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Abstract We propose a variational aggregation method

for optical flow estimation. It consists of a two-step

framework, first estimating a collection of parametric

motion models to generate motion candidates, and then

reconstructing a global dense motion field. The aggrega-

tion step is designed as a motion reconstruction prob-

lem from spatially-varying sets of motion candidates

given by parametric motion models. Our method is de-

signed to capture large displacements in a variational

framework without requiring any coarse-to-fine strat-

egy. We handle occlusion with a motion inpainting ap-

proach in the candidates computation step. By perform-

ing parametric motion estimation, we combine the ro-

bustness to noise of local parametric methods with the

accuracy yielded by global regularization. We demon-

strate the performance of our aggregation approach by

comparing it to standard variational methods and a

discrete aggregation approach on the Middlebury and

MPI Sintel datasets.
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1 Introduction

1.1 General positioning

Optical flow estimation is based on the conservation as-

sumption of image features such as image intensity, im-

age gradient or texture descriptor. The so-called bright-

ness constancy assumption is the most used one. It pro-

vides a single equation and is consequently insufficient

to recover the two components of the motion vector.

A usual way to overcome this under-determination is

to impose a spatial coherency constraint for the flow

field. Existing methods can be classified into two main

categories:

– Local spatial coherency is exploited when consider-

ing a parametric motion model, e.g., local transla-

tion [54], affine model or quadratic model [63], in a

given neighborhood or an appropriate local region.

The neighborhoods must be sufficiently textured or

contain interest points to supply reliable velocity

vectors.

– Global coherency [44] imposes a regularization con-

straint to the motion field on the whole spatial do-

main. The flow field is generally assumed to be piece-

wise smooth and the strategy is to minimize a global

energy of the form

E(w) =

∫
Ω

ρ(x, u, v,w) + λφ(∇w(x)) dx, (1)

that explicitly combines a potential ρ(·), which pe-

nalizes deviations from the brightness constancy equa-

tion, with a regularization potential φ(·) which pe-

nalizes high values of the norm of the gradient ∇w
of the velocity field w : Ω → R2, where Ω ⊂ R2

denotes the image domain. The two consecutive im-

ages are denoted by u, v : Ω → R, x ∈ Ω denotes
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one pixel of the grid Ω, and λ is a balance parame-

ter.

The best state-of-the-art results are obtained with the

global approach. Nevertheless, several open issues re-

main unsolved. One of the main limitations comes from

the undesirable effects due to the coarse-to-fine strategy

used to handle large displacements [33]. The motion of

small objects is discarded at coarse scales, and the error

is propagated in the incremental updates at finer scales

when the displacement is larger than the object size.

As a result, motion details are not correctly recovered

in the final estimated flow field [86]. Large displace-

ments are also associated to large occlusions, which are

another major source of errors. Occlusion handling is

often treated as a post-processing task. It is then very

sensitive to errors in the initial motion estimation. Fi-

nally, noise sensitivity is usually ignored in standard

optical flow evaluation benchmarks. However, if pixel-

wise data potentials provide best results in absence of

noise, they are not adapted when noise is present in in-

put images. To limit the impact of these failure cases,

the solution of the global approach is often to increase

regularization, producing oversmoothed results, loosing

motion details and blurring discontinuities.

Existing purely local methods [11,49,54,70] are far

from being able to compete with global methods in

terms of accuracy in optical flow benchmarks. The main

issue is to be able to select appropriate local regions.

The most basic approaches considering square patches

centered on each pixel [54] are unable to retrieve mo-

tion discontinuites. They are also prone to the same

large displacement and occlusion problems as the global

methods. Nevertheless, joint global motion estimation

and segmentation approaches [56,77,80] have demon-

strated that piecewise parametric representation of flow

fields can yield excellent results when local regions are

appropriately chosen. However, the required alternate

optimization scheme is computationally demanding and

sensitive to the initialization. On the other hand, local

methods are also known to be less sensitive to noise

than global approaches [20]. These observations sug-

gest that the potential of local methods may still be

under-exploited.

The goal of this paper is to design a new way to com-

bine parametric models with a global variational ap-

proach through aggregation procedure, in order to both

overcome the above mentioned limitations of global meth-

ods and exploit the potential of parametric estimation.

