
HAL Id: hal-01407932
https://hal.archives-ouvertes.fr/hal-01407932

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-Counter Automata with Counter Observability
Benedikt Bollig

To cite this version:
Benedikt Bollig. One-Counter Automata with Counter Observability. 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016), Dec 2016,
Chennai, India. �10.4230/LIPIcs.FSTTCS.2016�. �hal-01407932�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80478024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01407932
https://hal.archives-ouvertes.fr

One-Counter Automata with Counter
Observability
Benedikt Bollig

LSV, ENS Cachan, CNRS, Inria, Université Paris-Saclay, France
bollig@lsv.fr

Abstract
In a one-counter automaton (OCA), one can produce a letter from some finite alphabet, increment
and decrement the counter by one, or compare it with constants up to some threshold. It is
well-known that universality and language inclusion for OCAs are undecidable. In this paper, we
consider OCAs with counter observability: Whenever the automaton produces a letter, it outputs
the current counter value along with it. Hence, its language is now a set of words over an infinite
alphabet. We show that universality and inclusion for that model are PSPACE-complete, thus
no harder than the corresponding problems for finite automata. In fact, by establishing a link
with visibly one-counter automata, we show that OCAs with counter observability are e�ectively
determinizable and closed under all boolean operations. Moreover, it turns out that they are
expressively equivalent to strong automata, in which transitions are guarded by MSO formulas
over the natural numbers with successor.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases One-counter automata, inclusion checking, observability, visibly one-
counter automata, strong automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.

1 Introduction

One-counter automata (OCAs) are a fundamental model of infinite-state systems. Their
expressive power resides between finite automata and pushdown automata. Unlike finite
automata, however, OCAs are not robust: They lack closure under complementation and have
an undecidable universality, equivalence, and inclusion problem [12,14]. Several directions to
overcome this drawback have been taken. One may underapproximate the above decision
problems in terms of bisimilarity [15] or overapproximate the system behavior by a finite-state
abstraction, e.g., in terms of the downward closure or preserving the Parikh image [20,26].

In this paper, we consider a new and simple way of obtaining a robust model of one-
counter systems. Whenever the automaton produces a letter from a finite alphabet �, it will
also output the current counter value along with it (transitions that manipulate the counter
are not concerned). Hence, its language is henceforth a subset of (� ◊N)ú. For obvious
reasons, we call this variant OCAs with counter observability. We will show that, under the
observability semantics, OCAs form a robust automata model: They are closed under all
boolean operations. Moreover, their universality and inclusion problem are in PSPACE and,
as a simple reduction from universality for finite automata shows, PSPACE-complete.

These results may come as a surprise given that universality for OCAs is undecidable
and introducing counter observability seems like an extension of OCAs. But, actually, the
problem becomes quite di�erent. The fact that a priori hidden details from a run (in terms
of the counter values) are revealed makes the model more robust and the decision problems
easier. Note that this is also what happens in input-driven/visibly pushdown automata [3,16]

© Benedikt Bollig;

licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2016).

Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. ; pp. :1–:15

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 One-Counter Automata with Counter Observability

or their restriction of visibly OCAs [5,22]. They all recognize languages over a finite alphabet
and the stack/counter operation can be deduced from the letter that is read. Interestingly,
our proofs establish a link between the observability semantics and visibly OCAs. This link
is not immediate and relies on a couple of technical lemmas. However, it somehow explains
the robustness of OCAs under the observability semantics.

It is worth noting that revealing details from a system configuration does not always help,
quite the contrary: Though timed automata and counter automata are closely related [13],
the universality problem of timed automata is decidable only if time stamps are excluded
from the semantics [1].

Note that it is not only for the pure fact that we obtain a robust model that we consider
counter observability. Counter values usually have a meaning, such as energy level, value of
a variable, or number of items yet to be produced (cf. Example 2). In those contexts, it is
natural to include them in the semantics, just like including time stamps in timed automata.

Apart from the connection with visibly OCAs, another model closely related to ours
is that of strong automata [9]. Strong automata operate on infinite alphabets and were
introduced as an extension of symbolic automata [6, 10]. Essentially, a transition of a strong
automaton is labeled with a formula from monadic second-order (MSO) logic over some
infinite structure, say (N, +1). In fact, the formula has two free first-order variables so that
it defines a binary relation over N. This relation is interpreted as a constraint between
successive letters from the infinite alphabet. We will show that OCAs with the observability
semantics and strong automata over (N, +1) (extended by a component for the finite alphabet
�) are expressively equivalent. This underpins a certain naturalness of the observability
semantics. Note that the universality and the inclusion problem have been shown decidable
for strong automata over (N, +1) [9]. However, strong automata do not allow us to derive
any elementary complexity upper bounds. In fact, our model can be seen as an operational
counterpart of strong automata over (N, +1).

The outline of the paper is as follows. Section 2 defines OCAs and their di�erent semantics.
Section 3 relates the observability semantics with visibly OCAs and shows that, under the
new semantics, OCAs are closed under boolean operations and have a PSPACE-complete
universality and inclusion problem. In Section 4, we show expressive equivalence of strong
automata and OCAs with counter observability. We conclude in Section 5. Omitted proofs or
proof details can be found in the full version of this paper, which is available at the following
link: https://arxiv.org/abs/1602.05940

2 One-Counter Automata with Counter Observability

For n œ N = {0, 1, 2, . . .}, we set [n] := {1, . . . , n} and [n]
0

:= {0, 1, . . . , n}. Given an
alphabet �, the set of finite words over �, including the empty word Á, is denoted by �ú.

2.1 One-Counter Automata and Their Semantics
We consider ordinary one-counter automata over some nonempty finite alphabet �. In
addition to a finite-state control and transitions that produce a letter from �, they have a
counter that can be incremented, decremented, or tested for values up to some threshold
m œ N (as defined in [5]). Accordingly, the set of counter operations is Op = {ˆ, ´}, where
ˆ stands for “increment the counter by one” and ´ for “decrement the counter by one”. A
transition is of the form (q, k, ‡, q

Õ) where q, q

Õ are states, k œ [m]
0

is a counter test, and
‡ œ � fi Op. It leads from q to q

Õ, while ‡ either produces a letter from � or modifies the

https://arxiv.org/abs/1602.05940

B. Bollig XX:3

q0 q1 q2 q3

≥1 | req

ˆ

´

≥1 | prod

=0 | prod

Figure 1 A one-counter automaton with threshold m = 1

counter. However, the transition can only be taken if the current counter value x œ N satisfies
k = min{x, m}. That is, counter values can be checked against any number strictly below m

or for being at least m. In particular, if m = 1, then we deal with the classical definition of
one-counter automata, which only allows for zero and non-zero tests.

