
HAL Id: hal-01406488
https://hal.inria.fr/hal-01406488

Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PSCV: A Runtime Verification Tool for Probabilistic
SystemC Models

Van Ngo, Axel Legay, Vania Joloboff

To cite this version:
Van Ngo, Axel Legay, Vania Joloboff. PSCV: A Runtime Verification Tool for Probabilistic SystemC
Models. CAV 2016 - 28th International Conference on Computer Aided Verification, Jul 2016, Toronto,
Canada. pp.84 - 91, �10.1007/978-3-319-41528-4_5�. �hal-01406488�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80479857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01406488
https://hal.archives-ouvertes.fr


PSCV: A Runtime Verification Tool for
Probabilistic SystemC Models

Van Chan Ngo1, Axel Legay2, and Vania Joloboff2

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
2 Inria Rennes - Bretagne Atlantique, Rennes 35042, France

Abstract. This paper describes PSCV, a runtime verification tool for
a class of SystemC models which have inherent probabilistic charac-
teristics. The properties of interest are expressed using bounded lin-
ear temporal logic. The various features of the tool including automatic
monitor generation for producing execution traces of the model-under-
verification, mechanism for automatically instrumenting the model, and
the interaction with statistical model checker are presented.

1 Introduction

SystemC3, a C++ library [6], has been become increasingly prominent in model-
ing hardware and embedded systems at the level of transactions. Models can be
used to simulate the system behavior with a single-core reference event-driven
simulation kernel [2]. A SystemC model is a complex and multi-threaded pro-
gram where scheduling is cooperative and thread execution is mutually exlusive.
In many cases, models include probabilistic characteristics, i.e., random data,
reliability of the system’s components. Hence, it is crucial to evaluate quan-
titative and qualitative analyses of system property probabilities. Many algo-
rithms [4,7,10] with the corresponding mature tools based on model checking
techniques, i.e., Probabilistic Model Checking (PMC), are created, in which they
compute probability by a numerical approach. However, they are infeasible for
large real-life systems due to state space explosion and cannot work directly with
SystemC source code.

In this paper we present PSCV a new tool for checking properties expressed
in Bounded Linear Temporal Logic (BLTL) [14] of probabilistic SystemC mod-
els. It uses Statistical Model Checking (SMC) [7,17,8,16,14,9,18] techniques, a
simulation-based approach. Simulation-based approaches use a finite set of sys-
tem executions to produce an approximation of the value to be evaluated.
Since these techniques do not construct all reachable states of the model-under-
verification (MUV), execution time and memory space required are far less than
numerical approaches.

The tool supports a rich set of properties, a wide range of abstractions from
statement level to system level, and a more fine-grained model of time than

3
IEEE Standard 1666-2005



2

a coarse-grained cycle-based simulation provided by the current SystemC ker-
nel [2]. Given a property, a user-defined absolute error and confidence, the tool
implements the statistical estimation and hypothesis testing techniques [8,16]
for computing probability that the property is satisfied by the model or assert-
ing that this probability is at least equal to a threshold. The theoretical and
algorithmic foundations of the tool are based on Ngo et al.’s work [12].

2 Verification Flow

The verification flow using PSCV consists of three steps, as shown in Fig. 1,
in which the Monitor and Advice Generator (MAG), AspectC++, the modified
SystemC kernel, and SystemC plugin are components of PSCV. In the first step,
users write a configuration file containing a set of typed variables called observed
variables, a Boolean expression called temporal resolution, and all properties to
be verified. MAG translates the configuration file into a C++ monitor and a
set of aspect-advices. In the second step, the set of aspect-advices is used as an
input of AspectC++ to automatically instrument the MUV for exposing the user
model states and syntax. The instrumented model and the generated monitor
are compiled and linked together with the modified SystemC kernel to produce
an executable model.