1.2 Our contributions

We propose a novel aggregation approach for optical

flow estimation based on motion reconstruction from

spatially varying candidates computed with parametric

models.

Our method is composed of a first step estimating

a collection of parametric motion models generating lo-

cal motion candidates, followed by an aggregation step

combining the candidates to create a global dense mo-

tion field. The main contribution of the present work

is in the aggregation step. We formulate the problem

as a motion reconstruction step selecting the best can-

didate while ensuring global smoothness of the mo-

tion field. This approach differs from other motion es-

timation techniques, since it decouples motion estima-

tion and motion reconstruction. The main interest is

that the reconstructed motion field is not involved in a

brightness conservation constraint, and is thus not af-

fected by its limitations. In particular, our method is

able to handle large displacements without coarse-to-

fine schemes, it provides a valid data constraint in oc-

cluded regions, and it is more robust to noise in input

images than standard variational approaches.

To achieve this, we provide motion candidates in

the first step of our method that also handle large dis-

placements, occlusions and noise in input images, by

following the idea of our previous work [38]. We rely

on the computation of parametric motion models over

a set of overlapping size-variable square patches, that

allows us to deal with various configurations of piece-

wise affine motions. An exemplar-based candidates ex-

tension strategy finds relevant motion candidates in oc-

cluded regions.

We provide an extensive experimental evaluation of

our aggregation framework insisting on the versatility

of its performance. We demonstrate that it outperforms

the standard variational approach in case of large dis-

placements, large occlusions and noise in input images,

but also in more common situations as they can be

found in the classical Middlebury benchmark. We also

compare our variational aggregation with the aggrega-

tion based on discrete optimization we described in [38],

removing any other specific features of [38] for fair com-

parison. We show that the method presented in this

paper is faster and more robust to suboptimal candi-

date sets, while being competitive in terms of quanti-

tative error. A first shorter version of this work was

described in [37]. Compared to [37], we have integrated

an occlusion handling module in the candidates esti-

mation stage, we have modified the aggregation model

to enforce the selection of a single candidate, we have

improved the optimization step of our method, and
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we have extended the experimental validation of the

method.

1.3 Related work

In this Section, we offer a brief overview of the main

open issues in optical flow estimation. A recent com-

prehensive survey is available in [36].

Numerous modifications of the Horn & Schunck model

[44], starting with [13,43,61], have been proposed over

years, specifically to cope with large displacements and

preservation of motion discontinuities [18,56,76,82,86,

89]. The most common response to face these two is-

sues has been to design a multi-resolution and incre-

mental coarse-to-fine framework along with piecewise

smoothing or robust estimation. As for the data term

of the global energy function other image features have

been introduced like image gradient [18], texture com-

ponent [82]. Besides, invariance properties have been

sought to overcome limitations of the classical inten-

sity constancy assumption by using Normalized Cross

Correlation (NCC) [84], Census transform [41], or LDP

(Local Directional Pattern) descriptor [58]. However,

optimization complexity increases with the sophistica-

tion of the modeling.

Local and global methods may involve parametric

motion models [12,29,30,39,45,53,54,56,63,77,87]. The

most frequently adopted ones are polynomial motion

models such as translation, affine, quadratic, but other

models can be investigated as well [45]. When attached

to local optimization, the parametric motion models

are estimated on local regions usually defined as square

patches centered on each pixel [12,54], possibly with an

adaptation of the patch size [55,70], or its position [49].

This local optimization setting is easy to implement

with a low computational cost, but it is clearly out-

performed by sophisticated extensions of [44] in recent

optical flow benchmarks [5,23]. The motion candidates

produced by our method are composed of affine motion

vectors estimated in square patches without any motion

segmentation. Our method implicitly selects the best

patch size and position when selecting motion candi-

dates to recover the global flow field in the second step.

When dealing with large displacements, using dis-

crete optimization is a way to avoid resorting to coarse-

to-fine schemes [38,57,87]. Another common approach

is to somehow integrate feature correspondences in dense

motion estimation. A first category of variational meth-

ods [17,19,83] includes an additional term in the global

energy. This term makes the estimated flow be close to

pre-computed correspondences. However, this approach

may be sensitive to matching errors by giving a fixed

weight to the correspondence fitting. To overcome this

problem, recent works [17,79,83] have deliberately fo-

cused on improving the matching step. Another class

of methods use correspondences to provide a coarse ini-

tialization for subsequent refinement [4,6,27,60,86]. In

that vein, recovering a dense flow from initial sparse

correspondences is also currently investigated [68,79].