I Definition 1 (OCA, cf. [5]). A one-counter automaton (or simply OCA) is a tuple A =
(Q, �, ÿ, F, m, �) where Q is a finite set of states, � is a nonempty finite alphabet (disjoint
from Op), ÿ œ Q is the initial state, F ™ Q is the set of final states, m œ N is the threshold,
and � ™ Q ◊ [m]

0

◊ (� fi Op) ◊ Q is the transition relation. We also say that A is an m-OCA.
Its size is defined as |Q| + |�| + m + |�|.

An OCA A = (Q, �, ÿ, F, m, �) can have several di�erent semantics:

L

oca

(A) ™ �ú is the classical semantics when A is seen as an ordinary OCA.
L

vis

(A) ™ (� fi Op)ú is the visibly semantics where, in addition to the letters from �, all
counter movements are made apparent.
L

obs

(A) ™ (� ◊N)ú is the semantics with counter observability where the current counter
value is output each time a �-transition is taken.

We define all three semantics in one go. Let ConfA := Q ◊N be the set of configurations
of A. In a configuration (q, x), q is the current state and x is the current counter value. The
initial configuration is (ÿ, 0), and a configuration (q, x) is final if q œ F .

We determine a global transition relation =∆A ™ ConfA ◊ ((� ◊N) fi Op) ◊ ConfA. For
two configurations (q, x), (qÕ

, x

Õ) œ ConfA and · œ (� ◊N) fi Op, we have (q, x) ·=∆A (qÕ
, x

Õ)
if one of the following holds:

· = ˆ and x

Õ = x + 1 and (q, min{x, m}, ˆ, q

Õ) œ �, or
· = ´ and x

Õ = x ≠ 1 and (q, min{x, m}, ´, q

Õ) œ �, or
x

Õ = x and there is a œ � such that · = (a, x) and (q, min{x, m}, a, q

Õ) œ �.

A partial run of A is a sequence fl = (q
0

, x

0

) ·1=∆A (q
1

, x

1

) ·2=∆A . . .

·n=∆A (q
n

, x

n

), with
n Ø 0. If, in addition, (q

0

, x

0

) is the initial configuration, then we say that fl is a run. We
call fl accepting if its last configuration (q

n

, x

n

) is final.
Now, the semantics of A that we consider depends on what we would like to extract from

trace(fl) := ·

1

. . . ·

n

œ ((� ◊N) fi Op)ú. We let (given (a, x) œ � ◊N):

oca((a, x)) = a and oca(ˆ) = oca(´) = Á

vis((a, x)) = a and vis(ˆ) = ˆ and vis(´) = ´
obs((a, x)) = (a, x) and obs(ˆ) = obs(´) = Á

Moreover, we extend each such mapping ÷ œ {oca, vis, obs} to ·

1

. . . ·

n

œ ((� ◊N) fi Op)ú

letting ÷(·
1

. . . ·

n

) := ÷(·
1

) · . . . · ÷(·
n

). Note that, hereby u · Á = Á · u = u for any word u.
Finally, we let L

÷

(A) = {÷(trace(fl)) | fl is an accepting run of A}.

FSTTCS 2016

XX:4 One-Counter Automata with Counter Observability

I Example 2. Consider the 1-OCA A from Figure 1 over � = {req, prod}. For readability,
counter tests 0 and 1 are written as =0 and Ø1, respectively. A transition without counter
test stands for two distinct transitions, one for =0 and one for Ø1 (i.e., the counter value
may actually be arbitrary). When looking at the semantics L

obs

(A), i.e., with counter
observability, we can think of (req, n) signalizing that the production of n Ø 1 items is
required (where n is the current counter value). Moreover, prod indicates that an item has
been produced so that, along a run, the counter value represents the number of items yet
to be produced. It is thus natural to include it in the semantics. Concretely, we have the
following:

L

oca

(A) = {req prodn | n Ø 1}
L

vis

(A) = {ˆnreq (´ prod)n | n Ø 1}
L

obs

(A) = {(req, n)(prod, n ≠ 1)(prod, n ≠ 2) . . . (prod, 0) | n Ø 1}

Apparently, L

vis

(A) and L

obs

(A) are the only meaningful semantics in the context described
above.

I Remark. Visibly OCAs [5, 22] usually allow for general input alphabets �, which are
partitioned into � = �

inc

‡�
dec

‡�
nop

so that every “ œ � is associated with a unique counter
operation (or “no counter operation” if “ œ �

nop

). In fact, we consider here (wrt. the visibly
semantics) a particular case where � = � fi Op with �

inc

= {ˆ}, �
dec

= {´}, and �
nop

= �.

2.2 Standard Results for OCAs
Let us recall some well-known results for classical OCAs and visibly OCAs. For ÷ œ
{oca, vis, obs}, the nonemptiness problem for OCAs wrt. the ÷-semantics is defined as follows:
Given an OCA A, do we have L

÷

(A) ”= ÿ ? Of course, this reduces to a reachability problem
that is independent of the actual choice of the semantics:

I Theorem 3 ([25]). The nonemptiness problem for OCAs is NL-complete, wrt. any of the
three semantics.

However, the universality (and, therefore, inclusion) problem for classical OCAs is
undecidable:

I Theorem 4 ([12, 14]). The following problem is undecidable: Given an OCA A with
alphabet �, do we have L

oca

(A) = �ú ?

In this paper, we show that universality and inclusion are decidable when considering
counter observability. To do so, we make use of the theory of the visibly semantics. Concretely,
we exploit determinizability as well as closure under complementation and intersection. In
fact, the following definition of determinism only makes sense for the visibly semantics, but
we will see later that a subclass of deterministic OCAs gives a natural notion of determinism
for the observability semantics as well.

I Definition 5 (deterministic OCA). An OCA A = (Q, �, ÿ, F, m, �) is called deterministic
(dOCA or m-dOCA) if, for all (q, k, ‡) œ Q◊ [m]

0

◊ (�fiOp), there is exactly one q

Õ œ Q such
that (q, k, ‡, q

Õ) œ �. In that case, � represents a (total) function ” : Q◊ [m]
0

◊(�fiOp) æ Q

so that we rather consider A to be the tuple (Q, �, ÿ, F, m, ”).

A powerset construction like for finite automata can be used to determinize OCAs wrt.
the visibly semantics [5]. That construction also preserves the two other semantics. However,
Definition 5 only guarantees uniqueness of runs for words from (� fi Op)ú. That is, for
complementation, we have to restrict to the visibly semantics (cf. Lemma 7 below).

