
HAL Id: hal-01407942
https://hal.archives-ouvertes.fr/hal-01407942

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Timed Systems Using Tree Automata
Sunil Akshay, Paul Gastin, Shankara Narayanan Krishna

To cite this version:
Sunil Akshay, Paul Gastin, Shankara Narayanan Krishna. Analyzing Timed Systems Using Tree
Automata. 27th International Conference on Concurrency Theory (CONCUR 2016), 2016, Québec
City, Canada. pp.27:1-27:14, �10.4230/LIPIcs.CONCUR.2016.27�. �hal-01407942�

https://hal.archives-ouvertes.fr/hal-01407942
https://hal.archives-ouvertes.fr

Analyzing Timed Systems Using Tree Automata∗

S. Akshay1, Paul Gastin2, and Shankara Narayanan Krishna1

1 Dept. of CSE, IIT Bombay, Powai, Mumbai 400076, India
akshayss@cse.iitb.ac.in

2 LSV, ENS-Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
paul.gastin@lsv.ens-cachan.fr

1 Dept. of CSE, IIT Bombay, Powai, Mumbai 400076, India
krishnas@cse.iitb.ac.in

Abstract
Timed systems, such as timed automata, are usually analyzed using their operational semantics
on timed words. The classical region abstraction for timed automata reduces them to (untimed)
finite state automata with the same time-abstract properties, such as state reachability. We
propose a new technique to analyze such timed systems using finite tree automata instead of
finite word automata. The main idea is to consider timed behaviors as graphs with matching
edges capturing timing constraints. Such graphs can be interpreted in trees opening the way to
tree automata based techniques which are more powerful than analysis based on word automata.
The technique is quite general and applies to many timed systems. In this paper, as an example,
we develop the technique on timed pushdown systems, which have recently received considerable
attention. Further, we also demonstrate how we can use it on timed automata and timed multi-
stack pushdown systems (with boundedness restrictions).

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Timed automata, tree automata, pushdown systems, tree-width

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.27

1 Introduction

The advent of timed automata [4] marked the beginning of an era in the verification of
real-time systems. Today, timed automata form one of the well accepted real-time modelling
formalisms, using real-valued variables called clocks to capture time constraints. The
decidability of the emptiness problem for timed automata is achieved using the notion of
region abstraction. This gives a sound and finite abstraction of an infinite state system, and
has paved the way for state-of-the-art tools like UPPAAL, which have successfully been used
in the verification of several complex timed systems. In recent times [1, 6, 13] there has been
a lot of interest in the theory of verification of more complex timed systems enriched with
features such as concurrency, communication between components and recursion with single
or multiple threads. In most of these approaches, decidability has been obtained by cleverly
extending the fundamental idea of region or zone abstractions.

In this paper, we give a technique for analyzing timed systems, inspired from a different
approach based on graphs and tree automata. This approach has been exploited for analyzing
various types of untimed systems, e.g., [17, 10]. The basic template of this approach has
three steps: (1) capture the behaviors of the system as graphs, (2) show that the class of

∗ This work was partly supported by LIA InForMeL, Indo-French CEFIPRA project AVERTS and
DST-INSPIRE faculty award [IFA12-MA-17].

© S. Akshay, Paul Gastin, and Shankara Narayanan Krishna;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Analyzing Timed Systems Using Tree Automata

graphs that are actual behaviors of the system is MSO-definable, and (3) show that this class
of graphs has bounded tree-width (or clique-width or split-width), or restrict the analysis
to such bounded behaviors. Then, non-emptiness of the given system boils down to the
satisfiability of an MSO sentence on graphs of bounded tree-width, which is decidable by
Courcelle’s theorem. Since, graphs of bounded tree-width can be interpreted in binary trees,
the problem reduces to non-emptiness of a tree automaton whose existence follows from
Courcelle’s theorem. But, by providing a direct construction of the tree automaton, it is
possible to obtain a good complexity for the decision procedure.

Our technique starts similarly, by replacing timed word behaviors of timed systems
with graphs consisting of untimed words with additional time-constraint edges, called
words with timing constraints (TCWs). However, the main complication here is that a
TCW describes a run of the timed system, where the constraints are recorded but not
checked. The TCW corresponds to an actual concrete run iff it is realizable. So, we are
interested in the class of graphs which are realizable TCWs. The structural property that
a graph must be a TCW is MSO-definable. However, it is unclear whether realizability
is MSO definable over words with timing constraints. Given this, we cannot directly
apply the approach of [17, 10]. Instead, we work on decomposition trees and construct a
finite tree automaton checking realizability, which is the most involved part of the paper.

a c

(2,∞)
b d

(1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

More precisely, we show that words with timing constraints
(TCWs) which are behaviors of certain classes of timed systems
(like timed pushdown systems) are graphs of bounded split/tree-
width. Hence, these graphs admit binary tree decompositions
as depicted in the adjoining figure. Each node of the tree
depicts an incomplete behavior/graph of the system, and by
combining these behaviors as we go up the tree, we obtain a
full or complete behavior (run) of the system. We construct a
tree automaton that checks if the generated graph encoded as
a tree satisfies the ValCoRe property (1) Validity: The root
node depicts a syntactically correct labeled graph (TCW); (2) Correctness of run: The graph
is indeed a correct run of the underlying timed system and; (3) Realizability: The root node
depicts a realizable graph, i.e., we can find timestamps that realize all timing-constraints.
To check realizability, the tree automaton needs to maintain a finite abstraction for each
subtree encoding a TCW. Thanks to the bound on split/tree-width, our abstraction keeps a
bounded number of positions, called end-points, in the (arbitrarily large) TCW. It subsumes
(arbitrarily long) paths of timing constraints in the TCW by new timing constraints between
these end-points. The constants in these new constraints are sums of original constants and
may grow unboundedly. Hence, a key difficulty is to introduce suitable abstractions which
aid in bounding the constants, while at the same time preserving realizability. Using tree
decompositions of graph behaviors of bounded split/tree-width and tree automata proved to
be a very successful technique for the analysis of untimed infinite state systems [17, 11, 10, 2].
This paper opens up this powerful technique for analysis of timed systems.

