
HAL Id: hal-01408584
https://hal.inria.fr/hal-01408584

Submitted on 5 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing and proving an EMV-compliant payment
protocol for mobile devices

Véronique Cortier, Alicia Filipiak, Saïd Gharout, Jacques Traoré

To cite this version:
Véronique Cortier, Alicia Filipiak, Saïd Gharout, Jacques Traoré. Designing and proving an EMV-
compliant payment protocol for mobile devices. 2nd IEEE European Symposium on Security and
Privacy (EuroSP’17), Apr 2017, Paris, France. �hal-01408584�

https://hal.inria.fr/hal-01408584
https://hal.archives-ouvertes.fr

Designing and proving an EMV-compliant payment protocol for mobile devices

Véronique Cortier
LORIA - CNRS

Alicia Filipiak
LORIA - Orange Labs

Saïd Gharout
Orange Labs

Jacques Traoré
Orange Labs

Abstract—We devise a payment protocol that can be securely
used on mobile devices, even infected by malicious applications.
Our protocol only requires a light use of Secure Elements,
which significantly simplify certification procedures and pro-
tocol maintenance. It is also fully compatible with the EMV
SDA protocol and allows off-line payments for the users.

We provide a formal model and full security proofs of our
protocol using the TAMARIN prover.

1. Introduction

Mobile devices have become life-style devices contain-
ing many user applications and allow access to several re-
mote services. According to GSMA, the global Mobile Net-
work Operators organisation, two thirds of world’s mobile
phones will be smartphones by 2020 [19]. This evolution
of mobile devices allowed the development of many mobile
applications and services (e.g. payment, transport, banking
transactions, etc.). Today, with the emergence of open envi-
ronments in mobile devices (e.g., Android), purposes of mo-
bile applications have incredibly widened, hence everybody
can now develop their own mobile applications and install it.
However, such a success comes at a price. The great diver-
sity of applications on mobile devices is one of the causes
that raised frauds and attacks [20]. Mobile devices are prone
to several attacks, such as gathering private information from
the device like cryptographic keys, banking information or
user’s data. Hackers could for example fraudulently use
the different applications and services proposed by these
platforms, or install malware and try the usurpation of a
legitimate application.

Of course, secure protocols have already been developed
for years, even decades. However, standard protocols (eg.
payment protocols) assume the host machines to be secure.
For example, EMV [11], which has been used since 1994, is
today the standard in payment industry and widely deployed
by major payment networks (e.g., Visa, Mastercard, etc.). It
has already been intensively studied (see e.g. [29], [10], [6],
[24]) and is reasonably secure. However, its security strongly
relies on the keys owned by the user’s credit card. While it
is very difficult to extract keys from credit cards, this is no
longer the case for applications stored and run on mobile
devices. A payment protocol should be secure even if it
runs on a device that offers low level of security or contains
malicious applications, to fight against frauds and cloning.

Several payment solutions have been developed such as
Google Wallet, Apple Pay, or Orange Cash. Since these

applications are proprietary, it is very difficult to assess
their security. However, we can state that in order to offer
a protection against malicious applications two main trends
are followed by such major companies.

The first trend shows a growing interest in the use of
Secure Elements (SE). A SE is a tamper-resistant dedi-
cated platform (e.g., SIM card), consisting of hardware and
software, capable of securely hosting applications, storing
confidential data, and providing a secure application execu-
tion environment. The SE cannot be used alone because it
operates in slave mode and consequently does not control
the screen of the device which makes it impossible for it to
offer a secure display or user input interface. Indeed, it needs
a Trusted User Interface (TUI) [16] providing a trusted path
from the end-user to the SE [25]. The activation of Secure
Elements is typically done once the user authenticates him-
self (e. g., entering a PIN or a fingerprint) through a TUI.
So one possible approach would be to simply implement
a full existing solution on the SE. This solution has the
advantage of its simplicity: it inherits the security guarantees
of an existing, well understood and already widely deployed
protocol. However, implementing a full protocol on a SE
has a huge impact on the secure elements in terms of
implementation and certification costs. It is difficult (and
therefore costly) to maintain and update the solution: any
update implies to revise the SE content through erase and
write operations on the non-volatile memory, which sup-
ports a limited number of write and/or erase operations.
In contrast, it is way simpler to update an application on
a mobile platform. Moreover, in order to guarantee the
security offered by the SE, any application needs to be
certified before being uploaded on the SE. This is a long
and costly process. This is also another reason for refraining
from updating the solution; any update on the application
source implies a new certification process. Finally, another
important limitation is the memory size of a SE. The bigger
the application is, the more space is required on the SE,
which implies more expenses on the SE part, plus, SEs do
not support too intensive computations.

The other main trend relies on Host Card Emulation
(HCE) solutions which get rid of the device-based SE and
provide a full software application. Two main options can
be observed on the market nowadays. Some HCE-based
applications deport the sensitive operations (i.e. what is
executed by the SE) on the cloud. The main drawback
of such approach is that the user needs to be connected to
the cloud (through cellular connectivity or Internet) in order

to process a payment, with all the costs and availability
issues it involves (e.g. roaming costs if the client is outside
the country, network coverage problems...). The other kind
of HCE-based applications rely on white-box cryptography
designs, obfuscating application keys and cryptographic op-
erations inside the application code itself. One first issue of
this approach is the setup (or enrollment) of the user: it is
difficult to pre-share personal keys between the phone and
the payment service. But the main issue comes actually from
the use of white-box cryptography itself. All current solu-
tions implementing white-box-designed cryptographic prim-
itives are broken as demonstrated by [7], which provides
a generic attack called Differential Computation Analysis
(DCA) which allows the extraction of key material from
any published white-box implementation. The DCA Attack
is significantly fast, since being automated, and requires
no specific knowledge of the white-box design from the
attacker.

Our objective is to propose a solution that can be used
to perform payment transactions on mobile platform, even
in the presence of malicious applications. We devised a new
protocol that requires only a light use of SEs, that should be
easy to implement and validate by certification [9]. Most of
the solution is running on the mobile platform (as an HCE
implementation) which offers better flexibility for develop-
ers of the payment application on the mobile platform. Our
protocol has been designed with strong practical constraints
in mind:

• Full compatibility with EMV-Static Data Authenti-
cation (EMV-SDA) protocol. The EMV-SDA pro-
tocol for card authentication is one of the three
protocols designed by EMCCo and the default pro-
tocol implemented on merchant payment terminals.
Proposing a solution compliant with existing point
of sales is of high interest for a real deployment.

• Off-line payments for the customer. Even when the
network is unreliable, a user should be able to pay
from anywhere at any time, without having to rely
on his mobile connection.

• Resistance against malicious applications. Even if a
malicious application can dump the mobile platform
memory (except the material stored on the SE), no
fraudulent payment shall be made.

• Basic SE functionalities. We only require from the
SE to store two symmetric keys and to perform very
basic operations: MAC computation and counter
management. We believe that such functionalities are
likely to be available on most SEs and should be easy
to certify.

• Ephemeral Primary Account Numbers (PANs). In
contrast to standard EMV, our solution makes use of
ephemeral PANs, also called tokens [15] (one PAN
per transaction). Thanks to these tokens, our protocol
provides a protection against the classic EMV-SDA
replay attack thus improving the security of EMV
without modifying the core protocol.

