
HAL Id: hal-01406597
https://hal.archives-ouvertes.fr/hal-01406597

Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multiagent Reinforcement Learning Approach for
Inverse Kinematics of High Dimensional Manipulators

with Precision Positioning
Yasmin Ansari, Egidio Falotico, Yoan Mollard, Baptiste Busch, Matteo

Cianchetti, Cecilia Laschi

To cite this version:
Yasmin Ansari, Egidio Falotico, Yoan Mollard, Baptiste Busch, Matteo Cianchetti, et al.. A Mul-
tiagent Reinforcement Learning Approach for Inverse Kinematics of High Dimensional Manipulators
with Precision Positioning. BioRob 2016 - 6th IEEE International Conference on Biomedical Robotics
and Biomechatronics, Jun 2016, Singapore, Singapore. �hal-01406597�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80479728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01406597
https://hal.archives-ouvertes.fr


  

 

Abstract— Flexible manipulators based on soft robotic 

technologies demonstrate compliance and dexterous 

maneuverability with virtually infinite degrees-of-freedom. Such 

systems have great potential in assistive and surgical fields where 

safe human-robot interaction is a prime concern. However, in 

order to enable practical application in these environments, 

intelligent control frameworks are required that can automate 

low-level sensorimotor skills to reach targets with high precision. 

We designed a novel motor learning algorithm based on 

cooperative Multi-Agent Reinforcement Learning that enables 

high-dimensional manipulators to exploit an abstracted state-

space through a reward-guided mechanism to find solutions that 

have a guaranteed precision. We test our algorithm on a 

simulated planar 6-DOF with a discrete action-set and show that 

the all the points reached by the manipulator average an 

accuracy of 0.0056m (±𝟎. 𝟎𝟎𝟐). The algorithm was found to be 

repeatable. We further validated our concept on the Baxter 

robotic arm to generate solutions up to 0.008m, exceptions being 

the joint angle accuracy and calibration of the robot.  

 

I. INTRODUCTION 

    Minimally invasive surgery (MIS) [1] is an advanced 

surgical procedure that uses a limited number of ports either 

natural or through a small incision to access internal organs. 

The use of manipulators based on traditional design (i.e. 

cables, pulleys, gears) for single-port intervention is known to 

be limited in its distal maneuverability due to few degrees-of-

freedom (DOFs). A more innovative approach involves the 

application of Soft Robotics [2] to design whole arm flexible 

manipulators with virtually infinite DOF. These flexible 

manipulators take inspiration from boneless structures found 

in nature such as the octopus tentacles, elephant trunks, etc. 

that exhibit advanced manipulation capabilities due to their 

muscular arrangement. STIFF-FLOP [3] is an example of a 

soft surgical manipulator that is modular where each module 

comprises of radially arranged flexible fluidic actuators 

(FFA) [4] encapsulated within an elastomeric outer body. A 
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combination of various simple feedforward actuation 

sequences produces elongation and omnidirectional bending. 

Combining three modules in series results in many DOFs with 

a highly dexterous workspace with no kinematic singularities. 

Additionally, they are safe to interact with due to the 

compliance of the soft actuators. However, the successful 

application of such soft continuum manipulators in these 

demanding environments is dependent upon its ability to 

automate low-level reaching skills with precision.  

Marchese et. al. [5] applied a closed-loop controller on a 

3D soft-arm to position the end effector to reach a ball with a 

diameter of 0.04m. Giorelli et al. [6] used a Jacobian based 

approach to reach an average tip accuracy of 6% the total 

manipulator length. These traditional methods are limited by 

modelling assumptions, computational expense, and most 

importantly, precision that needs to be further reduced for 

technological advancements in soft robotics. Learning 

mechanisms [7] provide a more promising approach by 

encoding correlations between sensorimotor data through 

internal models [8]. Malakzadeh et. al [9] applied imitation 

learning to a high-dimensional soft manipulator though this 

implies that the robot can only be as good as the provided 

information. Interaction with the environment through 

exploration is essential for a robot to learn optimal behavior 

[10] [11]. However, this is a non-trivial task for high-

dimensional systems that can generate a large amount of 

redundant data [12]. Morphological Computation [13] has 

potential as a control paradigm to exploit high-dimensional 

structures as a computational resource through exploration, 

however, current applications [14] are limited to learn 

dynamical behavior without taking precision into account. 