B. Bollig XX:5

counter
value

a1

a2

x1

x2

ι p1 p2 p′

2 p3 p4 p5 p6 p7 p8

2 |= ϕp2,p′

2
1 |= ψp7,p8

∧ ψq7,q8

a1

a2

x1

x2

ι q1 q2 q3 q4 q5 q6 q7 q8

a1

a2

x1

x2

...

ι p1 p2 p3 p4 p5 p6 p7

q1 q2 q3 q4 q5 q6 q7

↘

↗

Figure 2 Decompositions of two runs on (a1, 3)(a2, 1), and corresponding runs in normal form

I Lemma 6 (cf. [5]). Let A be an m-OCA. There is an m-dOCA Adet of exponential size
such that L

÷

(Adet) = L

÷

(A) for all ÷ œ {oca, vis, obs}.

A (visibly) dOCA can be easily complemented wrt. the set of well-formed words WF
�

:=
{w œ (� fi Op)ú | no prefix of w contains more ´’s than ˆ’s}. In fact, for all OCAs A with
alphabet �, we have L

vis

(A) ™ WF
�

.

I Lemma 7. Let A = (Q, �, ÿ, F, m, ”) be a dOCA and define Ā as the dOCA (Q, �, ÿ, Q \
F, m, ”). Then, L

vis

(Ā) = WF
�

\ L

vis

(A).

Finally, visibility of counter operations allows us to simulate two OCAs in sync by a
straightforward product construction:

I Lemma 8 (cf. [3]). Let A
1

be an m

1

-OCA and A
2

be an m

2

-OCA over the same alphabet.
There is a max{m

1

, m

2

}-OCA A
1

◊ A
2

of polynomial size such that L

vis

(A
1

◊ A
2

) =
L

vis

(A
1

) fl L

vis

(A
2

). Moreover, if A
1

and A
2

are deterministic, then so is A
1

◊ A
2

.

3 Determinizing and Complementing OCAs

In this section, we will show that, under the observability semantics, OCAs are e�ectively
closed under all boolean operations. The main ingredient of the proof is a determinization
procedure, which we first describe informally.

Let A = (Q, �, ÿ, F, m, �) be the OCA to be determinized (wrt. the observability se-
mantics). Moreover, let w = (a

1

, x

1

) . . . (a
n

, x

n

) œ (� ◊N)ú. Every run fl of A such that
obs(trace(fl)) = w has to have reached the counter value x

1

by the time it reads the first
letter a

1

. In particular, it has to perform at least x

1

counter increments. In other words, we
can identify x

1

transitions that lift the counter value from 0 to 1, from 1 to 2, and, finally,
from x

1

≠ 1 to x

1

, respectively, and that are separated by partial runs that “oscillate” around
the current counter value but, at the end, return to their original level. Similarly, before
reading the second letter a

2

, A will perform |x
2

≠ x

1

|-many identical counter operations to
reach x

2

, again separated by some oscillation phases, and so on. This is illustrated on the
left hand side of Figure 2 for two runs on the word (a

1

, 3)(a
2

, 1).
We will transform A into another automaton that decomposes a run into oscillations and

increment/decrement/letter transitions, but, in fact, abstracts away oscillations. Thus, the
automaton starts in an increasing mode and goes straight to the value x

1

. Once it reads
letter a

1

, it may go into an increasing or decreasing mode, and so on. Observe that a run fl

FSTTCS 2016

XX:6 One-Counter Automata with Counter Observability

of this new automaton is in a sort of normal form as illustrated on the right hand side of
Figure 2. The crux is that vis(trace(fl)) is a unique encoding of w: Of course, it determines the
counter values output when a letter is read; and it is unique, since it continues incrementing
(decrementing, respectively) until a letter is read. This normalization and encoding finally
allows us to apply known results on visibly one-counter automata for determinization and
complementation.

There is a little issue here, since the possibility of performing an oscillation leading from
p

2

to p

Õ
2

(cf. left hand side of Figure 2) depends on the current counter value. However,
it was shown in [11] that the set of counter values allowing for such a shortcut can be
described as a boolean combination of arithmetic progressions that can be computed in
polynomial time. We will, therefore, work with an extended version of OCAs that includes
arithmetic-progression tests (but is no more expressive, as we show afterwards).

The outline of this section is as follows: We present extended OCAs in Section 3.1 and
the link between the observability and the visibly semantics in Section 3.2. In Section 3.3,
we solve the universality and inclusion problem for OCAs wrt. the observability semantics.

3.1 Extended One-Counter Automata
While OCAs can only test a counter value up to some threshold, extended OCAs have access
to boolean combinations of modulo constraints. The set Guardsmod is given by the grammar
Ï ::= c + dN | ¬Ï | Ï · Ï | Ï ‚ Ï where c, d œ N. We call c + dN an arithmetic-progression
formula and assume that c and d are encoded in unary. For x œ N (a counter value), we
define x |= c + dN if x = c + d · i for some i œ N. Thus, we may use true as an abbreviation
for 0 + 1N. The other formulas are interpreted as expected. Moreover, given Ï œ Guardsmod,
we set [[Ï]] := {x œ N | x |= Ï}.

Before we introduce extended OCAs, we will state a lemma saying that the “possibility”
of a shortcut in terms of an oscillation (see above) is definable in Guardsmod. Let A =
(Q, �, ÿ, F, m, �) be an OCA and p, q œ Q. By X

A
p,q

, we denote the set of natural numbers
x œ N such that (p, x) (ˆ=∆A fi ´=∆A)ú (q, x), i.e., there is a partial run from (p, x) to
(q, x) that performs only counter operations. Moreover, we define Y

A
p,q

to be the set of
natural numbers x œ N such that (p, x) (ˆ=∆A fi ´=∆A)ú (q, x

Õ) for some x

Õ œ N. Note that
X

A
p,q

™ Y

A
p,q

. The following result is due to [11, Lemmas 6–9]:

I Lemma 9 ([11]). Let A = (Q, �, ÿ, F, m, �) be an OCA and p, q œ Q. We can compute,
in polynomial time, guards Ï

p,q

, Â

p,q

œ Guardsmod such that [[Ï
p,q

]] = X

A
p,q

and [[Â
p,q

]] = Y

A
p,q

.
In particular, the constants in Ï

p,q

and Â

p,q

are all polynomially bounded.

