
HAL Id: hal-01407525
https://hal.inria.fr/hal-01407525

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments with ODYSSE: Opportunistic Duty cYcle
based routing for wirelesS Sensor nEtworks

Ichrak Amdouni, Cedric Adjih, Nadjib Aitsaadi, Paul Muhlethaler

To cite this version:
Ichrak Amdouni, Cedric Adjih, Nadjib Aitsaadi, Paul Muhlethaler. Experiments with ODYSSE:
Opportunistic Duty cYcle based routing for wirelesS Sensor nEtworks. IEEE LCN 2016 -
41st IEEE Conference on Local Computer Networks, Nov 2016, Dubai, United Arab Emirates.
�10.1109/LCN.2016.50�. �hal-01407525�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80478478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01407525
https://hal.archives-ouvertes.fr

Experiments with ODYSSE: Opportunistic Duty
cYcle based routing for wirelesS Sensor nEtworks

Ichrak Amdouni∗, Cedric Adjih†, Nadjib AitSaadi∗, Paul Muhlethaler‡
∗ University Paris-Est, LiSSi, UPEC, Vitry sur Seine, France, Email: firstname.name@u-pec.fr

† INRIA Saclay, France, Email: cedric.adjih@inria.fr
‡ INRIA Paris, France, Email: paul.muhlethaler@inria.fr

Abstract—In this paper, we propose, design and experiment an
energy efficient protocol for Wireless Sensor Networks (WSNs)
named Opportunistic Duty cYcle based routing protocol for
wirelesS Sensor nEtworks (ODYSSE). The main key innovation
of ODYSSE is that it judiciously makes use of three mecha-
nisms. The first one is duty cycling which consists in randomly
switching on/off transceivers to save energy. The second one is
opportunistic routing in which the next hop is not rigidly fixed:
any node closer to the destination might become a relay. The
third one, is source coding using LDPC, Low-Density Parity-
Check codes. With asynchronous duty cycling as a starting
point, the above techniques fit perfectly, yielding a robust low
complexity protocol for highly constrained nodes. ODYSSE is
implemented and installed in an experimental testbed composed
of 45 Arduino nodes communicating with IEEE 802.15.4 (XBee)
modules deployed in the large-scale platform FIT IoT-LAB.
Results show that the performance obtained is very satisfying
in both following scenarios: high load (images) and light load
(reporting of infrequent event).

Keywords: WSN, opportunistic routing, low duty-cycle,
experimentations, Arduino, LDPC.

I. INTRODUCTION

In this paper, we focus on a distributed and adaptive routing
protocol for WSNs, which can address efficient transmission
of both low and large volumes of data, in particular mul-
timedia traffic as in Wireless Multimedia Sensor Networks
(WMSNs). The main objective is to efficiently manage the
energy consumption while minimizing the end-to-end delay
of packets from the source to the sink. To this end, we
propose a routing protocol denoted by ODYSSE. It is based
on opportunistic routing and low duty cycle of transceivers.
The main key innovation of ODYSSE is that it combines
opportunistic routing, duty cycle and source coding. The first
two features are explored in this paper while the third one is
included in [13] with more experimentations.

Unlike deterministic routing which builds specific routes for
each source-destination pair, opportunistic routing [4][6] can
instantly ensure route diversity to balance load by adaptively
selecting forwarders at each intermediate hop in the path.
A side effect is that energy consumption may be spread
more evenly over multiple paths and intermediate forwarders
with low battery levels can be avoided. Moreover, latency is
minimized and fault tolerance is maximized. The main critical
question in opportunistic routing is which neighboring node
will forward a given packet. Solutions vary from selecting the
first awake node, as in EFFORT [3], or conducting a more or

less complex selection process like RI-MAC [5] and ORW [2].
For instance, ORW protocol selects the potential forwarders
according to the expected number of wakeups until a packet
has reached its destination (EDC metric). However, to update
this metric, the exchange of duty cycle information is required.
In [13], we have proved via a mathematical model that, under
some conditions, selecting the first available forwarder is a
delay efficient strategy.

Combined with opportunistic routing, the duty cycle mech-
anism has proved to be energy efficient as it minimizes the
energy wasting states like idle listening, collisions and traffic
overhead. For instance, ASSORT [4] and B-MAC [6] are
sender-initiated: sender nodes announce they have data to send
either by sending beacons in ASSORT, or a “wakeup signal”,
called a preamble which lasts longer than the receiver sleep
interval in B-MAC. In contrary, RI-MAC [5] is a receiver-
initiated protocol. In this protocol, when any node turns on its
radio, it transmits a short beacon frame to announce that it is
ready to receive data.