To illustrate the technique, we have reproved the decidability of non-emptiness of timed
automata and timed pushdown automata (TPDA), by showing that both these models have
a split-width (|X|+ 3 and 4|X|+ 6) that is linear in the number of clocks X of the underlying
system. This bound directly tells us the amount of information that we need to maintain
in the construction of the tree automata. For TPDA we obtain an ExpTime algorithm,
matching the known lower-bound for the emptiness problem of TPDA. For timed automata,
since the split-trees are word-like (at each binary node, one subtree is small) we may use

S. Akshay, P. Gastin, and S. Krishna 27:3

word automata instead of tree automata, reducing the complexity from ExpTime to PSpace,
again matching the lower-bound. Interestingly, if one considers TPDA with no explicit
clocks, but the stack is timed, then the split-width is a constant, 2. In this case, we have a
polynomial time procedure to decide emptiness, assuming a unary encoding of constants in
the system. To further demonstrate the power of our technique, we derive a new decidability
result for non-emptiness of timed multi-stack pushdown automata under bounded rounds, by
showing that the split-width of this model is again linear in the number of clocks, stacks
and rounds. Exploring decidable subclasses of untimed multi-stack pushdown systems is an
active research area [5, 12, 14, 16, 15], and our technique can extend these to handle time.

It should be noticed that the tree automata for validity and realizability (the most involved
construction of this paper) are independent of the timed system under study. Hence, to apply
the technique to other systems, one only needs to prove the bound on split-width and to show
that their runs can be captured by tree automata. This is a major difference compared to
many existing techniques for timed systems which are highly system dependent. Finally, we
mention an orthogonal approach to deal with timed systems given in [6], where the authors
show the decidability of the non-emptiness problem for a class of timed pushdown automata
by reasoning about sets with timed-atoms. Detailed proofs and illustrative examples, omitted
due to lack of space, can be found in [3].

2 Graphs for behaviors of timed systems

We fix an alphabet Σ and use Σε to denote Σ ∪ {ε} where ε is the silent action. We also fix
a finite set of closed intervals I which contains the special interval [0, 0]. For a set S, we use
≤ ⊆ S × S to denote a partial or total order on S. For any x, y ∈ S, we write x < y if x ≤ y
and x 6= y, and xl y if x < y and there does not exist z ∈ S such that x < z < y.

2.1 Abstractions of timed behaviors
I Definition 1. A word with timing constraints (TCW) over Σ, I is a structure V = (P,→
, λ,B, θ) where P is a finite set of positions or points, λ : P → Σε labels each position, the
reflexive transitive closure ≤ =→∗ is a total order on P and → = l is the successor relation,
B ⊆ < = →+ gives the pairs of positions carrying a timing constraint, whose interval is
given by θ : B→ I.

For any position i ∈ P , the indegree (resp. outdegree) of i is the number of positions j such
that (j, i) ∈ B (resp. (i, j) ∈ B). A TCW is simple (denoted STCW) if each position has
at most one timing constraint (incoming or outgoing) attached to it, i.e., for all i ∈ P ,
indegree(i) + outdegree(i) ≤ 1. A TCW is depicted below (left) with positions 1, 2, . . . , 5
labelled over {a, b}. indegree(4)=1, outdegree(1)=1 and indegree(3)=0. The curved edges
decorated with intervals connect the positions related by B, while straight edges are the
successor relation →. Note that this TCW is simple.

a b a b b

[3,3] [2,5]
a b a b b

3

-3

5

-2
0000

An ε-timed word is a sequence w = (a1, t1) . . . (an, tn) with a1 . . . an ∈ Σ+
ε and (ti)1≤i≤n

a non-decreasing sequence of real time values. If ai 6= ε for all 1 ≤ i ≤ n, then w is
a timed word. The projection on Σ of an ε-timed word is the timed word obtained by
removing ε-labelled positions. Consider a TCW W = (P,→, λ,B, θ) with P = {1, . . . , n}.

CONCUR 2016

27:4 Analyzing Timed Systems Using Tree Automata

A timed word w is a realization of W if it is the projection on Σ of an ε-timed word
w′ = (λ(1), t1) . . . (λ(n), tn) such that tj − ti ∈ θ(i, j) for all (i, j) ∈ B. In other words, a
TCW is realizable if there exists a timed word w which is a realization of W . For example,
the timed word (a, 0.9)(b, 2.1)(a, 2.1)(b, 3.9)(b, 5) is a realization of the TCW depicted above
(left), while (a, 1.2)(b, 2.1) (a, 2.1)(b, 3.9)(b, 5) is not.

We can (and often will) view a TCW W as a directed weighted graph with edges E =
B ∪B−1 ∪→−1 and weights induced by θ as follows: if (i, j) ∈ B and θ(i, j) = [I`, Ir] then
the weight of the forward edge is the upper constraint wt(i, j) = Ir and the weight of the
back edge is the negative value of the lower constraint wt(j, i) = −I`. Further, to ensure
that time is non-decreasing we add 0-weight back edges between consecutive positions that
are not already constrained, i.e., if (i, j) ∈ l \B then wt(j, i) = 0. The directed weighted
graph depicted above (right) corresponds to the TCW on its left. A directed path in W is
a sequence of positions ρ = p1, p2, . . . , pn (n > 1) linked with edges: (pi, pi+1) ∈ E for all
1 ≤ i < n. It is a cycle or loop if pn = p1. Its weight is wt(ρ) =

∑
1≤i<n wt(pi, pi+1). Then,

we have the following standard result:

I Proposition 2 ([7]). A TCW W is realizable iff it has no negative cycles.

Thus, to check if a TCW is realizable, we check for absence of negative weight cycles, which
can be done in polynomial time, e.g., using the Bellman Ford algorithm (see [7] for details).

2.2 TPDA and their semantics as simple TCWs

Dense-timed pushdown automata (TPDA), introduced in [1], are an extension of timed
automata, and operate on a finite set of real-valued clocks and a stack which holds symbols
with their ages. The age of a symbol in the stack represents time elapsed since it was pushed
on to the stack. Formally, a TPDA S is a tuple (S, s0,Σ,Γ,∆, X, F) where S is a finite set
of states, s0 ∈ S is the initial state, Σ, Γ, are respectively a finite set of input, stack symbols,
∆ is a finite set of transitions, X is a finite set of real-valued variables called clocks, F ⊆ S
are final states. A transition t ∈ ∆ is a tuple (s, γ, a, op, R, s′) where s, s′ ∈ S, a ∈ Σ, γ is
a finite conjunction of atomic formulae of the kind x ∈ I for x ∈ X and I ∈ I, R ⊆ X are
clocks reset, op is one of the following stack operations:

1. nop does not change the contents of the stack,
2. ↓c where c ∈ Γ is a push operation that adds c on top of the stack, with age 0.
3. ↑Ic where c ∈ Γ is a stack symbol and I ∈ I is an interval, is a pop operation that removes

the top most symbol of the stack provided it is a c with age in the interval I.

