29,30].
The aim of this work is to seek to maximize both the rigidity

and the resistance to fatigue of this automotive part (Fig. 6).
3.2. Calculation of criteria

In this study, the FEA code, LS-DYNA software, was used
to model the automotive twist beam and performs the calcula-
tions of deformed linear elasticity in order to determine the
criteria to be optimized. LS-DYNA is an explicit and implicit
f the 3D nodes through the belly, the blue nodes are fixed and red ones are used
the nine points along the three directions which present our real design variable



Fig. 10. The choice of the database elements to build the RBF metamodel.

Table 2
Time required for the different functions’ call, (nnn) ¼ (n)þ (nn), (d¼day,
h¼hour, min¼minute).

N Total
timennn

Objective function Approximated function

Call
number

Time
requirednn

Call
number

Time
requiredn

6 1d 20 h
15 min

131 1d 19 h 29 min 192 46 min

12 1d 21 h
50 min

137 1d 21 h 04 min 390 46 min

25 2d 01 h
52 min

150 2d 01 h 04 min 788 48 min

50 2d 09 h
56 min

175 2d 09 h 08 min 1584 48 min
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Finite Element program dedicated to the analysis of highly
non-linear physical phenomena.

Fig. 7 shows the criteria to optimize that the first criterion, is
the level of rigidity, will be reviewed by an Euclidean norm of
reactions at the supports – FR34 and the second criterion will
be assessed indirectly by the level of stress (Von Mises) – VM
[31,32].

The Von Mises stress sVmises
i is calculated on all elements Pi

of the twist beam. Our goal is to minimize the maximum value
of the stress on the entire twist beam:

VM ¼max
i

siVmises; i¼ 1 : p ð12Þ

where p is the total number of the twist beam elements ðPiÞ.
The two forces FR3 and FR4 are reaction forces exerting

their actions at two points (3 and 4) and they have almost the
same value with two different signs (þ and � ). Our goal is to
maximize these two values, for this, we have defined the
following criterion:

FR34 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FR2

3þFR2
4

q
ð13Þ
FR34 is the magnitude of the reaction or torsional force to an
imposed displacement at the nodes’ number 3 and 4. The
solver LS-DYNA takes into account the ratio (reaction force)/
(imposed displacement) per angular unit and the distance
between nodes 3 and 4, to compute the torsional rigidity.
Thus, maximization of the latter amounts to maximize FR34.

3.3. Presentation of the optimization framework

The goal is to figure out a new design of the twist beam,
which satisfies a FR34 value bigger and a VM value smaller
than the FR34 and VM of the initial shape respectively. Our
initial shape has 546 MPa for the Von Mises constraint and a
torsion reaction force of 2460 N. We will use our developed
approach of optimization which allows us to set the parameters
of the shape by using the free form deformation technique with
radial basis function (FFD RBF) and then optimizing under
bound constraints.
We start by the representation of the characteristics related

to shape optimization (design variable, constraints, metamodel
database and multicriteria optimization formula).

3.3.1. Design variable
The twist beam is divided into two parts, the belly of the

twist beam (Fig. 8(c)) which can be considered as the design
variable and the rest of the twist will be fixed.
The belly (the variable part of the shape) is parameterized by

nine control points (9 points), and during the optimization
process, each point will move according to the three directions
ðx; y; zÞ.
Let ui ¼ ðuxi ; uyi ; uzi Þi ¼ 1;…; 9 be the displacement of the

nine points.
In order to formulate the problem in a simple way, we

decided that the displacements for the nine points will be the
same and like that, the design variable has only three
components which are the displacement of the nine points
along the three directions:

ui ¼ ðuxi ; uyi ; uzi Þi ¼ 1;…;9 ¼ ðux; uy; uzÞ ð14Þ

3.3.2. Design constraints and metamodel database
Let φ0 ¼ ðφ01;φ02;φ03Þ be the initial shape of the twist

beam, and ux, uy and uz a positive offset respectively (Fig. 9).
Then, we choose the bound constraints as follows:

*φlower ¼ ðφ01�ux;φ02�uy;φ03�uzÞ
*φupper ¼ ðφ01þux;φ02þuy;φ03þuzÞ
Now we have the design variable with three components, and
each component is a displacement, then, we choose 5 displace-
ment values for each one (for example, the selected values for the
displacement along the x-direction are ð�ux; �ux=2; 0; ux=2; uxÞ
and similarly for the displacement along y- and z-directions
(Fig. 10).
With three components and for each variable five different

positions, so we have a set of 125 points, each point represent-
ing a given shape of the twist beam. Then, for each point, we
calculate the exact value of two criteria FR34 and VM. These



Fig. 11. Comparison between the results obtained by NBI RBF approach (in blue), and the exact cost evaluation of these results (in red).