Goal-directed motor exploration [15] is the most optimal 

framework, so far, to learn inverse kinematics with precision 

but it requires the controller to define linear paths in state-

space. We propose to address this task through Multi-Agent 

Reinforcement Learning (MARL) [16] by viewing a 
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manipulator as a group of independent agents that share an 

environment where they must coordinate their behavior 

through autonomous exploration to reach a target.  

MARL has gained rapid success in multi-robot systems 

[17] due to its inherent nature to decentralize complex 

problems that accounts for a speed-up in learning. Despite 

these potential benefits, these applications are limited to a few 

DOFs [18] [19]. This is due to the ‘curse-of-dimensionality’ 

faced as the number of agents increase. An additional 

challenge is to find solutions in 3D continuous state-space 

with precision. The novelty in this work lies in the design of 

a reward-guiding mechanism that enables the manipulator to 

learn optimally increasing actions over time in abstracted 

state-space to reach a global optimum with precision. We test 

our algorithm in simulation on a 6-DOF planar robotic arm 

with a discrete action set. It is able to reach 129 points in its 

workspace with a mean accuracy of 0.0056m (±0.002). We 

then validate this concept on the Baxter arm in 3D Cartesian 

space. We show that the algorithm can reach the goals within 

0.008m precision with exceptions from joint limits.     

Section II discusses the development of the learning 

framework. Section III presents the model selection 

methodology followed by experimental analysis on the 

simulated arm and Baxter anthropomorphic platform in 

Section IV. Section V provides a conclusion of the overall 

work with future research goals.  

 

II. INVERSE KINEMATICS LEARNING MODEL 

     RL [20] is an adaptive optimization technique where a 

single agent uses trial-and-error to learn an optimal behavior. 

Model-free robot control policies can be learnt through an 

action-value function (also called Q-function) by maximizing 

the expected cumulative discounted reward after executing an 

action (at =a) in a current state (st = s) and following a given 

policy 𝜋 (Є-greedy, etc.) thereafter.  

 

            𝑄𝜋 = 𝐸 { ∑ 𝛾𝑗𝑟𝑡+𝑗+1
𝜏
𝑗=0  |𝑠𝑡 = 𝑠 , 𝑎𝑡 = 𝑎, 𝜋}                   (1) 

 

Where, 𝛾 is the discount rate and γ ∈ [0, 1]; t denotes the 

time-steps to when the episode terminates; r is the reward 

received at each time-step. This is scaled to multiple-agents 

by associating an independent Q-function [21] to each agent 

as shown in Equation 2. A control policy can be obtained only 

if all concurrent policies reach a global optimum.  

 

    𝑄𝑖
𝜋(𝑠, 𝑎) = 𝐸𝑖

𝜋{ ∑ 𝛾𝑗𝑟(𝑗+𝑡+1)
𝜏
𝑗=0 |𝑠𝑡 = 𝑠 , 𝑎𝑡 = 𝑎, 𝜋}              (2)         

 

where, i = 1…n, where n is total number of agents. However, 

the presence of multiple agents within the same environment 

renders it non-stationary and partially-observable from the 

point of view of a single agent. The model-free Sarsa(ƛ) 

Temporal Difference (TD) with eligibility traces control 

approach is applied that is an online on-policy Q-function 

estimator with memory, allowing real-time adaptive control. 