Timed automata (TA) can be seen as TPDA using nop operations only. This definition of
TPDA is equivalent to the one in [1], but allows checking conjunctive constraints and stack
operations together. In [6], it is shown that TPDA of [1] are expressively equivalent to timed
automata with an untimed stack. Nevertheless, our technique is oblivious to whether the
stack is timed or not, hence we focus on the syntactically more succinct model TPDA with
timed stack and get good complexity bounds.

We define the semantics in terms of simple TCWs. An STCW V = (P,→, λ,B, θ) is gener-
ated or accepted by a TPDA S if there is an accepting abstract run ρ = (s0, γ1, a1, op1, R1, s1)
(s1, γ2, a2, op2, R2, s2) · · · (sn−1, γn, an, opn, Rn, sn) of S such that, sn ∈ F and

the sequence of push-pop operations is well-nested: in each prefix op1 · · · opk, number of
pops is at most number of pushes, and in the full sequence op1 · · · opn, they are equal.

S. Akshay, P. Gastin, and S. Krishna 27:5

We have P = P0] P1] · · ·] Pn with Pi × Pj ⊆ →+ for 0 ≤ i < j ≤ n. Each transition
δi = (si−1, γi, ai, opi, Ri, si) gives rise to a sequence of consecutive points Pi in the STCW.
The transition δi is simulated by a sequence of “micro-transitions” as depicted below
(left) and it represents an STCW shown below (right). Incoming red edges check guards
from γi (wrt different clocks) while outgoing green edges depict resets from Ri that will
be checked later. Further, the outgoing edge on the central node labeled ai represents a
push operation on stack.

si−1 δ0
i δ1

i δhi−1
i δhi

i
δx1

i δxm
i

si

{ζ} γ1
i γhi

i ai, opi ε ζ = 0

{x1} {xm}

ε ε ε ai ε ε ε

[0,0]

where γi = γ1
i ∧ · · · ∧ γ

hi
i and Ri = {x1, . . . , xm}. The first and last micro-transitions,

corresponding to the reset of a new clock ζ and checking of constraint ζ = 0 ensure that
all micro-transitions in the sequence occur simultaneously. We have a point in Pi for each
micro-transition (excluding the ε-micro-transitions between δxj

i). Hence, Pi consists of
a sequence `i → `1i → · · · → `hi

i → pi → r1
i → · · · → rgi

i → ri where gi is the number of
timing constraints which are checked later, corresponding to clocks reset during transition
i. Thus, the reset-loop on a clock is fired k ≥ 0 times if k constraints are checked on
this clock until its next reset. This ensures that the STCW remains simple. Similarly, hi
is the number of timing constraints conjuncted in γi. We have λ(pi) = ai and all other
points are labelled ε. The set P0 encodes the initial resets of clocks that will be checked
before their first reset. So we let R0 = X and P0 is `0 → r1

0 → . . .→ rg0
0 → r0 .

The relation for timing constraints can be partitioned as B = Bs]
⊎
x∈X∪{ζ}B

x where

Bζ = {(`i, ri) | 0 ≤ i ≤ n} and we set θ(`i, ri) = [0, 0] for all 0 ≤ i ≤ n.
We have piBs pj if opi = ↓b is a push and opj = ↑Ib is the matching pop (same number
of pushes and pops in opi+1 · · · opj−1), and we set θ(pi, pj) = I.
for each 0 ≤ i < j ≤ n such that the t-th conjunct of γj is x ∈ I and x ∈ Ri and
x /∈ Rk for i < k < j, we have rsi Bx `tj for some 1 ≤ s ≤ gi and θ(rsi , `tj) = I. Therefore,
every point `ti with 1 ≤ t ≤ hi is the target of a timing constraint. Moreover, every
reset point rsi for 1 ≤ s ≤ gi should be the source of a timing constraint: rsi ∈ dom(Bx)
for some x ∈ Ri. Also, for each i, the reset points r1

i , . . . , r
gi

i are grouped by clocks (as
suggested by the sequence of micro-transitions simulating δi): if 1 ≤ s < u < t ≤ gi
and rsi , rti ∈ dom(Bx) for some x ∈ Ri then rui ∈ dom(Bx). Finally, for each clock, we
require that the timing constraints are well-nested: for all uBx v and u′ Bx v′, with
u, u′ ∈ Pi, if u < u′ then u′ < v′ < v.

We denote by STCW(S) the set of simple TCWs generated by S and define the language of
S as the set of realizable STCWs, i.e., L(S) = Real(STCW(S)). Indeed, this is equivalent
to defining the language as the set of timed words accepted by S, according to a usual
operational semantics [1]. The STCW semantics of timed automata (TA) can be obtained
from the above discussion by just ignoring the stack components (using nop operations only).

We now identify some important properties satisfied by STCWs generated from a TPDA.
Let V = (P,→, λ,B, θ) be a STCW. We say that V is well timed w.r.t. a set of clocks Y and
a stack s if the B relation can be partitioned as B = Bs]

⊎
x∈Y Bx where

(T1) the relation Bs corresponds to the matching push-pop events, hence it is well-nested: for
all iBs j and i′ Bs j′, if i < i′ < j then i′ < j′ < j.

(T2) For each x ∈ Y , the relation Bx corresponds to the timing constraints for clock x and
is well-nested: for all i Bx j and i′ Bx j′, if i < i′ are in the same x-reset block (i.e.,

CONCUR 2016

27:6 Analyzing Timed Systems Using Tree Automata

a maximal consecutive sequence i1 l · · · l in of positions in the domain of Bx), and
i < i′ < j, then i′ < j′ < j. Each guard should be matched with the closest reset block
on its left: for all iBx j and i′Bx j′, if i < i′ are not in the same x-reset block then j < i′.

It is then easy to check that STCWs defined by a TPDA with set of clocks X are well-timed
for the set of clocks Y = X ∪ {ζ}, i.e., satisfy the properties above. We obtain the same for
TA by just ignoring the stack edges, i.e., (T1) above.

3 Bounding the width of graph behaviors of timed systems

In this section, we check if the graphs (STCWs) introduced in the previous section have a
bounded tree-width. As a first step towards that, we introduce special tree terms (STTs)
from Courcelle [8] and their semantics as labeled graphs. It is known [8] that special tree
terms using at most K colors (K-STTs) define graphs of “special” tree-width at most
K − 1. Formally, a (Σ,Γ)-labeled graph is a tuple G = (V, (Eγ)γ∈Γ, λ) where λ : V → Σ
is the vertex labeling and Eγ ⊆ V 2 is the set of edges for each label γ ∈ Γ. Special tree
terms form an algebra to define labeled graphs. The syntax of K-STTs over (Σ,Γ) is
given by τ ::= (i, a) | Addγi,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ , where a ∈ Σ, γ ∈ Γ and
i, j ∈ [K] = {1, . . . ,K} are colors. The semantics of each K-STT is a colored graph
JτK = (Gτ , χτ) where Gτ is a (Σ,Γ)-labeled graph and χτ : [K] → V is a partial injective
function assigning a vertex of Gτ to atmost one color.