Fig. 1: The verification flow

Finally, the SystemC plugin independently simulates the executable model
in order to make the monitor produce execution traces with inputs provided by
the user. The inputs can be generated using any standard stimuli-generation
technique. These traces are finite in length since the BLTL semantics [14] is
defined with respect to finite execution traces. The number of simulations is
determined by the statistic algorithm used by the plugin. Given these execution
traces and the user-defined absolute error and confidence, the SystemC plugin
employs SMC to produce an estimation of the probability that the property is
satisfied or an assertion that this probability is at least equal to a threshold.

3 Expressing Properties

The tool accepts input properties of the forms Pr(ϕ), Pr≥θ(ϕ), and X≤T(rv),
where ϕ is a BLTL formula. The first is used to compute the probability that



3

ϕ satisfied by the model. The second asserts that this probability is at least
equal to the threshold θ. The last returns the mean value of random variable
rv. The set of atomic propositions in the logic describes SystemC code features
and the simulation semantics. It is a set of Boolean expressions defined over
a set of typed variables called observed variables with the standard operators
(+,−, ∗, /,>,≥, <,≤, !=,=). The semantics of the temporal operators in BLTL
formulas interpreted over states is defined by a temporal resolution that defines
at which time points the states are sampled in order to make the transition
from one state to another state. A temporal resolution is a logical disjunction
over a set of Boolean observed variables, in which the tool should sample a new
state whenever the temporal resolution is evaluated to true. For example, assume
that we want the satisfaction of the underlying formula ϕ to be checked either
at the end of every delta-cycle or every time immediately after the event e is
notified. Hence, the temporal resolution is defined by the following disjunction
(MON DELTA CYCLE END | e.notified), where MON DELTA CYCLE END
and e.notified are Boolean observed variables that have the value true whenever
the kernel phase is at the end of delta-cycle and e is notified, respectively. The
observed variables used to describe SystemC code features, the simulation se-
mantics, and temporal resolution are summarized below; see [13,12] for the full
syntax and semantics.

Attribute. Users can define an observed variable whose value and type are equal
to the value and type of a module’s attribute in the user code. Attributes can be
public, protected, or private. For example, a.t a t defines a variable named a t
whose value and type are equal to the value and type of the private attribute t
of the module instance a.

Function. Let f be a C++ function with k arguments in the user code. Users can
refer to locations in the source code that contain the function call, immediately
after the function call, immediately before the first executable statement, and
immediately after the last executable statement in f by using the Boolean ob-
served variables f():call, f():return, f():entry, and f():exit, respectively. More-
over, users define an observed variable f():i, i = 0, · · · , k, whose value and type
are equal to the value and type of the return object (with i = 0) or ith argu-
ment of function f before executing the first statement in the function body. For
example, if the function int div(int x, int y) is defined in the user code, then
the formula G≤T(div():entry→ div():2 != 0) asserts that the divisor is nonzero
whenever the div function starts execution.

Simulation phase. There are 18 predefined Boolean observed variables which
refer to the 18 kernel states [13]. These variables are usually used to define a
temporal resolution. For example, the formula G≤T(p = 0) which is accompanied
by the temporal resolution (MON DELTA CYCLE END) requires the value of
variable p to be zero at the end of every delta-cycle.

Event. For each SystemC event e, PSCV provides a Boolean observed variable
e.notified that is true only when the simulation kernel actually notifies e. For
example, the formula G≤T(e.notified→ (a = 0)) says that whenever the event e
is notified, a equals to 0.



4

4 Architecture

PSCV, available as an open-source software [13], implements SMC for probabilis-
tic SystemC models. The main components are depicted in Fig. 2. It consists
of off-the-self, modified and original components: (1) an off-the-self component,
AspectC++ [5], a C++ aspect compiler for instrumenting the MUV, (2) a modi-
fied component, a patched SystemC-2.3.0 kernel for facilitating the communica-
tion between the kernel and the monitor and implementing a random scheduler,
and (3) two original components are MAG, a C++ tool for automatically gen-
erating monitor and aspect-advices for instrumentation, and SystemC plugin, a
plugin of the statistical model checker Plasma Lab [3].