Mathematically, 

 

    𝑄𝑡+1(𝑠, 𝑎) =  𝑄𝑡(𝑠, 𝑎)  +  𝛼 ∗ 𝛿𝑡 ∗ 𝑒𝑡(𝑠, 𝑎)         (3) 

     𝛿𝑡 =  𝑟𝑡+1 + 𝛾𝑄
𝑡
(𝑠𝑡+1 , 𝑎𝑡+1) −  𝑄

𝑡+1
(𝑠𝑡 , 𝑎𝑡)              (4) 

     𝑒𝑡(𝑠, 𝑎) =  {
𝛾ƛ𝑒𝑡−1(𝑠, 𝑎) + 1   𝑖𝑓 𝑠 = 𝑠𝑡 ,  𝑎 = 𝑎𝑡

𝛾ƛ𝑒𝑡−1(𝑠, 𝑎)                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (5) 

 

where,    𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)  is the temporal-

difference error; 𝛼 is the step-size parameter (also known as 

learning rate in some cases); et is the eligibility trace from the 

backward view of the temporal difference learning where , ƛ 

is the accumulating trace-decay error.  

A. Abstraction of 3D Cartesian State-Space 

Positioning the robotic arm in 3D Cartesian state-space 

formulates a continuous-valued domain. We propose to solve 

the task of reaching by abstracting the state-space such that 

the euclidean millimeter distance can be locally generalized 

to the same actuator input. This can be achieved through 

function approximation where a smaller number of features 

are used to represent the infinite-sized region. Tile coding 

[20] is differentiable, stable, piecewise-constant feature-

based approximator that allows to linearly approximate 

solutions for a non-linear system. This is achieved by 

partitioning the state space into multiple layers called tilings. 

Each element of a tiling is called a tile that allows for local 

generalization of state-space dependent upon the shape of the 

tile. These characteristics formulate the underlying 

motivation to employ it as our function approximator. Only 

one tile per tiling is activated if and only if the given state falls 

in the region delineated by that tile (Fig 1). The Q-function is 

then simply represented by a sum of the indexes of these 

activated tiles as, 

 

𝑄(s, a) =  ∑ 𝛩𝑗(𝑠)𝑤𝑗   
𝑘
𝑗=0                                                (6)  

 

where j = 1…k, where k is the total number of tilings; Θ j(s) 

is the value (1 or 0) of the jth tile given state s; wj is the weight 

of that tile.  

 
 

Fig 1. 2D Cartesian plane is abstracted into 2-layered rectangular tilings in R 

and ⱷ dimensions. There are 4 tiles with a width of wR and wⱷ in each 

dimension, respectively. The origin of the tilings are offset w.r.t. each other. 

The position of the soft manipulator end effector activates one tile per tiling. 



  

This equation is applied to all the actuators i.e. for i = 1…n, 

where n is total number of actuators. Equation 6 shows that 

the computational complexity of tile coding is linearly 

dependent on the number of tilings. The resolution of a tile is 

given as, 

 

𝑅 =  
𝑤

𝑇
                                    (7)  

 

where, 𝑤 represents the width of the tile; 𝑇 represents the total 

number of tilings. This equation is calculated for all 

dimensions of the state-space i.e., for a 3D Cartesian state-

space is in the x-y-z dimensions. The shape of tiles is usually 

problem specific as each manipulator will occupy a different 

reachable workspace. This information has to be provided to 

a programmer who will then then create appropriate shaped 

tiles to fit for the given workspace. However, the authors 

argue that the problem can be generalized by creating tiles in 

spherical co-ordinates (R, ⱷ, θ). The underlying principle is to 

parameterize the tilings such that the range in each dimension 

is defined as: (i)       𝑅 =  [0 max(𝑅)]; (ii) ⱷ =  [0° 360°]; 
and (iii) θ  =  [0° max(θ)°]; where max(R) refers to the 

length of the manipulator in a fully extended state; ⱷ refers to 

the azimuth which for omnidirectional bending will always be 

360⁰; and θ refers to the zenith dependent upon the 

contraction capability of the manipulator (Note: θ represents 

a zenith angle measured from the vertical axis.). This defines 

a volumetric space within which the manipulator is free to 

reach any point. Knowing these three quantities, rectangular 

shaped tiles can be created in each dimension, hence, limiting 

the tiling space to the reachable workspace that can be scaled 

to any manipulator. Controlling the precision is then directly 

proportional to controlling the width of the rectangular tile in 

each dimension. This will be discussed in more detail in 

Section III A.    