To improve wireless transmission reliability, conventional
approaches such as full data replication or on-demand re-
transmission are too expensive or even not possible due to
very strict energy constraints and asymmetric wireless chan-
nels. Indeed, either some feedback is implemented (which is
still complex in duty cycling opportunistic routing), or when
operating in open loop, a good design choice is forward
error-correction methods. To reduce the complexity, ODYSSE
adopts the last open-loop approach based on LDPC coding [7].

ODYSSE is responsible for routing data from data sources
to the gateway while optimizing the lifetime of the network.
The duty cycle of routers is adapted to fit 1) bulk data transfer,
and 2) infrequent data reporting. ODYSSE aims at keeping
low data transmission delays and overhead since it deals
with small capacity devices. To the best of our knowledge,
our work is the first to make experiments of three features:
i) opportunistic routing, ii) duty-cycle and iii) coding for a
multimedia application. Experimentation is done with a testbed
of 45 based Arduino nodes deployed in the large-scale FIT
IoT-LAB platform [8]1.

The rest of this paper is organized as follows. The next sec-
tion describes the ODYSSE protocol. Afterwards, Section III
details the large testbed and the experimental results obtained.
Finally, Section IV concludes the paper.

1https://www.iot-lab.info/

II. ODYSSE PROTOCOL

A. Overview of the ODYSSE Protocol

To save energy, ODYSSE protocol makes router nodes
duty cycled. Routers are put in the sleep state asynchronously
and randomly. This design avoids the synchronization over-
head and the degradation of the system performance in case
of clock drift. As a consequence, the wireless topology is
dynamic and unpredictable. Thus, a good alternative for un-
suitable classical routing is the opportunistic routing.

To keep low complexity of forwarder search method, in
ODYSSE, the forwarder is the neighbor offering a best com-
promise in terms of: i) residual energy, and ii) relative
distance to the gateway and iii) quality of wireless links.
To ensure routing progress towards the gateway and to avoid
routing loops at each hop, a DAG (Directed Acyclic Graph)
rooted at the gateway is implicitly constructed and maintained
by each node as its ‘distance’ relative to this gateway. This
distance is essentially the number of hops separating the node
from the gateway but taking into account the link quality
as a metric. The source node generates, in addition to the
original data packets, repair (redundant) packets which are
linear combinations of original ones. This data redundancy
enables the final destination to decode the received packets
in order to retrieve the lost packets. ODYSSE is implemented
and experimented on a real testbed of Arduino devices.

B. Distance Computation

Due to space limitations, we briefly describe how distances
are computed, details are in [13]. As indicated above, a
distance is essentially computed as a hop count. Our objectives
are 1) to avoid pure shortest path routing, which would
limit the width of the DAG (hence the alternate routes) and
2) to optionally avoid spurious retransmissions in the spirit
of minimizing energy consumption. Hence, longest links are
eliminated. Our heuristic for characterizing long links (in terms
of distance) is based on Received Signal Strength Indicator
(RSSI). Indeed, if the RSSI of a received packet is above a
predefined threshold, the link metric is considered to be 1;
otherwise it is 1 + γ (where γ is a constant > 0).

After these steps, nodes form a logical tree (actually DAG)
defining their distances towards the gateway taking into ac-
count the RSSI values.

C. Forwarders Search and Selection

Our proposal is based on a greedy approach. In ODYSSE,
forwarder selection is sender-initiated. When one node u
has a data packet to transmit (either the source node or any
router node), it broadcasts Beacon messages and then, awake
neighbors answer by sending Reply messages.

More specifically, the Beacon message from u includes its
distance to the gateway (named gateway-distance). Any
awake node v receiving this beacon will proceed as follows:

1) If v is closer to the gateway than u and RSSI <
RSSI_THRESHOLD then v sends a Reply message.

2) Otherwise, the node v stays silent.
The initiator u will repeatedly send Beacon messages until
the forwarder search phase expires:

◦ After a predefined period of time BEACON_PERIOD,
◦ Or, when a predefined number of Reply,
MAX_NB_REPLY, messages is received.