In [74], the variational refinement process is iterative

and interpreted as the minimization of the orginal non-

linearized energy. The main motivation to incorporate

feature matching in global optical flow methods is to

alleviate the drawbacks of the coarse-to-fine scheme im-

posed by the classical variational optimization, in par-

ticular the loss of large displacements of small objects.

Our patch correspondence substep is only involved in

the motion candidates generation process and it does

not drive the global optimization subsequent step.

Occlusion is a key issue in motion estimation [73],

especially in case of large displacements, since no mo-

tion measurements are available in occluded areas. By

definition, a point of the current image which is oc-

cluded in the consecutive image has no corresponding

point. One has to distinguish between occlusion detec-

tion, and occlusion filling with motion vectors. The two

tasks can be addressed jointly within an alternate opti-

mization strategy [3,38,47,64,78,75]. Filling occluded

regions with velocity vectors given the occlusion map

(or in other words, motion inpainting in occluded re-

gions) can be related to the image inpainting problem.

Image inpainting methods can be coarsely divided into

diffusion-based methods [10,25] and exemplar-based meth-

ods [31,50]. Exemplar-based image inpainting fills miss-

ing parts by copying pixels of the observed image. In

motion estimation, occlusion filling is usually solved by

diffusion-based (or geometry-oriented) schemes, propa-

gating motion from non-occluded regions to occluded

regions using partial derivative equation (PDE) resolu-

tion [3,9,47,51,64,86]. In contrast, we adopt an exemplar-

based strategy for candidates computation in occluded

regions.

Our method share similarities with dictionary-based

methods, looking for sparse combination of candidate

motion vectors. Sparse representations of motion fields

have recently been exploited for the design of regular-

ization terms [28,32,48,71], replacing classical spatial

regularization by a proximity constraint to a sparse

combination of learned patch flow fields. These strate-

gies only act on the regularization term and are thus

affected by all the above mentioned issues of global

methods. Estimating directly the motion field as a lin-

ear combination of learned motion models in patches

has been investigated in [14,35,62] with PCA decom-

position on various types of training sets. However, this

approach tends to produce blurry results, and has been
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combined with a layered approach in [85] to yield sharper

results. One limitation is that the coefficients are esti-

mated with a standard data term based on brightness

constancy assumption. Finally, in [1], a pixel wise dic-

tionary is learned online with phase correlation and a

constraint on the entropy of the weights is imposed.

However, the estimation only provides pixelic accuracy,

without global regularization of the motion field, which

causes large errors.

Robustness to noise in input images has only re-

ceived little attention in the optical flow literature. In

the local parametric estimation framework, explicit mod-

eling of noise has led to dedicated methods [34,72]. Ex-

perimental comparisons between local and global ap-

proaches [8,40] have demonstrated the highest sensitiv-

ity to noise of global approaches. Improving robustness

to noise of global variational methods has been achieved

in [20] by integrating the local parametric assumption

in the data term. However, this improvement comes at

the cost of a loss of accuracy in the absence of noise.

Finally, we mention that a similar combination of

candidates has been explored in the domains of image

colorization [22,65] and image completion [2].

1.4 Paper organization

The rest of the paper is organized as follows. In Sec-

tion 2, we present the parametric estimation of motion

candidates. In Section 3, we propose an aggregation

method in a variational setting. In Section 4, we demon-

strate the performance of our estimation algorithms on

sequences of the Middlebury and MPI Sintel datasets

and other real images. Section 5 contains concluding

remarks and future work.

Notations The Euclidean norm (`2 norm) of a vector

z = (z1, · · · , zd)T ∈ Rd is given by ‖z‖2 = (
∑d
i=1 z

2
i )1/2

and the `1 norm of z by ‖z‖1 =
∑d
i=1 |zi|. The supre-

mum norm of z is ‖z‖∞ = sup1≤i≤d |zi|.
We denote two consecutive 2D image frames as u, v :

Ω → R, with Ω ∈ R2 denoting the image domain. We

denote x,x′ or y one pixel of the image grid Ω and

card(Ω) is the number of pixels.