I Definition 10 (extended OCA). An extended OCA (eOCA) is a tuple A = (Q, �, ÿ, f, �)
where Q, �, ÿ are like in an OCA, f : Q æ Guardsmod is the acceptance condition, and � is
the transition relation: a finite subset of Q ◊ Guardsmod ◊ (� fi Op) ◊ Q

Runs and the languages L

÷

(A), with ÷ œ {oca, vis, obs}, of an eOCA A = (Q, �, ÿ, f, �)
are defined very similarly to OCAs. In fact, there are only two (slight) changes:

1. The definition of =∆A ™ ConfA ◊ ((� ◊ N) fi Op) ◊ ConfA is now as follows: For
(q, x), (qÕ

, x

Õ) œ ConfA and · œ (� ◊ N) fi Op, we have (q, x) ·=∆A (qÕ
, x

Õ) if there is
Ï œ Guardsmod such that x |= Ï and one of the following holds:

· = ˆ and x

Õ = x + 1 and (q, Ï, ˆ, q

Õ) œ �, or
· = ´ and x

Õ = x ≠ 1 and (q, Ï, ´, q

Õ) œ �, or
x

Õ = x and there is a œ � such that · = (a, x) and (q, Ï, a, q

Õ) œ �.

B. Bollig XX:7

2. A run is now accepting if its last configuration (q, x) is such that x |= f(q).

Apart from these modifications, the languages L

oca

(A), L

vis

(A), and L

obs

(A) are defined
in exactly the same way as for OCAs.

3.2 From OCAs with Counter Observability to Visibly OCAs
To establish a link between the observability and the visibly semantics, we will encode a
word w = (a

1

, x

1

)(a
2

, x

2

) . . . (a
n

, x

n

) œ (� ◊N)ú as a word enc(w) œ (� fi Op)ú as follows:

enc(w) := ˆx1
a

1

sign(x
2

≠ x

1

)|x2≠x1|
a

2

. . . sign(x
n

≠ x

n≠1

)|xn≠xn≠1|
a

n

where, for an integer z œ Z, we let sign(z) = ˆ if z Ø 0, and sign(z) = ´ if z < 0. For
example, enc(Á) = Á and enc((a, 5)(b, 2)(c, 4)) = ˆ5

a ´3

b ˆ2

c. The mapping enc is extended
to sets L ™ (� ◊ N)ú by enc(L) = {enc(w) | w œ L}. Let Enc

�

:= enc((� ◊ N)ú) denote
the set of valid encodings. Note that enc is a bijection between (� ◊ N)ú and Enc

�

, and
that Enc

�

is the set of well-formed words of the form u

1

a

1

u

2

a

2

. . . u

n

a

n

where a

i

œ � and
u

i

œ {ˆ}ú fi {´}ú for all i œ {1, . . . , n}.
Obviously, there is a small dOCA whose visibly semantics is Enc

�

. It will be needed later
for complementation of OCAs wrt. the observability semantics.

I Lemma 11. There is a 0-dOCA Benc with only four states such that L

vis

(Benc) = Enc
�

.

The idea is that Benc enters an “increasing” or “decreasing” mode as soon as it performs
ˆ or, respectively, ´. Such a mode can only be quit by reading a letter from � or entering a
sink state. This avoids forbidden reversals between ˆ and ´. Finally, it is easy to ensure that
any nonempty accepted word ends in a letter from �.

In fact, there is a tight link between the visibly and the observability semantics of OCAs
provided the visibly semantics contains only valid encodings:

I Lemma 12. Let A be an OCA with alphabet � such that L

vis

(A) ™ Enc
�

. Then, we have
L

vis

(A) = enc(L
obs

(A)) and, equivalently, L

obs

(A) = enc≠1(L
vis

(A)).

Lemmas 8 and 12 imply the following closure property, which will later be exploited to
solve the inclusion problem:

I Proposition 13. Let A
1

and A
2

be OCAs over � such that L

vis

(A
1

) ™ Enc
�

and L

vis

(A
2

) ™
Enc

�

. Then, L

obs

(A
1

◊ A
2

) = L

obs

(A
1

) fl L

obs

(A
2

) (where A
1

◊ A
2

is due to Lemma 8).

The next lemma constitutes the main ingredient of the determinization procedure. It will
eventually allow us to rely on OCAs whose visibly semantics consists only of valid encodings.

I Lemma 14. Let A be an OCA. We can compute, in polynomial time, an eOCA Aext such
that L

obs

(Aext) = L

obs

(A) and, for all w œ L

obs

(Aext), we have enc(w) œ L

vis

(Aext).

Proof. Suppose A = (Q, �, ÿ, F, m, �) is the given OCA. We first translate a simple
“threshold constraint” into an arithmetic expression that can be used as a guard in the
eOCA Aext : Let fi

m

= m + 1N, and fi

k

= k + 0N for all k œ {0, . . . , m ≠ 1}.
We define Aext = (Q, �, ÿ, f, �Õ) as follows: Essentially, Aext simulates A so that it has

the same state space. However, when A allows for a shortcut (oscillation) from state p to
state q (which will be checked in terms of Ï

p,q

from Lemma 9) and there is a transition
(q, k, ‡, q

Õ) of A, then Aext may perform ‡ and go directly from p to q

Õ, provided fi

k

is satisfied
as well. Formally, the transition relation is given as

�Õ = {(p, Ï

p,q

· fi

k

, ‡, q

Õ) | p œ Q and (q, k, ‡, q

Õ) œ �} .

FSTTCS 2016

XX:8 One-Counter Automata with Counter Observability

Moreover, a configuration (p, x) is “final” in Aext if the current counter value x satisfies Â

p,q

for some q œ F (cf. Lemma 9). That is, for all p œ Q, we let f(p) =
x

qœF

Â

p,q

. J

To transform an eOCA back into an ordinary OCA while determinizing it and preserving
its observability semantics, we will need a dOCA that takes care of the modulo constraints:

I Lemma 15. Let � ™ Guardsmod be a nonempty finite set. Set m

�

:= max{c | c + dN is
an atomic subformula of some Ï œ �} + 2. There are a dOCA B

�

= (Q, �, ÿ, Q, m

�

, ”) of
exponential size and ⁄ : Q æ 2� such that, for all (q, x) œ Conf B� and all runs of B

�

ending
in (q, x), we have ⁄(q) = {Ï œ � | x |= Ï}.

Proof. We sketch the idea. For every arithmetic-progression formula c + dN that occurs
in � (for simplicity, let us assume d Ø 1), we introduce a state component {0, 1, . . . , c} ◊
{0, 1, . . . , d ≠ 1}. Increasing the counter, we increment the first component until c and then
count modulo d in the second. We proceed similarly when decreasing the counter. The
current state (x, y) œ [c]

0

◊ [d ≠ 1]
0

will then tell us whether c + dN holds, namely i� x = c

and y = 0. Finally, the mapping ⁄ evaluates a formula based on the outcome for its atomic
subformulas. Note that B

�

can be computed in exponential time. Its size is exponential in
the number of arithmetic-progression formulas that occur in �. J

We will now apply Lemma 15 to transform an eOCA into a dOCA (cf. also Lemma 6).