When the node u receives a Reply message from any node
v, it has access to the following parameters:

1) The residual energy of v.
2) The distance of v relative to the gateway.
3) The RSSI of the Reply message received from node v.
Depending on the policy (e.g., emphasis on energy, or lower

latency, . . .), u will select the most appropriate forwarder.
Focusing on latency and motivated by the result in [13], the
heuristic that we adopt in practice is to select the first available
forwarder having an acceptable metric based on the distance
of v coupled with the RSSI. Indeed, in [13], we have modelled
the average waiting time of forwarders assuming exponential
and uniform wake-up distributions. Results show that a good
heuristic for latency minimization consists in selecting the first
available forwarder.

Once the forwarder is selected, the node u transmits its
packet. In ODYSSE, whenever no forwarder is found af-
ter BEACON_PERIOD, this period is extended, unlike AS-
SORT [4] for instance where nodes would return to the sleep
state. Our approach tends to minimize delays. We believe that
it is more efficient for dense networks.

The advantages of this design are the low storage capacity
required and a light-weight selection procedure. Furthermore,
ODYSSE, unlike for instance ORW [2] is loop free and
guarantees packet unicity in the network. The design of the
forwarder selection allows for a large spectrum of forwarding
policies.

D. Duty Cycle

1) Principles: In ODYSSE, source nodes and gateway are
always active while routers are duty cycled. The maximum
duration of the active mode is fixed, while the sleep period
follows a random uniform distribution. Ultimately, the duty
cycling depends on the network traffic and indirectly on the
density of the network. The detailed functioning of a router
node, starting from the active state is as follows:
• If the node is idle (has no data packet to send), it waits for
Beacon messages:
◦ If after an active mode duration of ACTIVE_PERIOD

no Beacon is received, it returns to the sleep mode.
◦ Otherwise, if the node actually replied to a Beacon, it

waits for a Data message, and:
◦ Then if the node does not receive a Data message after
WAIT_DATA_PERIOD, it returns to the sleep state,

◦ Otherwise, it forwards the Data message as follows:
• If the node has data to send: it sends periodically Beacon
messages, collect replies as described in section II-C, until a
forwarder has been successfully selected and then the Data
packet has been successfully sent as unicast (with use of MAC
layer acknowledgements). After that, the node has no data
packet to send and returns to sleep mode.

Remark 1: Note that routers are not necessarily active for the
whole ACTIVE_PERIOD. Indeed, a router having forwarded
a packet within this period, returns to the sleep state.

2) Sleep Duration: The duty cycle of nodes is critical be-
cause it directly impacts data transmissions, routing overhead
and energy efficiency. In ODYSSE, nodes are unsynchronized,
they randomly select a random sleep period in an interval:

[MIN_SLEEP_PERIOD, α× ACTIVE_PERIOD] (1)

Where the ACTIVE_PERIOD is the maximum active period
of routers, and α is a constant.

However, ODYSSE design carefully tunes this expression
taking into account two application scenarios: infrequent
events monitoring and multimedia application.
• Infrequent events: This classical scenario is characterized
by low volumes of data generated by the source either periodic,
regular, rare or exceptional. With this assumption, router
nodes are allowed to keep their initial duty cycle by applying
formula (1). This is because in this scenario, a current packet
is rarely a predictor for an additional incoming packet. This
algorithm will be denoted INFR.
•Multimedia application: This scenario considers a bulk data
transfer of still images from the source. For this scenario, we
define two algorithms:

1) MED_ADAP: (MultimEDia ADAPtive) Router nodes
adapt their duty cycle by shortening their duty cy-
cle. Consequently, the applied algorithm is as follows.
When any router node transmits a packet, instead of
turning back to the sleep state with a period given
by formula (1), it rather sleeps for the minimum pe-
riod MIN_SLEEP_PERIOD for a predefined number of
times SHORT_SLEEP_COUNT. That is, the node sleeps
for the minimum possible period of time between each
retransmission – until it reaches a fixed limit. After that,
it returns to the normal behavior. With this adaptive
strategy, the network will face the congestion effect
resulting from the bulk transfer.

2) MED_N_ADAP: (MultimEDia Non ADAPtive) In this
case, nodes do not adapt their duty cycle, they just apply
formula (1).