J(i, a)K consists of a single a-labeled vertex with color i.
Addγi,j adds a γ-labeled edge to the vertices colored i and j (if such vertices exist).
Forgeti removes color i from the domain of the color map.
Renamei,j exchanges the colors i and j.
⊕ is the disjoint union of two graphs if they use different colors and is undefined otherwise.

The special tree-width of a graph G is defined as the leastK such that G = Gτ for some (K+1)-
STT τ . See [8] for more details and its relation to tree-width. For TCWs, we have successor
edges and B-edges carrying timing constraints, so we take Γ = {→} ∪ {(x, y) | x ∈ N, y ∈ N}
with N = N ∪ {∞}. In this paper, we will actually make use of STTs with the following
restricted syntax, which are sufficient and make our proofs simpler:

atomicSTT ::= (1, a) | Addx,y1,2 ((1, a)⊕ (2, b))
τ ::= atomicSTT | Add→i,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ

with a, b ∈ Σε, 0 ≤ x < M , 0 ≤ y < M or y = +∞ for some M ∈ N and i, j ∈ [2K] =
{1, . . . , 2K}. The terms defined by this grammar are called (K,M)-STTs. Here, timing
constraints are added directly between leaves in atomic STTs which are then combined using
disjoint unions and adding successor edges. For instance, consider the 4-STT given below

τ = Forget3 Add→1,3 Forget2 Add→2,4 Add→3,2(Add2,∞
1,2 ((1, a)⊕ (2, c))⊕ Add1,3

3,4((3, b)⊕ (4, d)))

a b c d

(2,∞) (1, 3)
where Addγi,j((i, α)⊕ (j, β)), i, j ∈ N, α, β ∈ Σε is the same as
Rename1,i Rename2,j Addγ1,2((1, α)⊕ (2, β)). Its semantics JτK is
the adjoining STCW where only endpoints labelled a and d are
colored, as the other two colors were “forgotten” by τ .Abusing
notation, we will also use JτK for the graph Gτ ignoring the coloring χt.

S. Akshay, P. Gastin, and S. Krishna 27:7

Split-TCWs and split-game. We find it convenient to prove that a STCW has bounded
special tree-width by playing a split-game, whose game positions are STCWs in which
some successor edges have been cut, i.e., are missing. Formally, a split-TCW is a structure
V = (P,→, 99K, λ,B, θ) where → and 99K are the present and absent successor edges (also
called holes), respectively, such that →∩ 99K = ∅ and (P,→∪ 99K, λ,B, θ) is a TCW. Notice
that, for a split-TCW, l = → ∪ 99K and < = l+. A block or factor of a split-TCW is a
maximal set of points of P connected by →. We denote by EP(V) ⊆ P the set of left and
right endpoints of blocks of V. A left endpoint e is one for which there is no f with f → e.
Right endpoints are defined similarly. Points in P \ EP(V) are called internal. The number
of blocks is the width of V: width(V) = 1 + |99K|. TCWs may be identified with split-TCWs
of width 1, i.e., with 99K = ∅. A split-TCW is atomic if it consists of a single point (|P | = 1)
or a single timing constraint with a hole (P = {p1, p2}, p1 99K p2, p1 B p2). The directed
weighted graph for a split-TCW is defined on the associated TCW under →∪ 99K and hence
has back edges with wt = 0 across a hole as well.

The split-game is a two player turn based game G = (V∃] V∀, E) where Eve’s set of game
positions V∃ consists of all connected (wrt. → ∪ B) split-TCWs and Adam’s set of game
positions V∀ consists of non-connected split-TCWs. The edges E of G reflect the moves of
the players. Eve’s moves consist of splitting a factor in two, i.e., removing one successor edge
in the graph. Adam’s moves amount to choosing a connected component of the split-TCW.
Atomic split-TCWs are terminal positions in the game: neither Eve nor Adam can move from
an atomic split-TCW. A play on a split-TCW V is a path in G starting from V and leading
to an atomic split-TCW. The cost of the play is the maximum width of any split-TCW
encountered in the path. Eve’s objective is to minimize the cost, while Adam’s objective is to
maximize it. Notice that Eve has a strategy to decompose a TCW V into atomic split-TCWs
if and only if V is simple, i.e, at most one timing constraint is attached to each point. The
cost of a strategy σ for Eve from a split-TCW V is the maximal cost of the plays starting
from V and following strategy σ.

The split-width of a simple (split-)TCW V is the minimal cost of Eve’s (positional)
strategies starting from V. Let STCWK (resp. STCWK,M) denote the set of simple TCWs
with split-width bounded by K (resp. and using constants at mostM) over the fixed alphabet
Σ. The crucial link between special tree-width and split-width is given below.

I Lemma 3. STCWs of split-width at most K have special tree-width at most 2K − 1.

Intuitively, we only need to keep colors for end-points of blocks. Hence, each block of
an STCW V needs at most two colors and if the width of V is at most K then we need at
most 2K colors. From this it can be shown that a strategy of Eve of cost at most K can be
encoded by a 2K-STT, which gives a special tree-width of at most 2K − 1.

Split-width for timed systems. Viewing special tree terms as trees, our goal in the next
section is to construct tree automata to recognize sets of (K,M)-STTs, and thus capture (K
split-width) bounded behaviors of a given system. To show that these capture all behaviors
of the given system, we show that we can find K such that all (graph) behaviors of the given
system have K-bounded split-width. We do this now for TPDA and timed automata.

I Theorem 4. Given a timed system S using a set of clocks X, all words in its STCW
language have split-width bounded by K, i.e., STCW(S) ⊆ STCWK , where

1. K = |X|+ 4 if S is a timed automaton,
2. K = 4|X|+ 6 if S is a timed pushdown automaton,

CONCUR 2016

27:8 Analyzing Timed Systems Using Tree Automata

We prove a slightly more general result, by showing that all well-timed split-STCWs for
the set of clocks Y = X ∪ {ζ} have bounded split-width (lifting the definition of well-timed
to split-STCWs). As noted earlier, the STCWs defined by a TPDA with set of clocks X are
well-timed for the set of clocks Y = X ∪ {ζ} and hence we obtain a bound on the split-width
as required above. The following lemma completes the proof of Theorem 4 (2).