I Lemma 16. Let A be an eOCA. We can compute, in exponential time, a dOCA AÕ

(deterministic according to Definition 5) such that L

÷

(AÕ) = L

÷

(A) for all ÷ œ {oca, vis, obs}.

Proof. Suppose A = (Q, �, ÿ, f, �) is the given eOCA. Let � ™ Guardsmod be the set of
formulas that occur in � or f , and let B

�

= (Q̂, �, ÿ̂, Q̂, m

�

, ”̂) be the dOCA along with the
function ⁄ according to Lemma 15.

We build the dOCA AÕ = (QÕ
, �, ÿ

Õ
, F

Õ
, m

�

, ”

Õ) as follows. Essentially, we perform a simple
powerset construction for A. Moreover, to eliminate modulo guards, we run B

�

in parallel.
Thus, the set of states is Q

Õ = 2Q ◊ Q̂, with initial state ÿ

Õ = ({ÿ}, ÿ̂) and set of final states
F

Õ = {(P, q) œ Q

Õ | f(p) œ ⁄(q) for some p œ P}. Finally, the transition function is given by
”

Õ((P, q), k, ‡) = (P Õ
, ”̂(q, k, ‡)) where P

Õ =
)

p

Õ | (p, Ï, ‡, p

Õ) œ �fl(P ◊⁄(q)◊{‡}◊Q)
*

. J

There is a “nondeterministic version” of Lemma 16, which does not perform a power-
set construction but rather computes a nondeterministic OCA. The latter is then still of
exponential size, but only wrt. to the number of arithmetic-progression formulas in A.

With Theorem 3, it follows that nonemptiness for eOCAs can be solved in PSPACE. We
do not know if this upper bound is tight.

Let A be a dOCA with alphabet � and let w œ (� ◊ N)ú. By flA(w), we denote the
unique run of A such that vis(trace(flA(w))) = enc(w).

By the following observation, which follows directly from Lemma 12, it is justified to call
any dOCA A with L

vis

(A) ™ Enc
�

deterministic wrt. the observability semantics:

I Lemma 17. Let A be a dOCA such that L

vis

(A) ™ Enc
�

. For every word w œ (� ◊N)ú,
we have w œ L

obs

(A) i� flA(w) is accepting.

Altogether, we obtain that OCAs are determinizable wrt. the observability semantics.

I Theorem 18 (determinizability). Let A be an OCA over �. We can compute, in exponential
time, an m-dOCA AÕ (with m only polynomial) such that L

obs

(AÕ) = L

obs

(A) and L

vis

(AÕ) ™
Enc

�

.

B. Bollig XX:9

Proof. Let A be the given OCA. We apply Lemmas 14 and 16 to obtain a dOCA ÂA of
exponential size such that L

obs

(ÂA) = L

obs

(A) and, for all w œ L

obs

(ÂA), we have enc(w) œ
L

vis

(ÂA). We set AÕ = ÂA ◊ Benc (cf. Lemmas 8 and 11) and obtain L

obs

(AÕ) = L

obs

(A) and
L

vis

(AÕ) ™ Enc
�

. J

We conclude that OCAs are complementable wrt. the observability semantics:

I Theorem 19 (complementability). Let A be an OCA with alphabet �. We can compute, in
exponential time, a dOCA Ā such that L

obs

(Ā) = (� ◊N)ú \ L

obs

(A).

Proof. We first transform A into the dOCA AÕ = ÂA ◊ Benc according to (the proof of)
Theorem 18. Suppose ÂA = (Q, �, ÿ, F, m, ”). Then, we set Ā = (Q, �, ÿ, Q \ F, m, ”) ◊ Benc.
Note that Ā is indeed a dOCA and that L

vis

(Ā) ™ Enc
�

. For w œ (� ◊N)ú, we have:

w œ L

obs

(Ā) Lem. 17≈∆ fl

¯A(w) is accepting (ú)≈∆ flAÕ(w) is not accepting Lem. 17≈∆ w ”œ L

obs

(AÕ)

Equivalence (ú) holds as fl

¯A(w) and flAÕ(w) have the same projection to the Q-component. J

Determinization and complementation of extended OCAs are a priori more expensive:
Lemmas 9 and 14 only apply to OCAs so that one has to go through Lemma 16 first.

3.3 Universality and Inclusion Problem wrt. Observability Semantics
We are now ready to solve the universality and the inclusion problem for OCAs wrt. the
observability semantics. The universality problem is defined as follows: Given an OCA A
over some alphabet �, do we have L

obs

(A) = (� ◊N)ú ? The inclusion problem asks whether,
given OCAs A

1

and A
2

, we have L

obs

(A
1

) ™ L

obs

(A
2

).

I Theorem 20. The universality problem and the inclusion problem for OCAs wrt. the
observability semantics are PSPACE-complete. In both cases, PSPACE-hardness already
holds when |�| = 1.

Proof. To solve the universality problem for a given OCA A = (Q, �, ÿ, F, m, �) in (non-
deterministic) polynomial space, we apply the construction from Theorem 19 (and, in partic-
ular, Theorem 18) on the fly to obtain a dOCA Ā such that L

obs

(Ā) = (� ◊N)ú \ L

obs

(A).
That is, we have to keep in memory a state of the form (P, q, r), where P ™ Q, q is the
modulo-counting component (Lemma 15), and r is a state of Benc (Lemma 11). In addition,
we will maintain a component for the current counter value. In fact, the latter can be
supposed to be polynomially bounded (cf. [8] for a tight upper bound) in the size of Ā. The
size of Ā is exponential in the size of A, and so the required information can be stored
in polynomial space. To compute a successor state of (P, q, r), we first guess an operation
‡ œ � fi Op. We then compute (P Õ

, q

Õ) according to the proof of Lemma 16 and update r to
r

Õ according to the type of ‡. Note that this takes polynomial time only, since the function
⁄ as required in Lemma 15 can be computed on the fly. Finally, the algorithm outputs
“non-universal” when we find a final state of Ā.

For the inclusion problem, we rely on Proposition 13 and perform the determinization
procedure on-the-fly for both of the given OCAs.

For the lower bound, we will restrict to the universality problem, since it is a special
case of the inclusion problem. We reduce from the universality problem for ordinary finite
automata, which is known to be PSPACE-complete [17]. If we suppose that � is part of the
input, then there is a straightforward reduction, which essentially takes the (ordinary) finite

FSTTCS 2016

XX:10 One-Counter Automata with Counter Observability

automaton and adds self-looping increment/decrement transitions to each state. Assuming
|�| = 1, the reduction is as follows. Let A be a finite automaton over some finite alphabet
� = {a

0

, . . . , a

n≠1

}. We construct an OCA AÕ over the singleton alphabet � such that
L(A) = �ú i� L(AÕ) = (� ◊N)ú. The idea is to represent letter a

i

by (counter) value i. To
obtain AÕ, an a

i

-transition in A is replaced with a gadget that nondeterministically outputs
i or any other natural number strictly greater than n ≠ 1. J

4 Relation with Strong Automata

In this section, we show that OCAs with counter observability are expressively equivalent to
strong automata over (N, +1) [9]. As the latter are descriptive in spirit, OCAs can thus be
seen as their operational counterpart.