E. Packet Erasure Codes in ODYSSE

To combat wireless transmissions losses, ODYSSE inte-
grates Erasure Codes (EC) [9], which are based on data
redundancy. Indeed, instead of sending k original packets,
the encoder adds m redundant packets. When the number of
the received packets is sufficiently high, the decoder decodes
them and retrieves the lost packets. Different coding methods
exist. In our work, we use the LDPC (“Low-density parity-
check”) codes [10]. LDPC code is a block code defined
by a sparse parity-check matrix (that is, the majority of
entries are zero) and is known to provide excellent decoding
performances [10]. LDPC is implemented in ODYSSE in a
way that fits the extremely limited memory of the devices.
Because of space limitations, we do not include results about
this code in this paper.

III. TESTBED DEPLOYMENT AND EXPERIMENTATIONS

A. Testbed Hardware

45 Arduino nodes are deployed in an area of 65×10 meters.
Each node has two components: the ATmega2560, a 8-bit

0 10 20 30 40
α

0

10

20

30

40

50

60

70

Av
g

en
d-

to
-e

nd
 d

el
ay

 (s
ec

on
ds

)

INFR MED_N_ADAP MED_ADAP

Fig. 1. Average end to end delays per data packet.

microcontroller (256 KB of flash memory and 8 KB of SRAM)
and the radio module XBee (IEEE 802.15.4). The transmission
power is set to 2 dBm. Source nodes are in addition equipped
with TTL serial JPEG camera. The testbed is integrated in the
existing large testbed FIT IoT-LAB, as described in [11][13].

B. Experiment Settings

The source node generates one photo every 30 seconds. We
vary the value of α (α = 0: no duty cycle is applied). For
the INFR scenario, the source generates data packets with
a random inter-packet delay ranging from 5 to 10 seconds.
The other experiment parameters are summarized in TABLE I.
Results presented in this section are the average of 2 to 8
images.

TABLE I
EXPERIMENT PARAMETERS

ACTIVE_PERIOD 0.2 s WAIT_DATA_RPERIOD 3 s
MIN_SLEEP_PERIOD 0.05 s RSSI_THRESHOLD −83 dBm
SHORT_SLEEP_COUNT3 BEACON_PERIOD 3 s
MAX_NB_REPLY 1 m 30

Our result analysis originates from detailed logs collected
through the serial ports of Arduino devices. Collected logs
represent a volume of 26 GBytes.

C. Average End to End Delays

Fig. 1 depicts the average end-to-end delay per data packet
for each image as a function of α.

As depicted in Fig. 1, the end-to-end delays vary linearly
with α. The scenarios MED_ADAP and INFR have low end-
to-end delays that slightly increase with α. Hence, in these
scenarios there is a good trade-off between the energy saving
and the delay reduction. In MED_N_ADAP, we see that the
delays are rapidly increasing with α. This is because routers
are less available due to the duty cycle and the network
may reach congestion states because of the bulk transfer.
These facts are alleviated by the duty cycle adaptation (in
MED_ADAP) and large packet interarrivals (in INFR). While
packet interarrivals are dependent on the application (low in

10 20 30 40
α

 0%

 20%

 40%

 60%

 80%

100%

%
 o

f s
le

ep
 p

er
io

d
pe

r n
od

e

INFR MED_N_ADAP MED_ADAP

Fig. 2. Average duty cycle per node.

multimedia scenarios in particular), the duty cycle adaptation
is an effective method to reduce delays. Also, as we will
see hereafter, this adaptability has a smaller impact on the
energy consumption. Delays are due to packet losses and to
forwarders search time.

D. Duty Cycle

Fig. 2 depicts the average duty cycle per node, defined
as the percentage of the average sleep time of any node
during its lifetime. Notice that when router nodes are in
the active state, they are either (1) waiting for beacons, (2)
searching forwarders, (3) or waiting for data packets after
having transmitted a Reply message. All these states have
a maximum duration after which nodes return to the sleep
state, except after a forwarder search failure is extended.

As explained in Section II-D, the sleep duration is
given by a random value in a predefined interval:
[MIN_SLEEP_PERIOD, α × ACTIVE_PERIOD]. Given the
parameters setting, in a given cycle, for α = 10 for instance,
any node would sleep an average period approximated by
random(50, 200 ∗ 10) ' 1025 ms, in MED_N_ADAP. Which
leads to a sleep ratio equal to: 1025∗100

1225 = 83%. Experiments
yield an average value ' 70%. A duty cycle of 70% means
an energy gain of the same value. Notice also that many nodes
reach a duty cycle of 90%.