The fact that we use ephemeral PANs follows the

proposition made by EMV [15] of using tokens instead
of the PAN. However, this specification focuses on the
requirements regarding the environment and infrastructure
of tokenization for better scalability in existing payment
networks. It does not provide details about the actual mech-
anism behind token provisioning and token-based payment.
To the best of our knowledge, our protocol is the first open
specification of a tokenized version of EMV, which is of
independent interest.

Our protocol is composed of two phases. When the
user is connected, during the first phase, he may provision
tokens (typically 5 to 10 tokens) for future payments. These
tokens are stored encrypted on the mobile platform. Then,
during the second phase, when the user wishes to pay, he
may use one of his tokens, using his SE to decrypt one
of the tokens his device holds. The SE releases the key
associated to the token only once the user has authenticated
himself to his mobile platform and approved the payment,
through the Trusted User Interface (TUI), which we assume
to be reliable. Interestingly, when a token is decrypted,
it is already linked to the merchant. Also, the transaction
amount is approved by the user. The merchant’s ID and
the amount can no longer be modified. Moreover, even if
such a decrypted token is stolen (for example if a malicious
merchant cancels a payment in order to obtain a second
token), then the impact of such an attack is limited. As soon
as the user successfully processes an honest transaction with
another (fresher) token, all previous tokens are immediately
invalidated. This is realized through the use of a counter
inside the SE.

To analyze our protocol and prove our security claims,
we provide a formal model of our payment protocol using
TAMARIN [22], a recent tool dedicated to protocol analysis
and the first one that can handle counters. We formally prove
several important security properties using TAMARIN. In
particular, we show that even if an attacker can fully control
the user phone (at the application level), he cannot trigger
any payment without the user consent. In the extreme case
where the attacker can decrypt a token (e.g. bypassing the
TUI), then the token can only be used a limited amount
of time, until the user processes to another payment. These
properties are formally stated in TAMARIN and most of
them can be automatically proved, except for two of them
that required some user interactions due to the use of
counters.

This protocol has been conceived in close collaboration
with a major telecommunication company and a prototype
of a mobile payment application based on this protocol has
been developed within the company.

Related work. To our knowledge, our protocol is the
first proposition of a payment protocol relying on the use of
a SE, at least among existing open specifications. Moreover
our protocol is fully formalized and proved. A security proof
of the original EMV protocol has already been provided, for
example in [10]. However, this analysis assumes the user
device to be secure (because it is a credit card), which is no
longer reasonable with mobile platform. In terms of security

proofs, the main difficulty of our protocol is the presence
of counters. [8] provides a model and a proof of a key-
management protocol run on a secure hardware but does
not need counters. [21] provides a methodology to analyse
protocols with counters in TAMARIN and applies it to the
Yubikey. However, this is not a payment protocol and our
protocol is more complex (more actors and more steps).

Our protocol relies on the use of ephemeral PANs as
proposed by EMV [15]. Therefore, the general idea of using
tokens instead of the real PAN of the user was already
proposed. However, we are not aware of any (publicly
available) concrete instantiation of a tokenized version of
EMV. For example, whether or not a token shall be re-
used is left to the designer’s choice. Our protocol forms a
precise instantiation of the token mechanism in the context
of EMV. In particular our protocol dynamically links the
PAN with the merchant and the amount of the transaction,
preventing the token from being used for other purposes, still
preserving offline payments form the point of view of the
user, which is original w.r.t. the ephemeral PAN specifica-
tion [15]. Regarding the token provisioning operation itself,
some modern payment applications such as Apple Pay or
Samsung Pay rely on it, however the technical specifications
are not available to the public. Token provisioning methods
are also used in the context of One Time Password [26].

2. Presentation of the protocol

We describe here our protocol. We first start by recalling
the main step of the protocol EMV-SDA.

Glossary

- CH: Cardholder
- MA: Mobile Application
- NFC: Near Field Communication
- PIN: Personal Identification Number
- POS: Point of Sale
- SDA: Static Data Authentication
- SE: Secure Element
- TE: Trusted Enclave
- TEE: Trusted Execution Environment
- TSP: Token Service Provider

2.1. EMV-SDA protocol

EMV specifications [11], [12], [13], [14] provide details
on how to process to a card-based transaction. Basically,
for a transaction to be valid, the merchant needs to obtain
the cardholder’s Primary Account Number (PAN) and the
card’s expiry date among other data (determined by the card-
holder’s bank) in order to transfer them over the payment
network to the cardholder’s bank. An EMV transaction rely
on three main operations:

• The user authentication: it is an optional process
allowing the user to authenticate himself to prove

Card POS

Holds{
spkIssuer

}
sskCA{

PAN,ExpDate,Data
}
sskIssuer

Holds
spkCA

{
spkIssuer

}
sskCA

,{
PAN,ExpDate,Data

}
sskIssuer

Verify
{
spkIssuer

}
sskCA

Verify
{
PAN,ExpDate,Data

}
sskIssuer

Figure 1. EMV card Static Data Authentication

he agreed on the transaction. It can either be a PIN
code or a signature.

• The transaction mode: a transaction can either be
online or offline on part of the merchant payment
terminal.

• The card authentication: three protocols define how
to authenticate the card payment information: Static
Data Authentication (SDA), Dynamic Data Authen-
tication (DDA) and Combined Data Authentication
(CDA).

The SDA protocol for card authentication is the basic one
and is implemented by default on any EMV merchant termi-
nal. It is informally described in Figure 1. During an SDA
transaction, the card provides its data (PAN, expiry date and
other data required by the bank) signed by the card issuer
(the user’s bank). The card also gives the merchant terminal
the signing public key of the card issuer, certified by a
Certification Authority (CA). Since the terminal owns the
CA public key, it can verify the authenticity of the issuer’s
public key and then, use this key to verify the authenticity
of the transaction data provided by the card.

In our protocol specification, we do not consider some
specific roles involved in the EMV ecosystem since our
protocol does not change the way they act. In particular,
the communications between the merchant and the acquirer
remain unchanged. The only change in this ecosystem is the
involvement of the Token Service Provider whose role will
be defined later on this section.

We designed our protocol according to the recommen-
dations provided by EMVco around tokenization [15].
We chose here to use ephemeral PANS. More precisely,
we define a token to be a one-time-only surrogate value
replacing the PAN in a transaction, which means that during
a transaction, we use an EMV-compliant payment packet

(the formerly mentioned signed packet) in which the token
appears instead of the PAN. Such a packet is called a
tokenized EMV payment packet and remains verifiable in
accordance to the EMV SDA protocol. A token value can
only be used once to process a payment and a user shall
be able to receive as many tokens as necessary. Hence, we
need to lay the grounds for a token provisioning process.

2.2. Entities

Several entities are involved during our protocol and
are described as follows. Our protocol does not cover the
user registration part. We also rely on another entity in
the payment network whose role has been defined accord-
ing to EMV specification [15], the Token Service Provider
(TSP), an entity in charge of tokens management on the
payment network. The TSP makes sure an ephemeral token
is correctly translated to the user’s real PAN to the issuer.
We assume the user is already registered to a TSP with
its TRID (the Token Requestor IDentifier, with which the
client is registered to the TSP) and that his mobile device
holds the right secret symmetric keys and that the number of
tokens the device receives from the TSP at each request is
already settled. Under the term mobile device, we consider
smartphones, tablets or even most recent IoT devices (like
smartwatch) which could host a Secure Element.