We denote pu(xp, h) :=
(
u(xp + τ ), τ ∈ {h−1

2 , · · · ,
h+1

2 }
2
)

a patch of u centered at location xp ∈ Ω. The

square window1 Up(xp, h) = {x ∈ Ω : ‖x− xp‖∞ ≤ h}
is the patch support centered at pixel xp and the num-

ber of pixels falling in Up(xp, h) ⊂ Ω is h × h. We

define Pu := {pu(xp, h) : xp ∈ Ω, h ∈H} as the set

1 Without loss of generality, isotropic circular patches could be
considered as well.

of all overlapping patches and H = {h1, . . . , hM} is a

finite set of M prescribed patch sizes hm ∈ Z+.

We denote w(x) = (v1(x), v2(x))> the motion vec-

tor at pixel x of the motion field w.

The occlusion map o : Ω → {0, 1} is defined such

that o(x) = 1[x is occluded] where 1[·] is the indicator

function. The set of occluded pixels is denoted O =

{x ∈ Ω : o(x) = 1}.
Additional notations will be introduced in the text.

2 Local motion candidates and occlusion cues

We describe in this section the first step of our aggre-

gation method. It follows the approach of [38] but its

presentation is partly revisited. It exploits local infor-

mation to supply motion candidates at each pixel. A set

of motion vector candidates is generated at every pixel

by a combination of patch correspondences and local

parametric motion model estimations. A specific treat-

ment is applied to occluded regions by exemplar-based

extension of the motion candidates set. Our approach

can be viewed as a new way to address the problem of

choosing the local neighborhood for parametric estima-

tion.

2.1 Local parametric motion candidates

The local supports for motion candidates computation

are overlapping square patches of different sizes. To cap-

ture different motion scales, the patch sizes must cover

a range of values. Due to the overlap and the number

of patch sizes, one given pixel x ∈ Ω belongs to several

patches. The candidate motion vectors at each pixel x

are computed independently in each patch in two sub-

steps described below: patch correspondences and affine

motion refinement.

2.1.1 Patch correspondences for large displacements

We assign to each patch pu(xp, h) in u the set {pv(y1, h),

· · · , pv(yK , h)} of the K patches pv(·, h) in v most

similar to pu(xp, h). Hence, for each established pair

of corresponding patches, we get the translation vec-

tor tk(xp, h) ∈ Z2, shifting pu(xp, h) onto pv(xp +

tk(xp, h) , h), k ∈ {1, · · · ,K}. Let us put forward that

we do not aim at keeping at this stage the best corre-

spondence only but at selecting K relevant correspon-

dences to subsequently constitute motion candidates

(K is assumed to be constant for all patches). The

matching step is generic and could be achieved with

any arbitrary feature matching algorithm (e.g., Patch-

Match algorithm [7]).
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2.1.2 Affine motion refinement

The displacements estimated by patch correspondences

are integer-pixel translational approximations. To at-

tain subpixel accuracy and to allow for more complex

motion, we refine the first sub-step with the estimation

of a local affine motion model in every pre-registered

patch pair. Denoting Up(xp, h) the pixel support of

pu(xp, h), we estimate the affine motion model between

two corresponding patches pu(xp, h) and pv(xp+t(xp, h), h)

at pixel x = (x, y)T ∈ Up(xp, h) defined as:

δwp(x,θp(xp, h)) =

(
θ1 + θ2x+ θ3y

θ4 + θ5x+ θ6y

)
. (2)

Assuming brightness constancy, an estimation of the

parameter vector θp(xp, h) = (θ1, · · · , θ6)T is the min-

imizer of∫
Up(xp,h)

ϕ(v(x+ δwp(x,θp(xp, h)) + t(xp, h))

−u(x))dx (3)

where the penalty function ϕ(·) is a robust function of

the family of M-estimators (e.g., Tukey’s function).