I Lemma 5. The split-width of a well-timed STCW is bounded by 4|Y |+ 2.

Proof (sketch). We prove this by playing the “split-width game” between Adam and Eve in
which Eve has a strategy to disconnect the word without introducing more than 4|Y |+ 2
blocks. Eve’s strategy processes the word from right to left. We have three cases as follows.

Case (1) is when the last/right-most event, say j, is an internal point, i.e., it is not the
target of a B relation. In this case, Eve will just split the process-edge before the last point
with a single cut.

Case (2) is when the last event is the target of Bx for some clock x ∈ Y . In this case, she
will detach the last timing constraint iBx j where j is the last point of the split-TCW. By
(T2) we deduce that i is the first point of the last reset block for clock x. Eve splits three
process-edges to detach the matching pair iBx j: these three edges are those connected to i
and j. Since the matching pair iBx j is atomic, to prolong the game Adam should choose
the remaining split-TCW V ′. Note that we now have a hole instead of position i. We call
this a reset-hole for clock x. During the inductive process, we have at most one such reset
hole for each x ∈ Y , since the hole only widens in the reset block for each clock.

Note that the last event cannot be a push or the source of a timing constraint. So, the
remaining Case (3) is a stack edge i Bs j where the pop event j is the last event of the
split-TCW, details of which are in [3]. J

Now, if the STCW is from a timed automaton then, Bs is empty and Eve’s strategy only
has the first two cases above. Doing, this we obtain a bound of |Y |+ 3 on split-width, which
proves Theorem 4 (1).

4 The tree automata technique illustrated via TPDA and TA

We now describe our proof technique of using tree automata to analyze timed systems. At
a high level, given a timed system S using constants less than M (say a timed automaton
or a TPDA), we want to construct a tree automaton that accepts all (K,M)-STTs whose
semantics are STCWs of split-width at most K which are realizable and accepted by S. We
break this into three parts. First, recall that STCWs of bounded split-width are graphs of
bounded STTs (Lemma 3). However, not all graphs defined by bounded STTs are STCWs.
We construct a tree automaton AK,Mvalid which accepts only valid (K,M)-STTs, i.e., those
representing STCWs of split-width at most K.
I Proposition 6. We can build a tree automaton AK,Mvalid of size O(M) · 2O(K2) which accepts
only (K,M)-STTs and such that STCWK,M = {JτK | τ ∈ L(AK,Mvalid)}.

Our next step is to define a tree automaton AK,Mreal which accepts all valid STTs whose
semantics are realizable STCWs.
I Proposition 7. We can build a tree automaton AK,Mreal of size MO(K2) · 2O(K2 lgK) such that
L(AK,Mreal) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

Note that AK,Mreal may not accept all (K,M)-STTs which denote realizable STCWs, but it
will accept all such valid STTs. Once we have this, our third and final step is to build a tree
automaton which accepts the valid STTs denoting STCWs accepted by the timed system.

S. Akshay, P. Gastin, and S. Krishna 27:9

I Proposition 8. Let S be a TPDA of size |S| (constants encoded in unary) with set of clocks
X and using constants less than M . Then, we can build a tree automaton AK,MS of size
|S|O(K2) · 2O(K2(|X|+1)) such that L(AK,MS) = {τ ∈ L(AK,Mvalid) | JτK ∈ STCW(S)}.

In Section 5, we detail the most complex tree automaton construction, AK,Mreal for realiz-
ability, thus proving Proposition 7. The construction of AK,Mvalid (Proposition 6) is somewhat
similar (and easier) and we refer the reader to [3] for its details as well as the proof of
(Proposition 8). We remark that for AK,Mvalid ,A

K,M
S we can also define an MSO formula and

use Courcelle’s theorem [9], but the direct tree automata construction gives us better control
on complexity bounds and helps for AK,Mreal .

Thus, the tree automatonA checking ValCoRe (i.e., validity, correctness and realizability)
is A = AK,Mreal ∩A

K,M
S . We have L(A) 6= ∅ iff there exist some realizable STCWs in STCW(S)∩

STCWK,M . Since checking emptiness of a finite tree automaton is decidable in PTIME, we
obtain that emptiness is decidable for the corresponding timed system restricted to STCWs
of split-width at most K.

I Theorem 9. Checking whether the timed system S accepts a realizable STCW of split-width
at most K is decidable.

By Theorem 4, all STCWs in the semantics of a TPDA S have split-width bounded by
some fixed K and Theorem 9 gives a complete decision procedure for checking emptiness
of TPDA. From these bounds on split-width and the size of the tree automata for validity,
realizability and the system given in the above propositions, we obtain ExpTime decision
procedures for checking emptiness of TPDA.

In the above technique, the only system-specific component is the automaton AK,MS for
the timed system S. However, Proposition 8 can easily be adapted for timed automata and
for several other timed systems, which are discussed in Section 6. Hence, this technique is
generic and can be used for several other timed systems.

Moreover, for timed automata, it can be seen, for instance, from the analysis of Cases (1)
and (2) of proof of Lemma 5 that one of the connected components (the pair iBx j) is always
atomic. Therefore the split-tree is “word-like”, i.e., for each binary node, one subtree is small,
in our case atomic. Therefore, we can encode the subtree in the label of the binary node itself
and use word automata instead of tree automata to check for emptiness (in NLogSpace
instead of PTime), yielding the complexity stated below.

I Corollary 10. Emptiness of TPDA and TA are decidable in ExpTime and PSpace
respectively.

5 Tree automata for realizable valid (K, M)-STTs

Our goal in this section is to define a finite bottom-up tree automaton AK,Mreal that runs on
(K,M)-STTs and accepts only valid (K,M)-STTs whose semantics are realizable STCWs.
Let us first give a high-level picture. A state of the tree automaton will be a split-TCW
with at most K blocks and 2K points. At any stage of the run, while processing a subtree
τ of the (K,M)-STT, the state, i.e., split-TCW q reached will be a finite abstraction of
the split-TCW JτK generated by τ , such that q is valid and realizable iff the TCW JτK is.
At a leaf, the state of an atomic-STT is just a single matching edge with a hole. At each
subsequent step going up, the tree automaton simulates the operations of τ : at a ⊕ move, it
combines two split-TCW q1 and q2 to form a new valid split-TCW q by guessing an ordering
between the blocks such that no new negative cycle is introduced (i.e., q continues to be
realizable), and at an Add→i,j node, it adds a process edge to fill up the corresponding hole in