The Cardholder (CH) is the owner of both the original
PAN account and the device through which payments will be
performed. Since we need to identify him before processing
the token provisioning request or a transaction, we assume
the CH holds an idenfication value IDval he is the only one
to know or able to provide. It could either be a PIN code,
a biometric fingerprint, a scheme or any other identification
method supported by a mobile device.

What we call the Trusted Enclave (TE) is in reality
the combination of two security tools that are currently
embedded on most of the recent smartphones: the Trusted
Execution Environment (TEE) [16] and the Secure Ele-
ment (SE). The user identification will be processed through
the Trusted User Interface of the TEE, so the IDval cannot be
stolen from the main OS. The IDval has to be known only by
the Trusted Enclave. In practice, the IDval verification could
be performed by either the SE or the TEE but since in both
cases a secure channel is needed between the TEE and the
SE, we consider this technicality out of scope. It is only after
a successful identification of the user that the TEE allows
requests to the SE. The SE could either be a SIM card [2],
an embedded SIM [17], [18], a Secure SD-card [4] or an
embedded Secure Element. It holds two symmetric keys for
identification process, one for token provisioning (KID) and
another one for payment (KPay) as well as a counter (CCH)
to prevent replay attacks. The SE can increment a counter
and calculate a MAC value with variables provided from the
main OS of the mobile device.

The Mobile Application (MA) is hosted on the mobile
device rich OS (the main OS of the mobile device) and is the
payment application through which the CH will require new
tokens or process payments. Since the rich OS is considered

as untrustworthy, the MA only manages public information
that does not endanger the security of our protocol. Mainly,
the MA holds the user’s Token Requestor Identity (TRID),
with which the CH is registered to the TSP, and the TSP
public keys - one for asymmetric encryption (pkTSP) during
the Token Requesting process and the other one for signature
verification (spkTSP) during the Token reception and the
payment processes.

Token generation and provisioning as well as payment
verification and token management and storage are pro-
cessed by the Token Service Provider (TSP). To achieve
these tasks, the TSP holds the symmetric keys (KID and
KPay) associated to the Cardholder’s TRID as well as three
counters (CTSP, CTok and CPay). The TSP is also the owner
of private keys for signature and encryption (sskTSP and
skTSP) and as required by EMVCo, its signature key is
certified by a Certification Authority ({spkTSP}sskCA)

A user pays through a Merchant Point of Sale (POS). It
could be a physical terminal as well as an Internet platform
for payment. The POS - or its related merchant - is identified
with a Merchant ID MID which will be used as a payment
information by the SE to sign the transaction. As specified
by the EMV protocols, the merchant holds the public key of
the Certification Authority (spkCA) in order to verify the TSP
public key validity when handled by the mobile application.
We assume the merchant to be connected, in order for the
transaction to be almost instantly verified by the TSP, which
should not be a big constraint since NFC POS are also
usually connected.

2.3. Protocol overview

We hereby go into more details about the two main parts
of our protocol. We use the following notations:

• aenc(m, pk): asymmetric encryption of m with pub-
lic key pk.

• senc(m, s): symmetric encryption of m with secret
key s.

• MAC(K,m): keyed-hash message authentication
code of m with the key K.

• < x1, ..., xn >: the concatenation of x1, ..., xn.

2.3.1. Token provisioning request and process. During
the token provisioning process (see Figure 2), the cardholder
first authenticates himself through his device using his IDval.
After this first authentication, and only after that, the mobile
application is granted access to the SE to request the value
HID computed from the SE symmetric key KID and the
current value of the counter CCH: HID = MAC(KID,CCH).
This value will attest that both the right user and the right
SE were involved in the request.

The mobile application can then send the tokenization
request Mtok = aenc(< TRID,CCH,HID >, pkTSP) to the
TSP, encrypting it with the TSP public key. After decryption,
the TSP can first check the counter value it receives (CCH) is
greater than the one it holds (CTSP), with respect to a certain
tolerance limit to be defined by the service. The TSP can
then check the correctness of HID, since it also holds the

CH

Cardholder

TE

Trusted Enclave

MA

Mobile Application

TSP

Token Service

Provider

Holds
IDval

Holds
IDval

KID

CCH

Holds
TRID

pkTSP
spkTSP

Holds
TRID

KID

KPay

CTSP

CTok

skTSP
sskTSP

IDval request

IDval

Check IDval

CCH := CCH + 1
HID := HMAC(KID,CCH)

HID,CCH

Mtok := aenc(< TRID,CCH,HID >, pkTSP)

Mtok

If CTSP < CCH and HID = HMAC(KID,CCH)
CTSP := CCH

∀ 1 ≤ i ≤ k
Generate ti, si
CTok := CTok + 1, ci := CTok

EMVi :=
{
TRID, ti,Data

}
sskTSP

ki := HMAC(KPay, si)
ciphTi := senc(EMVi, ki)

Tres :=
{
TRID,

k⋃
i=1

< ciphTi, si >
}
sskTSP

Store TRID 7→
k⋃

i=1

< EMVi, si, ci >

Tres

Verify (Tres , spkTSP)

Store
k⋃

i=1

< ciphTi, si >

Figure 2. A Token Provisioning session

key KID , and, if the verification is successful, increments
its own counter.

After these verifications, the TSP generates k tokens ti
and computes k tokenized EMV payment packets: EMVi :={
TRID, ti,Data

}
sskTSP

. The Data field represents the addi-
tional data an issuer would require to validate a transaction.
As required by EMVCo specifications on payment proto-

cols, those payment packets are signed by a certified TSP
signing key sskTSP. Since each one of these EMV packets
are ready-to-use payment values which will be stored on
the main OS, the TSP will encrypt them with a symmetric
key. For each tokenized EMV packet, the TSP generates a
fresh nonce (si) which will then be used with a payment
key shared by the SE and the TSP to generate a symmetric

key. This key will be used to encrypt one token packet:
ki = MAC(KPay, si). Each one of the generated tokenized
payment packet EMVi is also associated to a counter ci
calculated from CTok on the part of the TSP. The TSP then
can store the association of the TRID with the union of the

generated < EMVi, si, ci >: TRID 7→
k⋃

i=1

< EMVi, si, ci >

The tokenization response, Tres =
{
TRID,

k⋃
i=1

<

ciphTi, si >
}
sskTSP

is then sent to the mobile application,
where each encrypted token (ciphTi) is transmitted with its
corresponding nonce.

The mobile application stores those values.

2.3.2. EMV-compliant payment. Whenever a user has to
pay with his device (see Figure 3), the merchant POS first
has to provide it with a merchant identifier, MID (which
could for example be an acquirer merchant identification
value) and the transaction amount.