4.1 Execution Trace Extraction

In PSCV, based on the techniques in [15], the set of observed variables and
temporal resolution are converted into a C++ monitor class and a set of aspect-
advices. MAG generates three files: aspect definitions.ah, monitor.h, and moni-
tor.cc, in which they contain a set of AspectC++ aspect definitions, one monitor
class, and a class called local observer that is responsible for invoking the call-
back functions, which invoke the sampling function at the right time point during
the MUV simulation.

The monitor has a step function, sampling function, that waits for a request
from the SystemC plugin. If the request is stopping the current simulation, it
then terminates the MUV execution. If the plugin requests a new state, then the
current values of all observed variables and the simulation time are sent. The
step function is called at every time point defined by temporal resolution. These
time points can be kernel phases, event notifications, or locations in the MUV
code control flow. In such cases, the patched kernel needs to communicate with
the local observer, i.e., when a delta-cycle ends, via a class called mon observer
to invoke the step function of the monitor. In case of locations in the MUV code,
the advice code generated by MAG will call the callback function to invoke the
step function.

Fig. 2: The architecture of PSCV

The aspect is an extension of the class concept of C++, to collect advice code
implementing a common crosscutting concern in a modular way. For example,



5

to access all attributes of a module called A and the location that occurs imme-
diately before the first executable statement of the function foo in A (defined in
the configuration file as % A::foo():entry), MAG generates the following aspect
definition.

aspect Automatic {
pointcut reveal() = "A"; //Pointcut for accessing private data of A
advice reveal() : slice class {

friend class monitor_A; //Generated monitor is friend class of A
};
advice execution("% A::foo()"): before() { //Instrumentation code

mon_observer* observer = local_observer::getInstance();
monitor_A* mon = (monitor_A*) observer->get_monitor_by_index(0);
mon->callback_userloc_loc1(); //Invoke callback function

}
};

4.2 Statistical Model Checker

The statistical model checker is implemented as a plugin of Plasma Lab. It es-
tablishes a communication, in which the generated monitor transmits execution
traces of the MUV. In the current version, the communication is done via the
standard input and output. When a new state is requested, the monitor reports
the current state containing current observed variable values and the simula-
tion time to the plugin. The length of traces depends on the satisfaction of the
formula, which is finite due to the bounded temporal operators. Similarly, the
required number of traces depends on the statistic algorithms in use.

4.3 Random Scheduler

Verification does not only depend on the probabilistic characteristics of the
MUV, but it also can be significantly affected by the scheduling policy. Con-
sider a simple module A that consists of two thread processes as shown in the
following listing, where x is initialized to be 1.

void A::t1() { void A::t2() { SC_CTOR(A) {
if (x <= 0) if (x > 0) SC_THREAD(t1);

x := x + 1; x := x - 1; SC_THREAD(t2);
} } }

Assume that we want to compute the probability that x is always equal to 1.
Obviously, x depends on the execution order of two threads, i.e., the value is
1 if t2 is executed before the execution of t1 and 0 if the order is t1 then t2.
The current scheduling policy is deterministic as it always picks the process that
is first added into the queue, the implementation uses a queue to store a set of
runnable processes. Hence, only one execution order, t1 then t2, is verified instead
of two possible orders. As a result, the probability to be verified is 0, however, it
should be 0.5. Therefore, it is more interesting if a verification is performed on all
possible execution orders than a fixed one. In many cases, there is no decision or
an a-priori knowledge of the scheduling to be implemented. Moreover, verification



6

of a specification should be independent of the scheduling policy to be finally
implemented.

To perform our verification on possible execution orders of the MUV, we
implemented a random scheduler. The source of the process scheduler is the
evaluation phase, in which one of the runnable processes is executed. Given a
set of N runnable processes in the queue at the evaluation phase, the scheduler
randomly chooses one of these processes to execute. The random algorithm is
implemented by generating a random integer number uniformly over a range
[0, N − 1]. For more simulation efficiency and implementation simplicity, we
employ the rand() function and % operator in C/C++.