CONCUR 2016

27:10 Analyzing Timed Systems Using Tree Automata

the split-TCW. At a Forgeti node, it removes an internal point, but to maintain realizability,
the constraints on internal positions must be propagated to the end-points of the block and
this process is continued. Finally, at the root, we obtain a TCW which is a finite abstraction
of the semantics JτK of a valid (K,M)-STT τ such that JτK is a realizable TCW. Then, we
show that the tree automaton accepts all such (K,M)-STTs, which concludes the proof of
Proposition 7. There are two key difficulties that we have glossed over in this sketch:

first, the propagation of constraints can increase the bounds arbitrarily, along an arbitrarily
long (even if finite) run. Fixing this is the hardest part and we carefully define abstractions
that bound the constraints by a constant M ′ = O(M), while preserving realizability.
This leads to another subtle issue: while checking that realizability is preserved under our
operations (of combining split-TCW and adding process edges), it is no longer sufficient
to just check whether this combination is “safe”. It may be that currently no negative
cycle is formed, but at a later stage, some other operation (⊕) gives rise to a negative
cycle, which we do not observe since we capped the value of timing constraints. So, we
need to show that all operations are safe no matter what happens in the future. For this
we start by defining the notion of preserving realizability “under all contexts” as well as
the formal notion of a “shuffle” used at ⊕ nodes.

Shuffle and Realizability under contexts. Let V1 = (P1,→1, 99K1, λ1,B1, θ1) and V2 =
(P2,→2, 99K2, λ2,B2, θ2) be two split-TCWs such that their respective set of positions P1 and
P2 are disjoint. Further, let ≤ be a total order on P = P1 ∪ P2 such that 99K1 ∪ 99K2 ⊆ <
and →1 ∪ →2 ⊆ l. Such orders are called admissible. Then, we define the split-TCW
V = (P,→, 99K, λ,B, θ) by P = P1] P2, λ = λ1 ∪ λ2, → = →1 ∪ →2, 99K = l \ →,
B = B1 ∪B2, and θ = θ1 ∪ θ2. Indeed, this corresponds to shuffling the blocks V1 and V2
with respect to the admissible order ≤ and is called a shuffle, denoted by V = V1 tt≤ V2.

Let M be a positive integer. An M -context C is a split-TCW such that the maximal
constant in the intervals is strictly smaller than the fixed constant M . Given a context
C and a split-TCW V, we define an operation C ◦ V if width(C) = width(V) + 1. C ◦ V
is the split-TCW obtained by shuffling the blocks of C and V in strict alternation. Two
split-TCWs U and V are equivalent, denoted U ∼M V , iff they have the same number of
blocks and preserve realizability under all M -contexts. That is, there exists k ∈ N such
that width(U) = width(V) = k and for all M -contexts C ∈ STCW with width(C) = k + 1,
C ◦ U is realizable iff C ◦ V is realizable. It is easy to see that ∼M is an equivalence relation.
A function f : STCW → STCW is said to be sound if it preserves realizability under all
M -contexts, i.e., for all W ∈ STCW we have W ∼M f(W). The idea is to define a sound
abstraction of finite index, so that a finite tree automaton can work only on the abstractions.

I Lemma 11. (Congruence lemma) Let U1, U2, U ′1 and U ′2 be split-TCWs such that U1 ∼M U ′1
and U2 ∼M U ′2. Then, U1 tt≤ U2 ∼M U ′1 tt≤ U ′2 for all admissible orders ≤ on the blocks.

A (possibly infinite) tree automaton for realizability. We now build the tree automaton
for realizability in two steps. First, we detail a construction which is correct and sound (i.e.,
preserves realizability under all contexts), but in which constants can grow unboundedly.
Subsequently, we show conditions under which it has finitely many states and additional
abstractions to ensure finiteness.

I Proposition 12. We can build a tree automaton AK,Minf such that L(AK,Minf) = {τ ∈
L(AK,Mvalid) | JτK is realizable}.

S. Akshay, P. Gastin, and S. Krishna 27:11

Proof. The construction builds on the construction of AK,Mvalid , which is detailed in [3]. The
states of AK,Minf are pairs (q,wt) where q = (P,<,→) is a state of AK,Mvalid , i.e., P ⊆ [2K], <
is a total order on P , → ⊆ l is the successor relation between points in the same block, q
has at most K blocks; and wt : P 2 → Z = Z ∪ {+∞} gives the timing constraints. The first
component is finite but weights can grow unboundedly. We assume wt(k, k) = 0 for all k ∈ P
and if i < j then wt(j, i) ≤ 0 ≤ wt(i, j). We identify (q,wt) with a split-TCW (ignoring B,Σ,
as these are irrelevant for realizability).

We first give the invariant that will be maintained by the automaton. Let τ be a (K,M)-
STT with JτK = (V,→, λ,B, θ, χ). If a (bottom-up) run of AK,Minf reads τ and reaches state
(q,wt) with q = (P,<,→), it induces a total order on blocks of JτK and turns it into a
split-TCW (JτK, 99K). We say that the abstraction (q,wt) of τ computed by AK,Minf is sound
if it preserves realizability under contexts, i.e., (JτK, 99K) ∼M (q,wt). The key invariant is
that AK,Minf always computes a sound abstraction of the given STT. We now formalize the
definition of the tree automaton.

AtomicSTTs: When reading the atomic STT τ = (1, a) with a ∈ Σ, AK,Minf moves to
state (q,wt) where q = ({1}, ∅, ∅) and wt(1, 1) = 0. Similarly, when reading an atomic
STT τ = Addc,d1,2((1, a)⊕ (2, b)), AK,Minf moves to state (q,wt) where q = ({1, 2}, 1 < 2, ∅),
wt(1, 1) = 0 = wt(2, 2), wt(1, 2) = d and wt(2, 1) = −c. In both cases, it is easy to check
that (q,wt) is a sound abstraction of τ .
Renamei,j : We define transitions (q,wt) Renamei,j−−−−−−→ (q′,wt′) where (q′,wt′) is obtained by
exchanging colors i and j in (q,wt), which clearly preserves soundness.