Once the user identified himself through his device,
the mobile application, after choosing the oldest remaining
encrypted EMV packet it holds ciphTi, is authorized to
require two values from the SE: the encryption key ki to
decrypt the EMV payment packet and a transaction signature
Tval = MAC(KPay,MID, price, si) which is obtained by hash-
ing the merchant identifier, the amount of the transaction, the
payment key held by the SE and the nonce corresponding
to the token. This transaction signature, which will then be
verified by the TSP, binds the use of a specific token to a
specific merchant (so an attacker cannot pay with this token
for another merchant), a specific price (which we assume
to be checked by the user when he enters his IDval) and a
specific SE (and thus user). With ki, the mobile application
can retrieve EMVi, a ready-to-use EMV payment packet.

The mobile device can then send to the merchant POS
every data required for an EMV transaction. After process-
ing the usual EMV signatures verification the POS sends
the EMV packets over the payment network to the TSP
which can process the verification of the token and the
transaction signature. In addition to the transaction signature
verification, the TSP deactivates old tokens: EMVi was
associated to a counter ci and the TSP holds another counter
CPay. A payment will be validated only if the actual value of
ci is higher than the one of CPay. CPay is the counter value
of the latest token validated by the TSP for a payment. If the
token is too old, the payment will be refused. Otherwise the
payment is authorized and the corresponding notification is
sent to the POS. The TSP then updates the CPay value to ci
and deletes (or deactivates) the tokenized EMV packet from
his database, as well as the older ones, preventing them to
be used for a further payment. The mobile application can
also erase EMV.

3. Security claims

We list the security guarantees offered by our protocol,
together with our threat model.

3.1. Security assumptions and threat model

Figure 4. Communication model

3.1.1. Communication model. Figure 4 provides an
overview of our communication and threat model. Firstly,
we assume that the attacker has control over all public
networks, in our case, the network holding the commu-
nication between the TSP and the mobile application. He
can eavesdrop information and interact with all entities with
values he obtained from the public network.

However, an attacker has no control over secure chan-
nels. We assume that the communication over the payment
network is secure as well as every communication between
a merchant POS and a TSP whether the merchant is con-
sidered as rogue or not. In the same spirit, we consider the
access control to the Trusted Enclave (SE and Trusted User
Interface for PIN verification) to be secure.

3.1.2. Threat model. The TSP is always assumed to be
honest. It securely stores all the information it manages and
cannot be impersonated.

A CH may be honest or rogue. An honest CH holds
his IDval secret and provides it to the mobile device when
needed.

An honest TE only processes requests when the user
is authenticated. We assume that whenever a user accepts
to authenticate himself in order to unlock the payment for
a specific merchant and value, the right price and the right
merchant are displayed on the device screen through a Se-
cure Interface. We assume a Secure Trusted User Interface
(TUI) that is in charge of user authentication. In contrast, a
rogue TE may share symmetric key(s) KID and/or KPaywith
the attacker.

We consider the MA to be either honest, meaning it
does not provide anything else to the public network than
what is specified by the protocol or untrustworthy in which
case, it shares its data with the attacker.

A honest POS behaves as prescribed by the protocol.
A rogue POS shares its data with the attacker and behaves
arbitrarily. For example, it try to input any payment value
he receives from the attacker without processing the EMV
verification. We allow CH to interact with both honest and
rogue POS.

The payment network (including the merchant’s ac-
quirer and the user’s issuer) is an abstract entity that we
consider to be honest. Whenever a POS, rogue or not, tries to
communicate with a TSP, it must be correctly authenticated
through the payment network.

CH

Cardholder

TE

Trusted Enclave

MA

Mobile Application

POS

Merchant

Point of Sale

TSP

Token Service

Provider

Holds
IDval

Holds
IDval

KPay

Holds
ciphT

s
spkTSP

{spkTSP}sskCA

Holds
MID

spkCA

Holds
k⋃

i=1

< EMVi, si, ci >

KPay

CPay

MID, price

s,MID, price

IDval request,
MID, price

IDval

Check IDval

k := MAC(KPay, s)
Tval := MAC(KPay,MID, price, s)

k,Tval

EMV := sdec(ciphT, k)
Verify (EMV, spkTSP)

{spkTSP}sskCA ,EMV,Tval

Verify (spkTSP, spkCA)
Verify (EMV, spkTSP)

EMV,Tval,MID, price

Delete EMV

Retrieve TRID 7→
k⋃

i=1

< EMVi, si, ci >

Check ∃ 1 ≤ i ≤ k : EMVi = EMV
If CPay < ci

Check Tval = MAC(KPay,MID, price, si)
CPay := ci

Payment confirmation
Payment confirmation

∀ cj ≤ ci
Delete EMVj, sj, cj

Figure 3. A Token-Based Payment

3.2. Security properties

We list here the five main properties guaranteed by our
protocol. The two first ones form the natural agreement
properties: whenever a transaction is made, the cardholder
did consent to it and similarly, whenever a merchant accepts
a transaction, he is guaranteed to be paid. The third property
states similarly an agreement for the provisioning part:

whenever a token is provisionned, the cardholder did initiate
the request. Finally, the two last properties are further secu-
rity guarantees offered by our system, in case a decrypted
token is leaked.

3.2.1. Mandatory transaction agreement by the user.
Each time the TSP validates a transaction between a card-
holder CH and a merchant M for an amount p, then CH

must have initiated the payment request (thus agreed to it)
of amount p to the merchant M by authenticating himself
through the TE.

3.2.2. Merchant payment assurance. Whenever a mer-
chant M is notified that a transaction of amount p has been
validated, the TSP validated the payment of amount p to the
merchant M and sent the notification.

3.2.3. Injective Token Provisioning. Each time a token is
generated by the TSP for a given cardholder CH , a given
key KID, a given counter value CCH, then CH must have
initiated the provisioning request by authenticating himself
through his mobile (on which the SE holds KID). Moreover,
the TSP did not already generate a token for the same
counter value.

3.2.4. Injective token-based payment. A token can only
be used once. If a TSP validates a transaction for a specific
token T owned by a client, then such a token T has not been
previously used for a payment which was validated by the
TSP. Interestingly, this property prevents the replay attacks
against the EMV-SDA protocol.

3.2.5. Token stealing window. In case a token is stolen (for
example by a merchant which maliciously claims that the
transaction failed) then the consequences are mitigated by
the two following properties.

• The token may be used only until a new transaction
is made by CH . In other words, tokens have a
limited validity.

• The stolen token may only be used for the merchant
and the amount on which the user agreed upon.
(Therefore a double payment can be traced.)

4. Protocol specification using the TAMARIN
prover tool

There are several dedicated tools designed for analyz-
ing and proving security protocols. Only some of them
can prove security for an unbounded number of sessions:
ProVerif [5], Scyther [23], as well as the recent tool
TAMARIN [27]. A particularity of our payment protocol is
that its security strongly relies on the use of a counter. Thus
to analyze our protocol, we need an automated tool that can
handle mutable states as well as an unbounded number of
sessions, which excludes both ProVerif and Scyther. There-
fore we chose to model our protocol using the TAMARIN
prover [22], which relies on multiset rewriting rules to
define a protocol. Interestingly, TAMARIN also offers an
interactive prover mode, which significantly broadens the
properties that can be proved.