5 Experimental Results

We report the experimental results for several examples including a running
example, a case study of dependability analysis of a large control system (i.e.,
the number of states is 2155), and random scheduler examples. We used the
2-sided Chernoff bound with the absolute error ε = 0.02 and the confidence
α = 0.98. The experiments were run on machine with Intel Core i7 2.67 GHz
processor and 4GB RAM under the Linux OS. The analysis of the control system
takes almost 2 hours, in which 90 liveness properties were verified. The full
experiments can be found at the website [13]. For example, the first property

Fig. 3: Message latency Fig. 4: Each component fails first

we checked is the probability that the message latency from the producer to the
consumer within T1 time units over a period of T time of operation using the
formula ϕ = G≤T((c read = ′&′) → F≤T1

(c read = ′@′)), where c read, &,
and @ are the current received character, special starting and ending delimiters,
respectively. The second property we tried to determine which kind of component
is more likely to cause the failure of the control system. It is expressed in BLTL
as ¬shutdown U≤T failurei, where shutdown =

∨4
i=1 failurei. The results are

plotted in Fig. 3 and Fig. 4.
For the random scheduler, it seems that the implementation with the pseudo

random number generator (PRNG), by using the rand() function and % opera-



7

tor is not efficient. We are planning to investigate the Mersenne Twister gener-
ator [11] that is by far the most widely used general-purpose PRNG in order to
deal with this issue.

6 Conclusion

We present PSCV an SMC-based verification tool for checking properties ex-
pressed in BLTL of probabilistic SystemC models. The tool supports a rich set
of properties, a wide range of abstractions from statement level to system level,
and a more fine-grained model of time. In the feature we plan to make the
verification process more automated by eliminating the user interaction with
AspectC++ and embedding the checker inside the tool such as [1].

References

1. Abarbanel, Y., Beer, I., Glushovsky, L., Keidar, S., Wolfsthal, Y.: Focs: Automatic
generation of simulation checkers from formal specifications. In: CAV (2000)

2. Accellera: http://www.accellera.org/downloads/standards/systemc
3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma Lab: A flexible, distributable

statistical model checking library. In: QEST (2013)
4. Ciesinski, F., Grober, M.: On probabilistic computation tree logic. In: Validation

of Stochastic Systems (2004)
5. Gal, A., Schroder-Preikschat, W., Spinczyk, O.: AspectC++: Language proposal

and prototype implementation. In: OOPSLA (2001)
6. Grotker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer

Academic Publishers (2002)
7. Hermanns, H., Watcher, B., Zhang, L.: Probabilistic Cegar. In: CAV (2008)
8. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:

American Statistical Association (1963)
9. Katoen, J., Hahn, E., Hermanns, H., Jansen, D., Zapreev, I.: The Ins and Outs of

the probabilistic model checker MRMC. In: QEST (2009)
10. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by

probabilistic model checking. In: Control Engineering Practice (2007)
11. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. In: ACM Transactions on
Modeling and Computer Simulation (1998)

12. Ngo, V.C., Legay, A., Quilbeuf, J.: Statistical model checking for SystemC models.
In: HASE (2016)

13. PSCV: https://project.inria.fr/pscv/ (2016)
14. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic

systems. In: CAV (2004)
15. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: Formal

Methods and Models for Codesign (2010)
16. Younes, H.: Verification and planning for stochastic processes with asynchronous

events. In: PhD Thesis, Carnegie Mellon (2005)
17. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs statistical

probabilistic model checking. In: STTT (2006)
18. Zuliani, P., Platzer, A., M.Clarke, E.: Bayesian statistical model checking with

application to Simulink/Stateflow verification. In: FMSD (2013)

http://www.accellera.org/downloads/standards/systemc
https://project.inria.fr/pscv/

	PSCV: A Runtime Verification Tool for Probabilistic SystemC Models
	Introduction
	Verification Flow
	Expressing Properties
	Architecture
	Execution Trace Extraction
	Statistical Model Checker
	Random Scheduler

	Experimental Results
	Conclusion