B. Reward-Guided Actor-Critic Architecture 

We combine the episodic Sarsa(ƛ) TD with the abstracted 

state-space in a model-free actor-critic architecture [20] to 

with a discrete action-set. A generalized policy iteration (GPI) 

is applied where an episode starts with the arm in a resting 

position proceeded by each agent following the Є-greedy 

policy (actor) to select either optimal actions (move the arm 

towards the goal) or sub-optimal actions (move the arm away 

from the goal). The update in the Q-function (critic) by an 

agent are based solely on a global environmental feedback 

without being affected by the behavior of any other agent. We 

design the scalar reward dependent upon the Euclidean 

distance from the goal such that it has a high negative value 

for distances further away from the goal that progressively but 

discretely decreases towards target, where it receives a reward 

of 0. The motivation behind this reward structure is to enable 

the robotic arm to make goal-directed attempts [22]. The 

episode will end either when the goal is reached or the 

maximum number of trials per episode are reached.  

C. Dealing with High-Dimensionality 

    It has been heuristically proven that decreasing the exit 

probabilities out of tiles with non-optimal actions improves 

the performance of tile coding [23]. We take advantage of our 

reward structure to apply this concept in our algorithm. Every 

time it encounters an action that is rewarded with a scalar 

value higher than previously encountered ones, that action 

will be the first one taken by the system from the rest position 

from the next episode onwards. This process will continue 

until the reward before 0 is obtained. Additionally, every time 

a better action is selected from the rest position, the 

exploration rate is reduced by half until the goal is reached a 

certain number of times where it is made completely greedy. 

In the following section, we discuss the application of this 

algorithm in simulation and hardware. 

 

III. MODEL SELECTION 

      The robotic platform under consideration is a planar 6-

DOF simulated robotic arm [24]. All the joints under 

consideration are revolute. This gives us a mapping from an 

Ɍ6 motor space to an Ɍ2 cartesian space. The total length of 

the robotic arm is 1m with each link equal in length. The base 

is centered at the origin of the Cartesian plane. The discrete 

action set can decrease/increase the angle or keep it 

unchanged within a range of [-180⁰, 180⁰]. The robotic arm, 

its initial position, and target points of the robotic arm is 

illustrated in Fig 2. 

 

 
 

Fig 2. The workspace of the 6-DOF robotic arm 

 

A. State-Action Parameter Selection 

The resolution (wR, wⱷ, wθ, T), step-size (α) exploration 

(Є), and eligibility traces (ƛ) all need to be tuned for an 

optimum trade-off between precision and learning time. This 

is a non-trivial task that in most works is done empirically 

[25] [26]. We also follow an empirical approach, the 

generalized steps of which are: For a given Є and ƛ, we first 

define the reachable workspace of the manipulator as 

described in Section II A. Then, a minimum number of tiles 



  

nR, nⱷ, and nθ are heuristically initialized in the R, ⱷ, and θ 

dimensions, respectively such that the resulting precision 

R/nR, ⱷ/nⱷ, and θ/nθ is in a centimeter range that can be 

improved to millimeter range through more tiling layers. 

Finally, a grid search is performed over nT tilings and nα step-

sizes (forming an nT x nα matrix) to reach 20 random goals. 

The role of the discrete action set is to ensure as much 

reachability as possible in the defined workspace. In this 

work, this is found through trial-and-error.  

For planar movement, we consider only x-y cartesian and 

corresponding R-ⱷ spherical coordinates. The reachable 

workspace of the manipulator is: R = [0 1m] and ⱷ = [0⁰ 360⁰]. 