4.1. Message theory

As usual, cryptographic messages are represented by
an order-sorted algebra with the top sort msg and the two

following incomparable subsorts fresh and pub. For each
of the subsort s, we assume an infinite set of names Ns and
an infinite set of variables Vs. Let N be the union of the
(disjoint) sets Nfresh and Npub and V be the union of the
(disjoint) sets Vfresh and Vpub. Fresh names typically model
cryptographic material initially unknown to the adversary
such as keys or nonces while public names are known to
the adversary.

Cryptographic primitives are represented as function
symbols of a given signature Σ. The term algebra built
over Σ, N , and V is denoted T (Σ,N ,V). The properties of
cryptographic primitives are modeled through an equational
theory E, that is a finite set of equations M = N where
M,N ∈ T (Σ,N ,V). The relation =E between terms is
the smallest equivalence relation containing E and closed
by application of function symbols, renaming of names and
substitution of variables by terms.

Example: To model the signature scheme used during EMV
payment verification, we can use the following signature and
equation to define an equational theory:

Σ = {sign/2, pk/1, verify/3, true/0}

verify(sign(m, ssk),m, pk(ssk)) = true

4.2. State transition system

A protocol is represented by a labeled transition system.
Each state of this system contains the adversary knowledge,
the messages sent or received from the network, information
about freshly generated values and the protocol-specific
state. This information is represented in TAMARIN by facts.
Formally, we assume a signature Σfact disjoint from Σ. The
set of facts is:

F = {F (t1, . . . , tn) | ti ∈ T (Σ,N ,V), F ∈ Σfact}

Σfact includes persistent facts, denoted !F , which are used
to represent facts that are persistent, that is, are not con-
sumed by a rule. Then a state is simply represented by a
multiset of facts. A state transition system is represented
by a labeled multiset rewriting rule l − [a] → r such that
l, a, r ∈ F∗.

Example:
rule 1_3_Tok_req_processing:

let < TR_ID, < C_TE, H_ID> > =
adec (M_tok, sk_TSP)
in

[In(M_tok),
!TSP_private_keys_set($TSP, sk_TSP, ssk_TSP),
!TSP_data(SE, TR_ID, Data, K_ID, K_Pay),
Count_TSP(TR_ID, TE, $TSP, C_TSP),
Fr(~s),
Fr(~Token)]

--
[Eq(C_TE, C_TSP + ’1’),
Eq(H_ID, MAC(< C_TSP + ’1’, K_ID >))]
->

[Out(T_res),
Store_Token_in_TSP($TSP, TR_ID, ~s, ~Token),
Count_TSP(TR_ID, TE, $TSP, C_TSP + ’1’)]

The rule models the TSP behavior when answering a pro-
visioning request. Whenever the TSP receives the request
M_tok, it decrypts it with its private key sk_TSP to obtain
the TR_ID, C_TE and H_ID values. The transition only
happens if both the counter and H_ID are successfully
checked (facts Eq(...)). The TSP then generates a new
token ~Token and a fresh nonce ~s. It can then send
the tokenization response T_res over the network (not
detailed here). It will also store the token in its database (fact
Store_Token_in_TSP(...) and increment its counter
to the value C_TSP + ’1’.

TAMARIN actually (slightly) restricts the set of labelled
multiset rewriting rules that can be used in the tool but we
omit this for the sake of simplicity. We refer the reader
to [22] for a complete description of the syntax and the
semantics.

4.3. Counter representation

Our protocol model relies on counter representation. We
chose to use the built-in library multiset available in Tamarin
to represent our counters. The counter x is incremented
by the operation x + ’1’. The plus sign here indicates
that the element ’1’ is added to the multiset x. So our
counters could be mathematically represented by a set of
public messages:

⋃
{1, 1, ...1}. This counter representation

allows comparison of values. To this end, and following the
idea proposed by SAPIC [21], we use two axioms defining
on one part the equality between two counter values (which
is used during the Token Request processing) and on the
other part an order relation between two counter values
(used during the Payment validation part, to update CPay).

4.4. Security properties specification

Lemmas are expressed as sorted first-order formulas over
four kinds of atoms:

• F @]i, where F is a fact and]i is a temporal vari-
able. It states that the fact F happens at a transition
rule]i.

•]i <]j, where]i and]j are temporal variables. It
states an order between transition rules.

•]i =]j, where]i and]j are temporal variables. It
states an equality of transition rules.

• t = t′, where t and t′ are terms. It states an equality
of terms.

We provide examples of TAMARIN lemmas in the next
section and we refer the reader to [22] for a complete
description of the syntax and the semantics of the formulas.

5. Security analysis in Tamarin

We provide a model of our payment protocol in
TAMARIN, together with a formal statement of the security
properties as informally described in Section 3. All model
files and proof scripts are available at [1].

5.1. Protocol model

As usual, we assume the adversary fully controls public
communication channels, that is, it controls the channel
between the mobile platform and the merchant. In contrast,
we assume that the merchant communicates with the TSP
on an authenticated channel. We also assume that the TE
securely communicates with the user.

The adversary initially knows all identifiers, TRID and
the user data linked to it, the public keys (spkTSP and pkTSP)
and the counters (CTSP, CCH, CTok and CPay). The adversary
of course also learns all keys of dishonest TEs and mobile
applications.

In order to help the TAMARIN tool and since we
consider CH to be honest, we chose to merge the roles of
CH and TE in our model as depicted in Figure 5. Of course,
corrupted TEs have been modeled by splitting the two roles
again. Similarly, we consider a one-by-one token generation
per token provisioning session. This is not a limitation since
a TSP can answer to arbitrarily many token requests.

5.2. Formal properties

We now state the five security properties informally
defined in Section 3.2 as TAMARIN’s lemmas. These prop-
erties are agreement properties. We therefore annotate pro-
tocol’s rules with events (facts labeling transitions) corre-
sponding to the different states of each agent. Where these
events are placed is described in appendix, in Figure 5.

5.2.1. Mandatory transaction agreement by the user.
Whenever the user is charged by the TSP, he agreed previ-
ously on the transaction.

lemma Transaction_agreement_by_the_user:
All TE M p #i. USER_GETS_CHARGED(TE, M, p) @ i
& not (Ex #r. CORRUPTED_K_PAY(TE) @ r)
==>
Ex CH PIN #j.
USER_AGREES_TO_TRANSACTION(CH, TE, PIN, M, p) @ j
& j < i

The formula expresses that whenever a user of a mo-
bile device holding an honest TE (that is, the payment
symmetric key KPay has not been corrupted) is charged
for an amount p to pay for a merchant M at a state i
(fact USER_GETS_CHARGED(TE, M, p)) then he has
previously agreed to pay the merchant M the price p by
identifying himself through the device holding the TE with
his IDval (fact USER_AGREES_TO_TRANSACTION(CH,
TE, PIN, M, p)).