Let us first give a short account of monadic second-order (MSO) logic over (N, +1)
(see [23] for more details). We have infinite supplies of first-order variables, ranging over
N, and second-order variables, ranging over subsets of N. The atomic formulas are true,
xÕ = x + 1, xÕ = x, and x œ X where x and xÕ are first-order variables and X is a second-order
variable. Those formulas have the expected meaning. Further, MSO logic includes all boolean
combinations, first-order quantification ÷x�, and second-order quantification ÷X� (with � an
MSO formula). The latter requires that there is a (possibly infinite) subset of N satisfying �.
As abbreviations, we may also employ xÕ = x ≠ 1 and formulas of the form xÕ œ (x + c + dN),
where c, d œ N. This does not change the expressive power of MSO logic.

In the following, we assume that x and xÕ are two distinguished first-order variables.
We write �(x, xÕ) to indicate that the free variables of � are among x and xÕ. If �(x, xÕ)
is evaluated to true when x is interpreted as x œ N and xÕ is interpreted as x

Õ œ N, then
we write (x, x

Õ) |= �. In fact, a transition of a strong automaton is labeled with a formula
�(x, xÕ) and can only be executed if (x, x

Õ) |= � where x and x

Õ are the natural numbers read
at the previous and the current position, respectively. Thus, two successive natural numbers
in a word can be related explicitly in terms of an MSO formula.

I Definition 21 ([9]). A strong automaton is a tuple S = (Q, �, ÿ, F, �) where Q is the finite
set of states, � is a nonempty finite alphabet, ÿ œ Q is the initial state, and F ™ Q is the
set of final states. Further, � is a finite set of transitions, which are of the form (q, �, a, q

Õ)
where q, q

Õ œ Q are the source and the target state, a œ �, and �(x, xÕ) is an MSO formula.

Similarly to an OCA, S induces a relation =∆S ™ ConfS ◊ (� ◊ N) ◊ ConfS , where
ConfS = Q ◊N. For (q, x), (qÕ

, x

Õ) œ ConfS and (a, y) œ � ◊N, we have (q, x) (a,y)===∆S (qÕ
, x

Õ)
if y = x

Õ and there is an MSO formula �(x, xÕ) such that (q, �, a, q

Õ) œ � and (x, x

Õ) |= �.
A run of S on w = (a

1

, x

1

) . . . (a
n

, x

n

) œ (� ◊ N)ú is a sequence fl = (q
0

, x

0

) (a1,x1)=====∆S

(q
1

, x

1

) (a2,x2)=====∆S . . .

(an,xn)=====∆S (q
n

, x

n

) such that q

0

= ÿ and x

0

= 0. It is accepting if q

n

œ F .
The language L(S) ™ (� ◊N)ú of S is defined as the set of words w œ (� ◊N)ú such

that there is an accepting run of S on w.

I Example 22. We refer to the OCA A from Example 2. Figure 3 depicts a strong automaton
S such that L(S) = L

obs

(A) = {(req, n)(prod, n ≠ 1)(prod, n ≠ 2) . . . (prod, 0) | n Ø 1}.

In fact, we can transform any OCA into an equivalent strong automaton preserving the
observability semantics, and vice versa:

I Theorem 23. Let L ™ (� ◊N)ú. There is an OCA A such that L

obs

(A) = L i� there is
a strong automaton S such that L(S) = L.

B. Bollig XX:11

q0 q1 q2

x′ ≥ 1 | req

x′ = x − 1 | prod

(

x′ = x − 1

∧ x′ = 0

)

| prod

Figure 3 A strong automaton over (N, +1)

Proof. “=∆”: Using the following observation, we can directly transform an OCA into a
strong automaton: For all states q and q

Õ of the given OCA A, there is an MSO formula
�

q,q

Õ(x, xÕ) such that, for all x, x

Õ œ N, we have (x, x

Õ) |= �
q,q

Õ i� (q, x)
! ˆ=∆A fi ´=∆A

"ú (qÕ
, x

Õ).
The existence of �

q,q

Õ can be shown using a two-way automaton over infinite words [21],
which simulates A and can be translated into an MSO formula [21,23].

More precisely, given q, q

Õ, we build a two-way automaton T
q,q

Õ over the alphabet 2{$,$

Õ}.
The idea is that word positions represent counter values (the first position marking 0, the
second 1, and so on), and $ and $Õ represent x and x

Õ, respectively. Thus, we are only
interested in words in which $ and $Õ each occur exactly once. Clearly, this is a regular
property. At the beginning, T

q,q

Õ goes to the position carrying $. It then simulates A starting
in q, and it accepts if it is on the position carrying $Õ and in state q

Õ. The simulation itself
is straightforward: Counter increments and decrements of an OCA are simulated by going
one step to the left or to the right, respectively, and a zero test simply checks whether the
automaton is at the first position of the word. Note that T

q,q

Õ checks for the markers $ and
$Õ only at the beginning and at the end of an execution, but not during the actual simulation
of A. Let w = z

0

z

1

z

2

. . . œ
!

2{$,$

Õ}"

Ê and x, x

Õ œ N be unique positions such that $ œ z

x

and
$Õ œ z

x

Õ . Then, w is accepted by T
q,q

Õ i� (q, x) (ˆ=∆A fi ´=∆A)ú (qÕ
, x

Õ).
It is well known that two-way word automata are expressively equivalent to one-way

automata (cf. [21]). Therefore, by Büchi’s theorem, the word language accepted by T
q,q

Õ can
be translated into a corresponding MSO formula without free variables but with subformulas
of the form “position y carries $” and “position y carries $Õ” [23]. We replace the latter two
by y = x and y = xÕ, respectively, and finally obtain �

q,q

Õ as required.

“≈=”: We will transform a strong automaton S into an equivalent OCA with super transitions.
A super transition can perform counter operations of the form +Â or ≠Â where Â œ Guardsmod.
Operation +Â allows the counter value to be increased by n œ N provided n |= Â. Similarly,
≠Â allows the counter value to be decreased by n if n |= Â.