Another observation form Fig. 2, is that, as expected,
INFR scenario ensures the highest values of the duty cycle.
The average duty cycle increases with α for INFR scenario,
while it is almost insensitive to α for MED_N_ADAP and
MED_ADAP.
α = 30 is globally ensuring higher duty cycle than α = 10.

However, increasing α at any node, means that less neighbors
of this node will be awake (no activity sensed). Thus, such
node spends longer time searching for forwarders, which
decreases its duty cycle and increases its energy consumption.
This is what we see while evaluating the individual duty cycle
of nodes (see Fig. 16 in [13]). In MED_N_ADAP scenario
for instance, α = 10 exceeds α = 30 for some nodes.
In contrast, in INFR and MED_ADAP scenarios, the duty
cycle increases with α almost for all nodes. This means that

regulating traffic injection (INFR scenario) and tuning the
duty cycle (MED_ADAP scenario) allow the network to take
advantage from setting long sleep durations.

IV. CONCLUSION

In this paper, we proposed ODYSSE routing protocol, which
combines three main mechanisms: duty cycling, opportunistic
routing and source coding as a reliability enhancement method.
ODYSSE is also characterized by a duty cycle setting which is
adaptable to different application scenarios: bulk data transfer
with/without adaptive duty cycle and infrequent data transfer.
Experimental results show that adapting the duty cycle to
network traffic conditions is essential, even more important
than the sleep period itself. Results highlight the importance of
wireless protocols parameters as well: these parameters should
dynamically adapt to the environment, in particular the data
generation pattern.

ACKNOWLEDGEMENT

This work has been supported by the Celtic plus project
TILAS [12].

REFERENCES

[1] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks, John Wiley & Sons, 2005

[2] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, Low power,
low delay: opportunistic routing meets duty cycling, in Proceedings of
the 11th international conference on Information Processing in Sensor
Networks, IPSN’12. New York, NY, USA.

[3] M. Chien-Chen Hung, K. Ching-Ju Lin, C.F Chou, and C.C. Hsu,
EFFORT: Energy-efficient opportunistic routing technology in wireless
sensor networks, Wireless communications and mobile computing, June
2013.

[4] C.C. Hsu, M.S. Kuo, S.C Wang, C.F. Chou, Joint Design of Asynchronous
Sleep-Wake Scheduling and Opportunistic Routing in Wireless Sensor
Networks, in Computers, IEEE Transactions, vol.63, no.7, pp.1840-1846,
July 2014.

[5] Y. Sun, O. Gurewitz, and D. B. Johnson, RI-MAC: A Receiver-Initiated
Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads
in Wireless Sensor Networks, in 6th ACM Conference on Embedded
Network Sensor Systems. New York, NY, USA: ACM, 2008, pp. 1-14.

[6] J. Polastre, J. Hill, and D. Culler, Versatile Low Power Media Access for
Wireless Sensor Networks, in 2nd International Conference on Embedded
Networked Sensor Systems. ACM, 2004, pp. 95-107.

[7] N. Javaid,, O. Rehman, N. Alrajeh, Z. A. Khan, B. Manzoor, S. Ahmed,
AID: An Energy Efficient Decoding Scheme for LDPC Codes in Wireless
Body Area Sensor Networks , 2013 International Workshop on Commu-
nications and Sensor Networks (ComSense-2013).

[8] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, T. Watteyne, FIT
IoT-LAB: A Large Scale Open Experimental IoT Testbed - A valuable
tool for IoT deployment in Smart Factories, IEEE ComSoc Multimedia
Technical Committee E-Letter, Special Issue on ”IoT and Smart Factory”,
2015.

[9] M. Y. Naderi, H.R. Rabiee, M. Khansari, M. Salehi, Error control for
multimedia communications in wireless sensor networks: A comparative
performance analysis, Ad Hoc Networks. (2012).

[10] M. Cunche, V. Roca, Improving the Decoding of LDPC Codes for
the Packet Erasure Channel with a Hybrid Zyablov Iterative Decod-
ing/Gaussian Elimination Scheme, Research Report 2008, pp.19. https:
//hal.inria.fr/inria-00263682v1/document

[11] ODYSSE: http://odysse-upec.github.io
[12] TILAS project: http://www.tilas.eu/
[13] I. Amdouni, C. Adjih, N. AitSaadi & P. Muhlethaler, ODYSSE: A

Routing Protocol for Wireless Sensor Networks, Research Report RR-
8873, Inria, https://hal.inria.fr/hal-01292479/.