Table 1. TAMARIN PROOF RESULTS (40 CPUS, GENUINE INTEL DUAL CORE 1.2 GHZ, 200GB OF RAM)

Properties Trust Assumptions Execution time Steps
KID KPay wall clock time total CPU time

Transaction agreement
by the user NC 2min 51s 82min 50s 356

Merchant payment
assurance 1min 02s 30min 09s 10

Injective token
provisioning NC 11min 23s 210min 01s 251

Injective token
based payment 5min 58s 123min 40s 66

Token limited
validity NC Manual proof

3 interactions needed
Stolen token
worthlessness NC 7min 22s 209min 29s 645

Rogue access to
mobile device NC Manual proof

124 interactions needed
NC: Not Corrupted

5.2.2. Merchant payment assurance. If the merchant is
notified that the transaction succeeded, he is guaranteed to
be paid.

lemma Merchant_payment_assurance:
All TSP M p #i.
MERCHANT_IS_NOTIFIED(TSP, M, p) @ i
==>
Ex #j. TSP_VALIDATES_TRANSACTION(TSP, M, p) @ j

& j < i

The formula states that whenever a merchant M is
notified by the TSP that he will receive the amount p at the
state i (fact MERCHANT_IS_NOTIFIED(TSP, M, p))
then, at a previous state j, the TSP validated the transaction
(fact TSP_VALIDATES_TRANSACTION(TSP, M, p))
thus guaranteeing the merchant will receive the money.

5.2.3. Injective token provisioning. Each time a token is
generated by the TSP, there is a (unique) corresponding
request by a user. This is formalized by the following
statement.

lemma Inj_ag_token_provisioning [use_induction]:
All TE TSP K_ID counter t1 #i.
not (Ex #r. CORRUPTED_K_ID(TE) @ r)
& GENERATE_TOKEN_PACKET(TE, TSP, K_ID, c, t1) @ #i
==>
(Ex #j. REQUEST_TOKEN_PACKET(TE, TSP, K_ID, c) @ j
& j < i
& not (Ex t2 #r.
GENERATE_TOKEN_PACKET(TE, TSP, K_ID, c, t2) @ r

& not (#i = #r)))

Informally, whenever the TSP generates a token for
a mobile device holding a TE (and thus, KID) and a
specific counter value c at a state i (fact GENERATE_-
TOKEN_PACKET(TE, TSP, K_ID, c, t1)) and if
the key KID is not corrupted, there exists a state
j before i during which a token request was emitted
from the mobile device holding the SE (and the KID)

for the same counter value (fact REQUEST_TOKEN_-
PACKET(TE, TSP, K_ID, c)). Moreover, there is no
other state r 6= i such that the TSP generated a token
for those values, which is modeled by the last part of the
implication.

5.2.4. Injective token-based payment. A token owned by
the cardholder can only be used once for a payment by the
following statement.
lemma Inj_token_payment [use_induction]:
All TR_ID Tok_EMV #i.
TSP_VALIDATES_PAYMENT(TR_ID, Tok_EMV) @ i
==>
not
(Ex #j. TSP_VALIDATES_PAYMENT(TR_ID, Tok_EMV) @ j
& j < i)

Intuitively, whenever the TSP validates a payment for
the client identified by TRID for a specific tokenized EMV
packet at a state i (fact TSP_VALIDATES_PAYMENT-
(TR_ID, Tok_EMV)), then there has not previously been
such a validation from the TSP for the same tokenized EMV
packet.

5.2.5. Token stealing window.
• Token limited validity. A malicious merchant could

ask a client to process to payment, pretending it did not work
and proceed again, in order to get one extra token that he
could use later on or sell. Our protocol offers a high level
of protection even in this case: not only a token can only be
used by the merchant and for the amount to which the user
agreed upon (Section 5.2.1) but old tokens get desactivated
as soon as a payment with a more recent token is validated
by the TSP.
lemma Token_stealing_window_token_freshness:
All c1 c2 TSP TR_ID #i.
COUNTER_VALIDITY_APPROVED(TSP, TR_ID, c2) @ i
& Sm(c1, c2) @ i

& not (Ex #j.
COUNTER_VALIDITY_APPROVED(TSP, TR_ID, c1) @ j
& j < i)

==>
not (Ex #r.
COUNTER_VALIDITY_APPROVED(TSP, TR_ID, c1) @ r
& i < r)

The fact COUNTER_VALIDITY_APPROVED(TSP,
TR_ID, c) is activated if the TSP validates a payment
with a token associated to a counter c owned by the client
TRID. So this formula states that for two tokens associated
respectively to the counters c1 and c2 with c1 < c2, when-
ever the TSP validates a payment with a token associated
to counter c2) at a state i such that no token associated to
c1 has been validated, then the TSP will never validate a
payment for a token associated to c1.

• Stolen token worthlessness. We consider here the
scenario where the attacker knows a decrypted tokenized
EMV-packet and prove that, if the mobile payment sym-
metric key is not corrupted and if the user did not initiate
the decryption of the token with his mobile device, then no
payment will be made with the stolen token.
lemma Token_gets_stolen:
All TE EMV_packet #i.
CORRUPTED_TOKEN(TE, EMV_packet) @ i
& not (Ex #r. CORRUPTED_K_PAY(TE) @ r)
& not (Ex #l. PAYMENT_VALUES(TE, EMV_packet) @ l)
==>
not
(Ex #j. TSP_VALIDATES_TOKEN_PAYMENT(EMV_packet) @ j)

This property states that if the TE in the mobile device
has not been corrupted (fact CORRUPTED_TOKEN(TE))
and has not been requested to provide payment values (fact
PAYMENT_VALUES(TE, EMV_packet)), then, even
though a token has been stolen and is fully known by an at-
tacker (fact CORRUPTED_TOKEN(TE, EMV_packet)),
no payment based on the EMV_packet token will be
validated by the TSP (fact TSP_VALIDATES_TOKEN_-
BASED_PAYMENT(EMV_packet)).

5.3. TAMARIN proof

All formal properties described in the previous section
have been proven using the TAMARIN prover. Each of
them was proved automatically, except two of them which
required a (machine-checked) manual proof. Table 1 sum-
marizes TAMARIN results.

It shall be noted that even if the token provisioning
key KID is corrupted, payment security properties hold.
Symmetrically, even if the payment key KPay is corrupted,
the token provisioning property remains valid. Also, even
if keys hold by the SE are corrupted, the merchant is
guaranteed to be paid. Plus, a token is only valid for one
payment, independently from the keys statuses, providing
the user a guarantee in case his data is stolen.

5.4. Comparison of our protocol with existing EMV
attacks.

The EMV-SDA protocol is vulnerable to a replay attack.

Since data on the card are static (see Figure 1), if an attacker
manages to get them, he can use them on a fake card in
order to process payments from the user part. However, our
protocol prevents such a replay attack. Thanks to our use of
tokens as a one-time-only value, (still remaining compliant
with EMV-SDA), our payment data is not static. In fact, the
property “Injective Token-based payment” of Section 5.2.4
explicitely states that a TSP will only validate a payment
with a specific token once.

Another attack on EMV [24] relies on a Man-in-the-
Middle attack on Chip-and-PIN cards: a rogue card is lo-
cated between the real card and the POS, the rogue card will
transmit the payment data from the real card and when asked
for the PIN verification, it will answer positively to any PIN
introduction. However, we stated in our specification that the
usage of a TEE would make it impossible to bypass the user
identification, thus preventing the provisioning of payment
credentials to the POS by the SE if the user identification
failed. While this is a strong assumption, this requirement
is part of the GSMA definition of TEE in the industry.

6. Prototype implementation

We have implemented a mobile application prototype of
our protocol to provide an overview of the user experience.
To compare performances, we implemented two versions of
our protocol: one where the whole process runs as a software
mobile application where the SE operations are emulated
by the mobile application, the second version corresponds
to our design, where SE operations are executed by a SIM
card, which means all sensitive cryptographic operations.