We heuristically selected a discrete action set of 7 actions (see 

Table 1). Thus, there exists a total of 7e6 = 823543 possible 

input combinations. For Є=0.1 and ƛ=0.9, standard values 

found in text, we heuristically initialize 40 and 24 tiles such 

that the planar tiling layer of 960 tiles has a reaching precision 

of 0.025m and 0.261m in the two dimensions, respectively. 

We then perform a grid search for tilings between 2 to 32 in 

powers of 2 as recommended by [27] and 5 step-sizes of 

heuristically selected values, forming a 5x5 matrix. The target 

radius is set to 0.008m. 
 

 

Table 1 A summary of experimental results on 6 DOF planar arm 

 

  

The algorithm runs for a total of 300 episodes with 100 

trials per episode which means that in one experiment, the 

algorithm is given a total of 3e4 trials to converge to an 

optimal solution for two performance criteria: (i) mean 

reaching error (ii) mean episodes needed for convergence. It 

is worth noticing that this number is 27 times less than the 

number of input combinations that the manipulator can select 

from. The optimal settings are provided in Table 1. α was 

found to be 0.16 and T was 4. The value of the step-size 

parameter implies that the arm moves roughly six-tenth of the 

way across a tile to the target in one update. A smaller number 

of steps per tile reduces the time spent on a tile in turn 

decreasing the risk of error propagation if the arm takes a sub-

optimal action in it. With these parameter settings, the 

algorithm was able to reach all 20 goals with a mean reaching 

precision of 0.0055m (±0.00186) with an average of 56 

episodes required for convergence. The state space now 

comprises of a total 3840 tiles (4 layers * 960 tiles/layer) 

where each layer is offset with respect to one another. 
 

IV.  EXPERIMENTS 

We experimented on 142 points in the reachable 

workspace. We found the algorithm to converge for 129 

points with an average reaching accuracy of 0.0059m 

(±0.002). From these results, it is deduced that as long as we 

ensure millimeter accuracy in one dimension, we can meet the 

overall precision requirements through this algorithm. This is 

useful to avoid too much tiling in the ⱷ dimension which is 

much larger as compared to the first. The solution for all the 

142 points is found to be limited due to the discrete action set, 

and will be taken up as a future work using continuous action 

spaces.  

Fig 3 depicts an example of the robotic arm reaching a 

target, its policy development, and the total accumulated 

reward. This policy (Fig 3 center) illustrates the goal-directed 

behavior mentioned in Section II B. Depending upon the 

distance from the goal, the manipulator initially takes actions 

with a lower scaler reward. As it repeatedly encounters 

actions with a higher scalar reward, it tends to exploit them 

more. Hence, over time it learns the ability to choose 

optimally increasing actions. As the probability of selecting 

better actions increases, the trials required to reach the goal 

decreases, ensuring convergence. This is particularly 

beneficial as it guides the robotic arm to perform exploration 

towards regions of interest without prior knowledge of the 

environment, but only of the system’s perception of the goal 

in relation to its current position. This example converges at 

63 episodes after testing a total of 5742 actions (Fig 3 

Bottom). It is worthy that this number of actions is much less 

in comparison to the available 3e4 in one complete episode. 

The trend for the reward accumulation (Fig 3 Bottom) 

increases until convergence, which is as expected. We refer 

the readers to the complementary video for further reference.  

B. Repeatability and Robustness 

 We repeated the tests on the workspace 5 times found it to 

reach the same targets with an average of 0.0061m (±0.0019). 