I Definition 24 (OCA with super transitions). An OCA with super transitions is a tuple
A = (Q, �, ÿ, F, �) where Q, �, ÿ, F are like in an OCA and � is the finite transition relation.
A transition is of the form (q, Ï, op, a, Ï

Õ
, q

Õ) where q, q

Õ œ Q are the source and the target
state, Ï, Ï

Õ œ Guardsmod are guards checking the original and the modified counter value,
respectively, a œ � is the output letter, and op is of the form +Â or ≠Â where Â œ Guardsmod.

We define a global transition relation =∆A ™ ConfA ◊ (� ◊N) ◊ ConfA where, as usual,
ConfA = Q ◊N. For (q, x), (qÕ

, x

Õ) œ ConfA and (a, y) œ � ◊N, we have (q, x) (a,y)===∆A (qÕ
, x

Õ)
if y = x

Õ and there are Ï, Ï

Õ
, Â œ Guardsmod such that x |= Ï, x

Õ |= Ï

Õ, and one of the
following holds:

x Æ x

Õ and (q, Ï, +Â, a, Ï

Õ
, q

Õ) œ � and x

Õ ≠ x |= Â, or
x Ø x

Õ and (q, Ï, ≠Â, a, Ï

Õ
, q

Õ) œ � and x ≠ x

Õ |= Â.

FSTTCS 2016

XX:12 One-Counter Automata with Counter Observability

!c1 $1 !c2 $2

!d1 !d2

Figure 4 Finite automaton for L+
�(c1, d1, c2, d2)

With this, the language L(A) ™ (� ◊ N)ú is defined in the expected way, like for strong
automata.

It is easily seen that A can be translated into an eOCA AÕ such that L

obs

(AÕ) = L(A): For
every Â œ Guardsmod, the set {⇤n | n œ [[Â]]} is a regular language over the unary alphabet
{⇤}. Thus, counter operations of the form +Â or ≠Â can be simulated by a finite-state
gadget. Essentially, we take a finite automaton for {⇤n | n œ [[Â]]} and replace ⇤ by ˆ or,
respectively, ´. It will thus be enough to translate a strong automaton into an OCA with
super transitions.

Next, we demonstrate why super transitions are indeed useful to emulate an MSO formula
�(x, xÕ). Using Büchi’s theorem (cf. [23]), we can transform � into finite automata B+

�

and
B≠

�

recognizing the following regular languages over the alphabet {⇤, $
1

, $
2

}:

L(B+

�

) = {⇤x$
1

⇤y$
2

| x, y œ N such that (x, x + y) |= �}
L(B≠

�

) = {⇤x$
2

⇤y$
1

| x, y œ N such that (x + y, x) |= �}

Similarly to $ and $Õ in the other proof direction, the positions of $
1

and $
2

in a word from
L(B+

�

) fi L(B≠
�

) encode an interpretation of the free variables x and, respectively, xÕ that
makes � true. Note that L(B+

�

) can be written as a finite union of sets

L

+

�

(c
1

, d

1

, c

2

, d

2

) := {⇤x$
1

⇤y$
2

| x œ [[c
1

+ d

1

N]] and y œ [[c
2

+ d

2

N]]}

with c

1

, d

1

, c

2

, d

2

œ N. This is achieved by determinizing B+

�

and splitting it into components
as illustrated in Figure 4 (cf. also [24] for a polynomial transformation). Similarly, L(B≠

�

) is
the finite union of sets of the form

L

≠
�

(c
1

, d

1

, c

2

, d

2

) := {⇤x$
2

⇤y$
1

| x œ [[c
1

+ d

1

N]] and y œ [[c
2

+ d

2

N]]} .

In other words, there are finite sets D

+

�

, D

≠
�

™ N4 such that

L(B+

�

) =
t

(c1,d1,c2,d2)œD

+
�

L

+

�

(c
1

, d

1

, c

2

, d

2

) and
L(B≠

�

) =
t

(c1,d1,c2,d2)œD

≠
�

L

≠
�

(c
1

, d

1

, c

2

, d

2

).

We now turn to the actual translation of a strong automaton S = (Q, �, ÿ, F, �) into
an OCA with super transitions A = (Q, �, ÿ, F, �Õ) such that L(A) = L(S). Note that the
only change is in the transition relation: For all (q, �, a, q

Õ) œ � and (c
1

, d

1

, c

2

, d

2

) œ D

+

�

,
�Õ contains (q, c

1

+ d

1

N, +(c
2

+ d

2

N), a, true, q

Õ). Moreover, for all (q, �, a, q

Õ) œ � and
(c

1

, d

1

, c

2

, d

2

) œ D

≠
�

, �Õ contains (q, true, ≠(c
2

+ d

2

N), a, c

1

+ d

1

N, q

Õ). This concludes the
construction of A.

To prove L(A) = L(S), it is enough to show that, for all configurations (q, x), (qÕ
, x

Õ) œ
ConfA and all a œ �, the following are equivalent:

(1) (q, x) (a,x

Õ
)====∆S (qÕ

, x

Õ)

(2) (q, x) (a,x

Õ
)====∆A (qÕ

, x

Õ)

B. Bollig XX:13

Suppose (1) holds. There is an MSO formula � such that (q, �, a, q

Õ) œ � and (x, x

Õ) |= �.
We distinguish two (not necessarily disjoint) cases:

Suppose x Æ x

Õ. By (x, x

Õ) |= �, we have ⇤x$
1

⇤x

Õ≠x$
2

œ L(B+

�

). Thus, there is
(c

1

, d

1

, c

2

, d

2

) œ D

+

�

such that ⇤x$
1

⇤x

Õ≠x$
2

œ L

+

�

(c
1

, d

1

, c

2

, d

2

). The latter implies x |=
c

1

+d

1

N and x

Õ ≠x |= c

2

+d

2

N. Since we also have (q, c

1

+d

1

N, +(c
2

+d

2

N), a, true, q

Õ) œ
�Õ, (2) holds as well.
Now, suppose x Ø x

Õ. Then, by (x, x

Õ) |= �, we have ⇤x

Õ$
2

⇤x≠x

Õ$
1

œ L(B≠
�

). Thus,
there is (c

1

, d

1

, c

2

, d

2

) œ D

≠
�

such that ⇤x

Õ$
2

⇤x≠x

Õ$
1

œ L

≠
�

(c
1

, d

1

, c

2

, d

2

). This implies
x

Õ |= c

1

+d

1

N and x≠x

Õ |= c

2

+d

2

N. Moreover, (q, true, ≠(c
2

+d

2

N), a, c

1

+d

1

N, q

Õ) œ �Õ.
We conclude that (2) holds.