Add→i,j : We define (q,wt)
Add→

i,j−−−−→ (q′,wt), when q′ is obtained from q = (P,<,→) by adding
a successor edge (i, j) ∈ l\→. Then, if τ ′ = Add→i,j τ and (q,wt) is a sound abstraction of
τ , it follows that (q′,wt′) is a sound abstraction of τ ′ (adding edges only reduces number
of contexts to be considered to show equivalence of realizability under contexts.)
⊕: We define transitions (q1,wt1), (q2,wt2) ⊕−→ (q,wt) when q = (P,<,→) is a shuffle of q1
and q2 and for all i, j ∈ P = P1]P2, wt(i, j) is wt1(i, j) if i, j ∈ P1 and wt2(i, j) if i, j ∈ P2.
If they do not come from the same state, i.e., if (i, j) ∈ (P1×P2)∪ (P2×P1), then wt(i, j)
is ∞ if i < j and 0 otherwise, i.e., i ≥ j. Now, if τ = τ1 ⊕ τ2 and (q1,wt1), (q2,wt2) are
sound abstractions of τ1, τ2 then (q,wt) is a sound abstraction of τ . The total ordering <
of q indicates how blocks of q1 and q2 are shuffled. Hence (q,wt) = (q1,wt1)tt≤ (q2,wt2).
Now, the induced ordering on the blocks of JτK corresponds to the same shuffle of blocks,
i.e., (JτK, 99K) = (Jτ1K, 99K1) tt≤ (Jτ2K, 99K2). Now, applying the congruence Lemma 11,
we obtain that (q,wt) is a sound abstraction of τ .
Forgeti: We define transitions (q,wt) Forgeti−−−−→ (q′,wt′) when the following hold
i is not an endpoint, q′ is obtained from q = (P,<,→) by removing internal point i,
i is not part of a negative cycle of length 2: for all j 6= i we have wt(j, i) + wt(i, j) ≥ 0,
for all j, k ∈ P ′ = P \ {i}, we define wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)), i.e.,
wt′ is obtained by eliminating i.

If the second condition above is not satisfied then the tree automaton AK,Minf has no
transitions from (q,wt) reading Forgeti. With this we can prove that if τ ′ = Forgeti τ and
(q,wt) is a sound abstraction of τ , then (q′,wt′) is a sound abstraction of τ ′.
Accepting condition: Finally, we define a state (q,wt) to be accepting if q consists of a
single block with no internal points, left endpoint i and right endpoint j (possibly i = j),
and the pair (q,wt) is realizable, i.e., wt(i, j) + wt(j, i) ≥ 0.

We can now check that L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}. J

CONCUR 2016

27:12 Analyzing Timed Systems Using Tree Automata

Observe that the constants in wt′ increase only at forget transitions, where a back edge j > k

with j > i > k grows in absolute value with the update wt′(j, k) = min(wt(j, k),wt(j, i) +
wt(i, k)). A forward edge j < k may get a big value only if wt(j, k) = ∞, else it can only
decrease due to the min operation. A first question is if there are classes where they will not
grow unboundedly. A simple solution is to consider time-bounded classes where all behaviors
must occur within some global time bound T : if some back edge grows > T in absolute value
after a forget move we reject the STT; while if the same happens with a forward edge, then
replace it with ∞. Thus, we obtain,

I Corollary 13. If the system is time-bounded by some constant T , then there exists a finite
tree automaton AK,Mreal of size at most TO(K2) · 2O(K2 lgK) for checking realizability.

However, when we do not assume a global time bound the constants in the states of AK,Minf
may grow unboundedly. We next show how to modify the above construction so that the
constants are always bounded. This generalizes the above corollary with a better complexity.

Bounding the constants. The finite tree automaton AK,Mreal will work on a finite subset of
the states of AK,Minf . More precisely, a state (q,wt) of AK,Minf with q = (P,<,→) is a state of
AK,Mreal if for all i, j ∈ P we have wt(i, j) = +∞ or |wt(i, j)| ≤ 8KM .

Now, to bound back edges we define a transformation β which reduces the weight of a back
edge when it goes above a certain constant, while preserving realizability under all contexts.
In fact, we define it on back edges across a block. Let (q,wt) be a state of AK,Minf with
q = (P,<,→). A pair of points (j, i) ∈ P 2 is said to be a block back edge (denoted BBE) if i < j

are the end points of a block in q, i.e., i→+ j and this→-path cannot be extended (on the left
or on the right). A big block back edge (BBBE) is block back edge e such that M + wt(e) ≤ 0.
For any two positions i < j, we define BBE(i, j) to be the set of block back edges between i
and j. That is, BBE(i, j) = {(`, k) | (`, k) is a BBE and i ≤ k < ` ≤ j}. We also define B(i, j)
to be the set of big block back edges between i and j: B(i, j) = {e ∈ BBE(i, j) | e is big}.
We now define β(q,wt) = (q,wt′) where, for any i < j,

wt′(i, j) = wt(i, j) +
∑

e∈B(i,j)

(M + wt(e)) wt′(j, i) = wt(j, i)−
∑

e∈B(i,j)

(M + wt(e))

The idea is to change the weight of big BBE to −M by adding an offset to all the other
edges (backward and forward) crossing this block. Note that this does not increase the
absolute value of any constant. Further, after the backward abstraction, the absolute
value of weights of block back edges is bounded by M , i.e., for all BBE i x j, we have
wt′(j, i) ≥ −M . Indeed, either the edge was big and we get wt′(j, i) = −M or it was not big
and wt′(j, i) = wt(j, i) > −M . Notice also that a BBE is big in (q,wt) iff it is big in β(q,wt).
The crucial property is that we leave the weights of all cycles unchanged (under all contexts).

I Lemma 14. For all states W = (q,wt) of AK,Minf with q = (P,<,→) such that all points
are endpoints P = EP(W), we have W ∼M β(W).

While block back edges are now bounded (and back edges across holes can also be bounded
by −M), this does not suffice to bound all back edges. To obtain such a bound on all back
edges, we need to relate large back edges to edges contained within them.

I Definition 15. A split-TCW W is said to satisfy the back edge property (BEP) if for all
i ≤ j ≤ k ≤ ` with either j 99K k or j = k, we have wt(`, i) > wt(`, k)−M + wt(j, i).

S. Akshay, P. Gastin, and S. Krishna 27:13

With this, we have our second and crucial invariant, that we maintain inductively in the
tree automaton, (I2): AK,Mreal always satisfies BEP. Preserving this invariant requires a slight
transformation of the shuffle operation (at a ⊕ node). Namely, after every shuffle we must
strengthen the constraints of the back edges. Formally, we define a map σ, σ(q,wt) = (q,wt′)
where for all i < j, wt′(i, j) = wt(i, j) and wt′(j, i) = min{wt(j′, i′) | i ≤ i′ ≤ j′ ≤ j} and
perform this after every ⊕ move of the tree automaton. It is easy to check that σ preserves
realizability under contexts and this allows us to show that the invariant (I2) is preserved.
Now, under the BEP assumption, we can show that all back edges are bounded,

I Lemma 16. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→) such that P = EP(W).
If β(W) satisfies BEP, then the weight of all back edges in β(W) are bounded by 2KM .