C. Effects of taking Optimal Actions in Resting Position 

In order to demonstrate why the method proposed in 

Section II D is essential to deal with high-dimensions, we 

tested 20 random goal points with and without exploiting the 

reward structure in the resting position. Table 2 illustrates a 

summary of the obtained results. For the former approach, all 

REACHABLE 

WORKSPACE 

R 0-1m nR 40 wR 0.05  

ⱷ 0°-360° nⱷ 24  wⱷ 0.26 

 

 

 

STATE-SPACE 

PARAMETER 

SELECTION 

Є                                0.1 

ƛ                                0.9 

ɣ                                 1 

 

T 

Range Tested  2 – 32 (Powers of 2) 

Optimal Value 4 

 

α 

Values Tested  [0.25 0.16 0.08 0.05 0.025] 

Optimal Value 0.16 

ACTION SET [-0.087 -.0349 -0.0175 0 .0175 0.0349 0.087] (m) 

MEAN REACHING ERROR FOR 20 GOALS 0.0055m ± 0.00186m  

MEAN EPISODES REQUIRED FOR  CONVERGENCE 56 



  

goals are reached, however, for the latter only 9 are. After, 

reiterating the experiment 5 times, it was found that the 

repeatability was guaranteed for the former approach whereas 

not for the latter. Fig. 4 plots the accumulated absolute value 

of the reward in trying to reach each goal irrespective of 

whether it was successful or not. Fig 4. (Top) illustrates the 

rewards accumulated by the former approach and the axes has 

been scaled to the size of Fig. 4. (Bottom), representing the 

latter approach, in order to draw a relative comparison 

amongst both. It highlights that the maximum reward 

accumulated by the former approach (-5500000) is 

approximately equal to the minimum reward accumulated by 

the latter approach (-56000000). High negative reward 

implies that the latter method explores the state-space by 

taking more suboptimal actions. As a result, more error is 

propagated throughout the state-space which has a direct 

impact on the estimated Q-functions from which control 

policies are learned.  This is why policies learned by the latter 

method Fig 5 (Top) require a much larger learning time in 

comparison to that in Fig 5 (Bottom) as well as the uncertainty 

of convergence in the former approach. However, it is worth 

mentioning that in the case the manipulator cannot deal with 

deal high dimensions, whenever it does find solutions, they 

are still high-precision. This fact is reiterated in Fig 5 which 

compares the policy development for the two approaches.  

 

 
Fig 3. (Top) An example of the 6-DoF robotic planar converging to an 
optimal solution within 42.5 secs with a reaching accuracy of 3.2mm (Center) 

Policy Development (Bottom) Absolute Value of total reward accumulated 

Fig 5 (Top) superimposes the policy development plots for 

the 20 learnt goals in the former method, whereas, Fig 5 

(Bottom) superimposes the 9 learnt goals in the latter 

approach. All policy development plots observe the goal-

directed behavior mentioned previously. The learning 

behavior in the former approach is concentrated within the 

first 120 episodes where the learning time increases with the 

increase in distance from the resting position. This is not true 

for the latter method where the learning time exhibits no 

stable identifiable trend.  

 

 
 

Fig 4. (Top) Rewards accumulated when taking progressively optimal actions 

from resting position for 20 targets. Steady-state straight lines show 
convergence. (Bottom) Rewards accumulated without taking progressively 

optimal actions from resting position for 20 target points. Linear lines 

indicate i.e. no learning.  
 

 
 

Fig 5. Results of reaching 20 goals with and without exploiting the reward 
structure (Top) 20 super-imposed learned policies when taking progressively 

optimal actions from resting position (Bottom) 9 superimposed policies when 

taking random actions from the resting position goals. These goals exhibit a 
learning time much slower in comparison to the first approach.  

 
 



  

Table 2 Taking optimal Actions in resting position vs. not taking optimal 

actions in resting position. Test results on 20 random goals 
 

 

V.  HARDWARE 

We further validated the concept presented in Section III A 

on the left arm of the Baxter anthropomorphic robot 

developed by Rethink Robotics [28]. It has 7 DOFs: two 

rotational joints in the shoulder, two in the elbow, and three 

in the wrist. This gives us a mapping from an Ɍ6 motor space 

to an Ɍ3 cartesian space. The reachable workspace of the 

manipulator is identified as R = [0m 1m], ⱷ = [0⁰ 360⁰], and 
θ = [0⁰ 46⁰]. For the model selection and experiments, the 

forward kinematics (provided by the manufacturer) of the 

robot in simulation was used in conjunction with the 

algorithm and a procedure similar to Section III A was 

followed. The optimal parameters obtained are provided in 

Table 3. 