Fig. 12. Superposition of optimization results of 3D shape of the twist beam
obtained by our NBI RBF approach after filtering (in red), the RBF database
(in black) and the initial solution (in blue).
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values present the database allowing us to build the RBF
metamodel for each criterion, and the optimization problem will
be studied using these metamodels.

3.3.3. Optimization formula
Knowing the criteria to be optimized and the constraints to

be respected, we can write our optimization problem in the
following mathematical formula:

max
φ ¼ ðφaxx ;φayy ;φazzÞ

FR34

�
φ
�
= min
φ ¼ ðφaxx ;φayy ;φazzÞ

VMðφ
�

Subject to ðD twistÞ φlowerrφrφupper
� ð15Þ
3.3.4. Optimization results
For ux ¼ 5; uy ¼ 3 et uz ¼ 2, we computed an approximate

Pareto front for the FR34 and VM costs using the NBIRBF coupling.
For a prescribed number of Pareto points N, we show the overall
time and total number of exact and surrogate evaluations needed in
Table 2 and the optimization results are shown in Fig. 11.



Fig. 13. New profiles of the twist beam captured by the approach developed “NBI RBF coupling”: (a) the complete design of the automotive twist beam and (b) the
belly of this twist beam.
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Table 3
Summary of new designs 1, 2, and 3.

Profiles Criteria values

VM (MPa) FR34 (N)

Original design 546 2460
Profile (1) 555.176 2523
Profile (2) 544.635 2504
Profile (3) 536.803 2486

Fig. 14. Visualization of an optimized twist beam shape – Profile 2.
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3.3.5. Results discussion
We discuss the results according to the following points:

� A simple comparison between the results obtained by our
approach and the accurate evaluation of these solutions,
Fig. 11, allows us to assess that our results remain good
ones notwithstanding the complexity of our cases study.

� It is clear from Table 2 that our approach has allowed us
to save a remarkable computational time. For example, if
we take the case (N¼50), there are 150 calls of exact
function evaluations and 788 ones for approximated
function, respectively, which present 16% and 84% of
the total function calls used in our approach, but at the
same time, we note that only this 16% of total calls take
99% of the total computing time required. This last
remark explains the idea why we chose not to apply
roughly the NBI method with exact evaluations to solve
this industrial case.

� Fig. 13 and Table 3 show the profiles (1) and (3) which had
the best optimized value for the second criterion (FR34) and
the first criterion (VM) respectively.

� Our main goal was to look for new profiles for the twist
beam satisfying some requirements (FR34 higher and VM
smaller than the initial shape ones value), a goal that we
achieve successfully (Fig. 13 new profiles (2) and (3)).

� We eliminate all dominated points by a filter, and we
remarked that all remaining solutions are almost located at
the boundary of the space formed by the elements of the
RBF database (Fig. 12). Then we can conclude that the
solutions obtained are likely NBI solutions and our
approach is able to solve the industrial problem with a
reasonable computation time.
Finally, we present a new profile of the automotive twist
beam obtained by the shape optimization done by our algorithm
(Fig. 14).

4. Conclusion

In this paper, we solved an industrial multicriteria optimiza-
tion problem namely the shape optimization of an automotive
twist beam, the resolution is done by a developed method for
the capture of the Pareto front with a reasonable calculation
time compared to conventional methods. This method is a
coupling between the NBI method and the RBF metamodel
which allows us to identify a set of non-dominated solutions
well distributed on the Pareto front, and among these solutions,
there are some ones that dominate the initial solution (the
original design of the twist beam). Similarly, it should be noted
that the FFD RBF technique used for deformation and
construction of the 3D shape during the optimization process
allows us to generate a set of new designs of the automotive
twist beam that remain excellent for the industrial partner.
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