The prototype was tested on a Samsung Galaxy S6
with 2.1GHz CPU and 3GB RAM. We used a SIM card
provided by the Orange company. Since we do not consider
the enrollment part of our protocol, all keys and counters
are already provisioned to both the application and the
SE (i.e. SIM card) as required by our specification. The
TSP as well as the POS are both emulated by a PC. We
implemented the TSP as prescribed by our protocol. For our
TSP’s verification signing key to be recognized by a real-life
POS, we would have needed an agreement with a payment
network and a certification authority. This explains why we
chose to emulate the POS. The emulated POS conforms with
the standards required by the payment industry [28], [11]
and performs an EMV-SDA transaction process. Our code
use either Java (to emulate the TSP and POS), JavaCard
(SIM card) or Android (main mobile application).

We chose the PIN as a method for user identification
but other authentication methods could be used. The Mobile
(smartphone) and the POS communicate over NFC.

We can assess that from a user perspective, there is no
real difference between a full software implementation and
our solution that involves a secure element (columns 2 and
3 of Table 2). Indeed, the Secure Element can also compute
a MAC in less than 1 millisecond and the round trip time
between the Secure Element and the mobile application is
less than 2 milliseconds. Therefore, the overhead of our

Table 2. PERFORMANCES OF OUR PROTOCOL IMPLEMENTATION (AVERAGE RESULTS OVER 50 MEASUREMENTS)

Full software
implementation

Software and secure
element implementation

Token provisioning
Token request before PIN validation 40.5ms 40.5ms
Token request after PIN validation 24.3ms 26.6ms
Server answer processing 9.05ms 9.05ms
EMV-SDA transaction
Payment initiation before PIN validation 209ms 209ms
Tokenized EMV transaction 39.0ms 41.35ms
Individual MAC processing
HID 0.2ms 2.5ms
k and Tval 0.25ms 2.6ms

protocol is negligible from a user’s perspective and even
our early implementation seems practical.

7. Conclusion

We proposed an open specification of an EMV-compliant
protocol based on tokenization [15]. It is resistant against
malicious applications that can dump the mobile device
memory, since all our security properties have been proven
whether the application was rogue or honest. It also requires
only basic Secure Element functionalities (MAC calculation
and counter management) which are available on most Se-
cure Elements and have no impact on the Secure Element
certification (e.g. Common Criteria Certification). Our early
implementation demonstrates that our protocol may be used
in practice.

The fact that our protocol is divided into two distinctive
processes allows a user to be off-line during payment thus
relieving the user to rely on his mobile connection. It
also provides security properties that holds to the EMVCo
standard expectations while being compliant with its most
basic (and thus deployed) protocol : Static Data Authenti-
cation. However, thanks to tokenization, no replay attacks
are possible, unlike the card-based protocol.

Thanks to the use of ephemeral tokens, it is no longer
easy to trace a user among several transactions. As future
work, we plan to show that a small variant of our protocol
preserves privacy of a user w.r.t. the merchant. A more long
term goal is to explore how to enhance the security of EMV-
DDA and EMV-CDA using similar techniques to the ones
developed in this paper.

Acknowledgments.

We are deeply grateful to Jannik Dreier for his very
patient guidance through the TAMARIN tool. We also would
like to thank the anonymous reviewers for their detailed
comments that helped us to improve the presentation.
This work has received funding from the European Research

Council (ERC) under the EU’s Horizon 2020 research and
innovation program (grant agreement No 645865-SPOOC)
and the ANR project SEQUOIA ANR-14-CE28-0030-01.

References

[1] TAMARIN protocol model and proofs.

[2] ETSI TS 102 221. Smart Cards - UICC-Terminal interface - Physical
and logical characteristics - v.13. Technical specification, ETSI, June
2009.

[3] Smart Card Alliance. EMV and NFC: Complementary Technologies
that Deliver Secure Payments and Value Added Functionality, October
2012.

[4] SD Association. Activating New Mobile Services and Business
Models with smartSD Memory cards. Whitepaper, SD Association,
November 2014.

[5] Bruno Blanchet. An Automatic Security Protocol Verifier based on
Resolution Theorem Proving (invited tutorial). In 20th International
Conference on Automated Deduction (CADE-20), Tallinn, Estonia,
July 2005.

[6] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei Skoroboga-
tov, and Ross Anderson. Chip and Skim: cloning EMV cards with
the pre-play attack. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014.

[7] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential computation analysis: Hiding your white-box designs is
not enough. Cryptology ePrint Archive, Report 2015/753, 2015. http:
//eprint.iacr.org/2015/753.

[8] Véronique Cortier and Graham Steel. A generic security API for
symmetric key management on cryptographic devices. Information
and Computation, 238:208–232, 2014.

[9] Common Criteria. Common Criteria for Information Technology
Security Evaluation, Part 1– Version 3.1 Revision 4. Technical report,
Common Criteria, September 2012.

[10] Joeri de Ruiter and Erik Poll. Formal Analysis of the EMV Protocol
Suite. In S. Mödersheim and C. Palamidessi, editors, Theory of
Security and Applications, volume 6993 of Lecture Notes in Computer
Science, pages 113–129. Springer Berlin / Heidelberg, 2012.

[11] EMVCo. Book 1 - Application Independent ICC to Terminal Interface
Requirements, November 2011.

[12] EMVCo. Book 2 - Security and Key Management, November 2011.

http://www.loria.fr/~jdreier/
https://www.dropbox.com/sh/q3gnsp52zpb75fj/AACL01cfkxNQGyi2IQBvGMlJa?dl=0
http://www.etsi.org/deliver/etsi_ts/102200_102299/102221/13.00.00_60/ts_102221v130000p.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102221/13.00.00_60/ts_102221v130000p.pdf
http://www.smartcardalliance.org/resources/pdf/EMV_and_NFC_WP_102212.pdf
http://www.smartcardalliance.org/resources/pdf/EMV_and_NFC_WP_102212.pdf
https://www.sdcard.org/downloads/pls/latest_whitepapers/Activating_New_Mobile_Services_and_Business_Models_With_smartSD_Memory_Cards_Revsied_11-3-2014.pdf
https://www.sdcard.org/downloads/pls/latest_whitepapers/Activating_New_Mobile_Services_and_Business_Models_With_smartSD_Memory_Cards_Revsied_11-3-2014.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetCADE05.html
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetCADE05.html
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland14chipandskim.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland14chipandskim.pdf
http://eprint.iacr.org/2015/753
http://eprint.iacr.org/2015/753
http://dx.doi.org/10.1007/978-3-642-27375-9_7
http://dx.doi.org/10.1007/978-3-642-27375-9_7
https://www.emvco.com/download_agreement.aspx?id=652
https://www.emvco.com/download_agreement.aspx?id=652
https://www.emvco.com/download_agreement.aspx?id=653

[13] EMVCo. Book 3 - Application Specification, November 2011.

[14] EMVCo. Book 4 - Cardholder, Attendant, and Acquirer Interface
Requirements, November 2011.

[15] EMVCo. EMV Payment Tokenisation Specification – Technical
Framework, March 2014.