 

A total of 150 target points in 3D Cartesian state-space 

were created and tested. For the given discrete action-set, the 

algorithm was able to generate a total of 15 solutions within a 

state-space of approximately (0.7m x 1m x 0.80m) region. 

Each solution from the set was then fed sequentially to the 

robot for a direct comparison of the prediction to the actual 

outcome. This was done by obtaining the 3D cartesian 

coordinates from an OptiTrack Motion Capture [29] vision 

feedback. Within the simulator, the solutions generated had a 

mean accuracy of 0.006m (±0.002). Practically, it was 

observed that 60% of the given solutions reached the goal 

with a mean reaching accuracy of 0.008m (± 0.001). The rest 

were off the target position with a mean reaching accuracy of 

0.0138m (± 0.012). This offset could be credited to 

calibration issues and joint-accuracies limitations. Two such 

examples have been provided in Fig 6 and 7 below.  

VI. CONCLUSION 

Soft Robotics applied as an underlying key technology in 

the design of assistive and surgical tools can provide high 

dexterity in the instrument. However, their practical 

applicability is dependent upon the development of a new 

framework of intelligent control strategies that can automate 

accurate and repeatable low-level sensorimotor skills while 

taking into account the non-linearity and high dimensionality 

of these systems.  We have designed an algorithm using the  

 

 

 
Fig 6. Target: [R = 0.76m ⱷ = 63⁰ ⱷ = 7⁰]; (Left) Real Reaching Accuracy: 

0.019m  (Right) Simulated Reaching Accuracy: 0.0052m generated in 52s  

 

 

  
 
Fig 7. Target: [R = 0.425m ⱷ = 41.5⁰  ⱷ = 17.5⁰];  (Left): Real reaching 

Accuracy: 0.007m; (Right): Simulated reaching Accuracy: 0.003m 
generated in 27s. 

 

Table 3 A summary of experimental Results on Baxter 

 

MARL framework that allows open-ended autonomous 

exploration limited to a manipulator’s reachable workspace 

guided by the motivation to move towards the goal as quickly 

as possible. We tested this algorithm on 142 points for a 

planar 6-DOF arm with a discrete action action-set. With a 

EXPLOITING THE REWARD YES  NO 

NO. OF GOALS REACHED 20 9 

REPEATABILITY   (5 TRIALS) Yes No 

REACHING ACCURACY 0.00632m ± 0.0017m 0.00598m ± 0.0021m 

REACHABLE 

WORKSPACE 

 

R 0-1m nR 30 wR 0.03 

ⱷ 0°-360° nⱷ 6 wⱷ 1.04 

θ 0°-46° nθ 20 wθ 0.04 

 

 

 

STATE-SPACE 

PARAMETER 

SELECTION 

 

T 

Range Tested  2 – 32 (Powers of 2) 

Optimal Value 4 

 

α 

 

Values Tested  

0.25; 0.16; 0.08; 0.05; 0.025 

Optimal Value 0.16 

 Є 0.1 

 ƛ 0.9 

ɣ 1 

ACTION SET [-0.175  -0.0349 -0.0175 -0.00873 0 0.00873 0.0175 0.0349 0.175]m 

REACHING ERROR IN SIMULATION 0.006m (±0.0022 ) 

TOTAL TARGETS REACHED WITH PRECISION 9/15 



  

discrete action set of 7 actions, it was able to reach 129 points 

with a 0.0056m mean reaching accuracy. The algorithm also 

has been tested to be repeatable with robustness. We further 

validated the results on the Baxter Robotic arm. We found it 

capable of reaching points with within 0.008m accuracy.  

Future works will take into account continuous action spaces 

and follow trajectories. The algorithm will also be applied to 

soft robotic platforms.   
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