Towards the other direction, suppose that (2) is true. Again, we will distinguish two (not
necessarily disjoint) cases:

Suppose x Æ x

Õ and suppose there is (q, c

1

+ d

1

N, +(c
2

+ d

2

N), a, true, q

Õ) œ �Õ such
that x |= c

1

+ d

1

N and x

Õ ≠ x |= c

2

+ d

2

N. There is an MSO formula � such that
(q, �, a, q

Õ) œ � and (c
1

, d

1

, c

2

, d

2

) œ D

+

�

. By x |= c

1

+ d

1

N and x

Õ ≠ x |= c

2

+ d

2

N, we
have ⇤x$

1

⇤x

Õ≠x$
2

œ L

+

�

(c
1

, d

1

, c

2

, d

2

) ™ L(B+

�

). Thus, (x, x

Õ) |= �. We deduce that (1)
holds.
Assume x Ø x

Õ and suppose there is a transition (q, true, ≠(c
2

+d

2

N), a, c

1

+d

1

N, q

Õ) œ �Õ

such that x ≠ x

Õ |= c

2

+ d

2

N and x

Õ |= c

1

+ d

1

N. There is � such that (q, �, a, q

Õ) œ �
and (c

1

, d

1

, c

2

, d

2

) œ D

≠
�

. Since x ≠ x

Õ |= c

2

+ d

2

N and x

Õ |= c

1

+ d

1

N, we have
⇤x

Õ$
2

⇤x≠x

Õ$
1

œ L

≠
�

(c
1

, d

1

, c

2

, d

2

) ™ L(B≠
�

). This implies (x, x

Õ) |= �. Thus, (1) holds.

This concludes the correctness proof of A. Finally, recall that one can easily transform A
into an OCA whose observability semantics coincides with L(A). J

5 Conclusion

The observability semantics opens several directions for follow-up work. We may carry it
over to other classes of infinite-state systems such as Petri nets. Are there infinite-state
restrictions of Petri nets other than 1-VASS whose observability semantics is robust?

A direct application of our results is that the language L ™ (� ◊N)ú of an OCA with
observability semantics/strong automaton is learnable (in the sense of Angluin [4]) in terms
of a visibly one-counter automaton for enc(L) [18]. It would be worthwhile to transfer
results on visibly one-counter/pushdown automata that concern Myhill-Nerode congruences
or minimization [2, 7].

Another interesting question is to which extent we can relax the requirement that the
counter value be output with every letter a œ �. It may indeed be possible to deal with a
bounded number of �-transitions between any two counter outputs. Note that there have
been relaxations of the visibility condition in pushdown automata, albeit preserving closure
under boolean operations [19].

Acknowledgments

The author is grateful to C. Aiswarya, Stefan Göller, Christoph Haase, and Arnaud Sangnier
for numerous helpful discussions and pointers to the literature.

FSTTCS 2016

XX:14 One-Counter Automata with Counter Observability

References
1 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly push-

down languages. In Proceedings of ICALP’05, volume 3580 of Lecture Notes in Computer
Science, pages 1102–1114, 2005.

3 R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM,
56(3):1–43, 2009.

4 D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

5 V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages.
In Proceedings of STACS’06, volume 3884 of Lecture Notes in Computer Science, pages
420–431. Springer, 2006.

6 A. Bès. An application of the Feferman-Vaught theorem to automata and logics for words
over an infinite alphabet. Logical Methods in Computer Science, 4(1), 2008.

7 P. Chervet and I. Walukiewicz. Minimizing variants of visibly pushdown automata. In
Proceedings of MFCS’07, volume 4708 of Lecture Notes in Computer Science, pages 135–
146, 2007.

8 D. Chistikov, W. CzerwiÒski, P. Hofman, M. Pilipczuk, and M. Wehar. Shortest paths
in one-counter systems. In Proceedings of FoSSaCS’16, volume 9634 of Lecture Notes in
Computer Science, pages 462–478. Springer, 2016.

9 C. Czyba, C. Spinrath, and W. Thomas. Finite automata over infinite alphabets: Two
models with transitions for local change. In Proceedings of DLT’15, volume 9168 of Lecture
Notes in Computer Science, pages 203–214. Springer, 2015.

10 L. D’Antoni and M. Veanes. Minimization of symbolic automata. In Proceedings of
POPL’14, pages 541–554. ACM, 2014.

11 S. Göller, R. Mayr, and A. Widjaja To. On the computational complexity of verifying
one-counter processes. In Proceedings of LICS’09, pages 235–244. IEEE Computer Society
Press, 2009.

12 S. A. Greibach. An infinite hierarchy of context-free languages. Journal of the ACM,
16(1):91–106, 1969.

13 C. Haase, J. Ouaknine, and J. Worrell. Relating reachability problems in timed and counter
automata. Fundamenta Informaticae, 143(3-4):317–338, 2016.

14 O. H. Ibarra. Restricted one-counter machines with undecidable universe problems. Math-
ematical Systems Theory, 13:181–186, 1979.

15 P. Jan�ar. Decidability of bisimilarity for one-counter processes. Information and Compu-
tation, 158(1):1–17, 2000.

16 K. Mehlhorn. Pebbling mountain ranges and its application of DCFL-recognition. In
Proceedings of ICALP’80, volume 85 of Lecture Notes in Computer Science, pages 422–435.
Springer, 1980.

17 A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory, pages 125–129, 1972.

18 D. Neider and C. Löding. Learning visibly one-counter automata in polynomial time.
Technical Report AIB-2010-02, RWTH Aachen, January 2010.

19 D. Nowotka and J. Srba. Height-deterministic pushdown automata. In Proceedings of
MFCS’07, volume 4708 of Lecture Notes in Computer Science, pages 125–134. Springer,
2007.

20 R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

B. Bollig XX:15

21 J.-P. Pécuchet. Automates boustrophédon et mots infinis. Theoretical Computer Science,
35:115–122, 1985.

22 J. Srba. Visibly pushdown automata: From language equivalence to simulation and bisimu-
lation. In Proceedings of CSL’06, volume 4207 of Lecture Notes in Computer Science, pages
89–103. Springer, 2006.

23 W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, pages 389–455. Springer, 1997.

24 A. Widjaja To. Unary finite automata vs. arithmetic progressions. Inf. Process. Lett.,
109(17):1010–1014, 2009.

25 L. G. Valiant and M. S. Paterson. Deterministic one-counter automata. Journal of Com-
puter and System Sciences, 10(3):340–350, 1975.

26 J. van Leeuwen. E�ective constructions in well-partially-ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978.

FSTTCS 2016

	Introduction
	One-Counter Automata with Counter Observability
	One-Counter Automata and Their Semantics
	Standard Results for OCAs

	Determinizing and Complementing OCAs
	Extended One-Counter Automata
	From OCAs with Counter Observability to Visibly OCAs
	Universality and Inclusion Problem wrt. Observability Semantics

	Relation with Strong Automata
	Conclusion