[16] GlobalPlatform. Trusted User Interface API. Specification, Glob-
alPlatform, June 2013.

[17] GSMA. Remote Provisioning Architecture for Embedded UICC -
SGP.02. Technical specification, GSMA, October 2014.

[18] GSMA. Embedded UICC Protection Profile, Version 1.1/25.08.2015
, BSI-CC-PP-0089. Common criteria protection profile, GSMA,
August 2015.

[19] GSMA. Smartphones dominating global mobile connections base.
Report, GSMA, February 2016.

[20] Kount. Mobile Payments and Fraud: 2016 report. Whitepaper, Kount,
2016.

[21] Steve Kremer and Robert Künnemann. Automated analysis of se-
curity protocols with global state. In Proceedings of the 35th IEEE
Symposium on Security and Privacy, SP ’14. IEEE Computer Society,
May 2014.

[22] Simon Meier, David Basin, Benedikt Schmidt, Jannik Dreier, Ralf
Sasse, and Cas Cremers. Tamarin prover for security protocol
verification - Project Page.

[23] Simon Meier, Cas Cremers, and David Basin. Strong Invariants for the
Efficient Construction of Machine-Checked Protocol Security Proofs.
In 23rd IEEE Computer Security Foundations Symposium, pages 231–
245, Los Alamitos, USA, July 2010. IEEE Computer Society.

[24] Steven J. Murdoch, Saar Drimer, Ross Anderson, and Mike Bond.
Chip and PIN is broken. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, 2010.

[25] NIST. Security and Privacy Controls for Federal Information Systems
and Organisations - Revision 4. Special publication, NIST, 2013.

[26] N. Popp. Token provisioning, June 16 2009. US Patent 7,548,620.

[27] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. Au-
tomated Verification of Group Key Agreement Protocols. In Pro-
ceedings of the 2014 IEEE Symposium on Security and Privacy, SP
’14, pages 179–194, Washington, DC, USA, 2014. IEEE Computer
Society.

[28] International Standard. Financial transaction card originated mes-
sages - Interchange message specificationsy, 2003.

[29] Els Van Herreweghen and Uta Wille. Risks and Potentials of Using
EMV for Internet Payments. In Proceedings of the USENIX Workshop
on Smartcard Technology on USENIX Workshop on Smartcard Tech-
nology, WOST’99, pages 18–18, Berkeley, CA, USA, 1999. USENIX
Association.

Appendix

Figure 5 describes the protocol model we used with
the TAMARIN prover as well as the events mentioned in
Section 5.2

https://www.emvco.com/download_agreement.aspx?id=654
https://www.emvco.com/download_agreement.aspx?id=655
https://www.emvco.com/download_agreement.aspx?id=655
https://www.emvco.com/download_agreement.aspx?id=945
https://www.emvco.com/download_agreement.aspx?id=945
http://www.globalplatform.org/specificationdownload.asp?id=7779
http://www.gsma.com/connectedliving/wp-content/uploads/2014/10/SGP02-Remote-Provisioning-Architecture-for-Embedded-UICC-Technical-Specification-v2.0.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2014/10/SGP02-Remote-Provisioning-Architecture-for-Embedded-UICC-Technical-Specification-v2.0.pdf
http://www.gsma.com/newsroom/wp-content/uploads//SGP_05_v1_1.pdf
http://www.gsma.com/newsroom/wp-content/uploads//SGP_05_v1_1.pdf
https://www.gsmaintelligence.com/research/2016/02/smartphones-dominating-global-mobile-connections-base/540/
http://info.kount.com/mobile-payments-report-2016
https://hal.inria.fr/hal-00955869v1/document
https://hal.inria.fr/hal-00955869v1/document
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5552641&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5552641
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5552641&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5552641
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland10chipbroken.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://dx.doi.org/10.1109/SP.2014.19
http://dx.doi.org/10.1109/SP.2014.19
http://www.iso.org/iso/fr/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=31628
http://www.iso.org/iso/fr/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=31628
http://dl.acm.org/citation.cfm?id=1267115.1267133
http://dl.acm.org/citation.cfm?id=1267115.1267133

CH/TE MA POS TSP

Holds
PIN
KID

KPay

CCH

Holds
TRID

pkTSP
spkTSP

{spkTSP}sskCA

Holds
MID

spkCA

Holds
TRID

KID

KPay

CTSP

CTok

CPay

skTSP
sskTSP

Check PIN
CCH := CCH + 1
HID := MAC(KID,CCH)
REQUEST_TOKEN_PACKET(TE,TSP,KID,CCH)

HID,CCH

Mtok := aenc(< TRID,CCH,HID >, pkTSP)

Mtok

If CTSP + 1 = CCH and HID = MAC(KID,CCH)
CTSP := CTSP + 1
Generate t, s
CTok := CTok + 1, c := CTok

EMV :=
{
TRID, t,Data

}
sskTSP

k := MAC(KPay, s)
ciphT := senc(EMV, k)

Tres :=
{
TRID, < ciphT, s >

}
sskTSP

GENERATE_TOKEN_PACKET(TE,TSP,KID,CTSP, t)
Store TRID 7→< EMV, s, c >

Tres

Verify (Tres , spkTSP)
Store < ciphT, s >

s

Check PIN
USER_AGREES_TO_TRANSACTION(CH,TE,PIN,MID, price)
PAYMENT_VALUES(TE,EMV)
k := MAC(KPay, s)
Tval := MAC(KPay,MID, price, s)

k,Tval

EMV := sdec(ciphT, k)
Delete EMV

{spkTSP}sskCA ,EMV,Tval

Verify (spkTSP, spkCA)
Verify (EMV, spkTSP)

EMV,Tval,MID, price

Retrieve TRID 7→< EMVTSP, s, c >
Check EMV = EMVTSP

If CPay < c
Check Tval = MAC(KPay,MID, price, s)
CPay := c

COUNTER_VALIDITY_APPROVED(TRID,EMVTSP)
TSP_VALIDATES_PAYMENT(TSP,TRID, c)
TSP_VALIDATES_TRANSACTION(TSP,MID, price)
TSP_VALIDATES_TOKEN_PAYMENT(EMVTSP)
USER_GETS_CHARGED(TE,MID, price)
Delete EMVTSP

Payment confirmation

MERCHANT_IS_NOTIFIED(TSP,MID, price)

Payment confirmation

MID, price

Figure 5. Our TAMARIN model

	Introduction
	Presentation of the protocol
	EMV-SDA protocol
	Entities
	Protocol overview
	Token provisioning request and process
	EMV-compliant payment

	Security claims
	Security assumptions and threat model
	Communication model
	Threat model

	Security properties
	Mandatory transaction agreement by the user
	Merchant payment assurance
	Injective Token Provisioning
	Injective token-based payment
	Token stealing window

	Protocol specification using the TAMARIN prover tool
	Message theory
	State transition system
	Counter representation
	Security properties specification

	Security analysis in Tamarin
	Protocol model
	Formal properties
	Mandatory transaction agreement by the user
	Merchant payment assurance
	Injective token provisioning
	Injective token-based payment
	Token stealing window

	TAMARIN proof
	Comparison of our protocol with existing EMV attacks.

	Prototype implementation
	Conclusion
	References
	Appendix