Finally, forward abstraction γ removes all forward edges (i.e., changes their weight to
∞) that are too large to be useful for creating negative cycles. Let W = (q,wt) be a
state of AK,Minf with q = (P,<,→). A forward edge (i, j) ∈ P 2 with i < j is called big if
wt(i, j) +

∑
e∈BBE(i,j) wt(e) ≥ (3K− 1)M . Note, wt(e) ≤ 0 as it is a (block) back edge. Then,

we define γ(q,wt) = (q,wt′) where, for any i < j, wt′(j, i) = wt(j, i) and wt′(i, j) =∞ if (i, j)
is big and unchanged otherwise. While the definition of this abstraction is simple, showing
that it is sound (i.e., preserves realizability under all contexts) is rather tricky. We have,

I Lemma 17. If W = (q,wt) is a state of AK,Minf which satisfies BEP, then we have
W ∼M γ(W).

Thus, AK,Mreal is derived from AK,Minf by applying the abstractions at ⊕ nodes and at Forgeti
nodes. More precisely, (q1,wt1), (q2,wt2) ⊕−→ σ(q,wt) is in AK,Mreal if (q1,wt1), (q2,wt2) ⊕−→
(q,wt) is in AK,Minf . Similarly, if (q,wt) Forgeti−−−−→ (q′,wt′) is a transition in AK,Minf then
(q,wt) Forgeti−−−−→ (q′′,wt′′) is in AK,Mreal where (q′′,wt′′) = γ(β(q′,wt′)) if q′ has no internal
points and (q′′,wt′′) = (q′,wt′) otherwise. The reason for assuming that q′ has no internal
points before applying the abstractions is that it is a precondition for Lemmas 14 and 16.
Note that reachable states of AK,Mvalid (and hence AK,Mreal) can have at most two internal points.
Thus, along a run, if a state (q,wt) has no internal points, then the constants are bounded
by 4KM , otherwise, the constants are bounded by 8KM . Thus the constants never exceed
8KM in states of AK,Mreal , which bounds our state space.

Since the transformations σ, β, γ preserve realizability under contexts (Lemma 14 and
Lemma 17) we conclude that the key invariant holds, i.e., AK,Mreal always computes a sound
abstraction of the given STT. The acceptance condition of AK,Mreal is the same as for AK,Minf ,
and the correctness follows as for AK,Minf . This completes the proof of Proposition 7.

6 Discussion and Future work

The main contribution of this paper is the technique for analyzing timed systems via tree
automata. For simplicity, we only considered closed intervals in this paper, but our technique
can be easily adapted to work for all kinds of intervals, i.e., open, half-open etc. Similarly,
diagonal constraints of the form x− y ∈ I can be handled easily by adding matching edges
and changing AK,MS appropriately.

As another application of our technique, we now consider the model of dense-timed multi-
stack pushdown automata (dtMPDA), which have several stacks. The reachability problem
for untimed multi-stack pushdown automata (MPDA) is already undecidable, but several
restrictions have been studied on (untimed) MPDA, like bounded rounds [14], bounded phase,
bounded scope and so on to regain decidability. We look at dtMPDA with the restriction of

CONCUR 2016

27:14 Analyzing Timed Systems Using Tree Automata

“bounded rounds”. To the best of our knowledge, this timed model has not been investigated
until now. Under this restriction, any run of a dtMPDA can be broken into a finite number
of rounds, such that in each round only a single stack is used. As before, the sequence of
push-pop operations of any stack must be well-nested. Now, lifting the definition of well-timed
STCWs to k-round well-timed STCWs, we can show that such STCWs have split-width at
most (4nk + 4)(|X|+ 2), where n is the number of stacks. Thus all STCWs generated by
runs of dtMPDA using at most k rounds have a bounded split-width. Now, by modifying
AK,MS appropriately (see [3] for details), we obtain

I Theorem 18. Checking emptiness for k-round dtMPDA is decidable in ExpTime.

We believe that our techniques can be extended to other restrictions for dtMPDA such as
bounded scope and phase and to the more general model [13] of recursive hybrid automata.
Another interesting direction is to use our technique to go beyond reachability and show results
on model checking for timed systems. While model-checking against untimed specifications
is easy to obtain with our approach, the challenge is to extend it to timed specifications.

References
1 P. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In LICS

Proceedings, pages 35–44, 2012.
2 C. Aiswarya and P. Gastin. Reasoning about distributed systems: WYSIWYG (invited

talk). In FSTTCS Proceedings, pages 11–30, 2014.
3 S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using tree automata.

CoRR, abs/1604.08443, 2016. URL: http://arxiv.org/abs/1604.08443.
4 R. Alur and D. Dill. A theory of timed automata. In TCS, 126(2):183–235, 1994.
5 M. F. Atig. Model-checking of ordered multi-pushdown automata. LMCS, 8(3), 2012.
6 L. Clemente and S. Lasota. Timed pushdown automata revisited. In LICS Proceedings,

pages 738–749, 2015.
7 T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition, 2001.
8 B. Courcelle. Special tree-width and the verification of monadic second-order graph prop-

erties. In FSTTCS Proceedings, pages 13–29, 2010.
9 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. CUP, 2012.

10 A. Cyriac. Verification of Communicating Recursive Programs via Split-width. Thèse de
doctorat, LSV, ENS Cachan, January 2014.

11 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR Proceedings, pages 547–561, 2012.

12 W. Czerwinski, P. Hofman, and S. Lasota. Reachability problem for weak multi-pushdown
automata. In CONCUR Proceedings, pages 53–68. Springer, 2012.

13 S. N. Krishna, L. Manasa, and A. Trivedi. What’s decidable about recursive hybrid auto-
mata? In HSCC Proceedings, pages 31–40, 2015.

14 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN Proceedings, pages 96–107, 2010.

15 S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In DLT
Proceedings, pages 116–128. Springer, 2014.

16 S. La Torre, M. Napoli, and G. Parlato. A unifying approach for multistack pushdown
automata. In MFCS Proceeedings, pages 377–389. Springer, 2014.

17 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL Proceedings,
pages 283–294, 2011.

http://arxiv.org/abs/1604.08443

	Introduction
	Graphs for behaviors of timed systems
	Abstractions of timed behaviors
	TPDA and their semantics as simple TCWs

	Bounding the width of graph behaviors of timed systems
	The tree automata technique illustrated via TPDA and TA
	Tree automata for realizable valid (K,M)-STTs
	Discussion and Future work