2.1.3 Final set of motion vector candidates

The above described two-step estimation is repeated for

every patch pu(xp, h) and generates a set of candidate

motion vectors C(x) at each pixel x ∈ Ω. In this paper,

we consider sets of regularly spaced patches, defined by

a set of sizes H and an overlap ratio r ∈ [0, 1] defining

the proportion of area shared by two neighbour patches

of the same size. Denoting Ωp ⊂ Ω the set of center

pixels of the previously defined patches, the candidates

are defined as follows:

C(x) = {tk(xp, h) + δwp(x,θp(xp, h)) : h ∈H, (4)

xp ∈ Ωp : ‖xp − x‖∞ ≤ h, k ∈ {1, · · · ,K}}.
The interest of the local set of motion candidates is

first that the correspondence sub-step efficiently copes

with large displacements. Specifically, it allows us to

correctly deal with small structures undergoing large

displacements. Second, by considering a variety of patches,

we override the predefined choice of the local neighbor-

hood. The implicit selection of the proper patch via its

corresponding motion candidate is transferred to the

aggregation stage. Third, introducing patches of sev-

eral sizes enables to tackle motion of different scales.

2.2 Exemplar-based candidates extension in occluded

regions

The computation of motion candidates described in Sec-

tion 2.1 does not distinguish occluded and non-occluded

Frame 1 Frame 2

Fig. 1 Illustration of the exemplar-based inpainting of mo-
tion candidates. The foreground is shifting to the right over a
static background. The candidate set of occluded pixel xo ∈ O

(in red) is extended by adding the candidates of its matched
non-occluded pixel x∗ ∈ ∂O (in yellow).

pixels. However, in large occluded regions where the

patches contain mostly occlusions, there is no chance to

estimate relevant candidates with this local approach.

Therefore, the occluded pixels require a dedicated pro-

cess to compute additional motions candidates. This

computation could nevertheless be considered as op-

tional for small displacements. Indeed, considering large

patch sizes enables to cope with small occlusion areas

and to generate relevant candidates at motion discon-

tinuities or at occluded positions.

When the occluded regions are known or given by

an occlusion detector [43,46,86], occlusion filling with

motion vectors is conceptually closely related to image

inpainting, since it recovers motion in regions where

motion is by definition not observable. In order to deal

with large occlusions produced by large displacements,

we follow the inpainting analogy. In the first step of our

aggregation method, the motion candidates set is thus

augmented by “copy-paste” operations as described be-

low.

We rely on the assumption that the motion at an

occluded pixel xo ∈ O is similar to the motion at a

close non-occluded pixel in Ω\O belonging to the same

object or the same background part. The idea is to as-

sign the set C(x) of the most similar pixel x∗ ∈ Ω\O
to the occluded pixel xo. We limit the search for x∗

in a band ∂O along the occlusion boundaries. Figure 1

illustrates the matching process and the definition of O

and ∂O in a simple synthetic example. Searching for the

most similar pixel denoted x∗ ∈ Ω\O to xo is actually

easier for motion inpainting than for image inpainting.

Indeed, the information supplied by image u is avail-

able even in O. Thus, as xo is expected to belong to

the same object as x∗, we use patch similarity to find

the best match in u.

An extended candidate set C+(xo) is created for

occluded pixels xo by adding to the initial set C(xo)

the motion candidates of their matched pixel x∗:

CF (xo) = C(xo) ∪ C(x∗), ∀xo ∈ O. (5)
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Table 1 EPE-all scores of motion fields on sequences with
ground truth from MPI Sintel and Middlebury datasets

MPI Sintel Middlebury

Full BCF 0.792 0.0710
BCF w/o extension 1.851 0.0833
DeepFlow [83] 4.691 0.386
MDP-Flow2 [86] 4.006 0.223

By convention, ∀x ∈ Ω\O,CF (x) := C(x).

A particular class of occluded (or disappearing) re-

gions occurs at image borders in the case of large cam-

era motion. We cope with this issue by estimating the

dominant image motion due to camera motion using

the Motion2D software applied to the whole image [63],

which provides additional motion candidates.

2.3 Best candidate flow

To validate our method for computing motion candi-

dates, we have exploited sequences from MPI Sintel and

Middlebury datasets [5,23] provided with ground truth.

We introduce the so-called Best Candidate Flow (BCF)

by selecting at each pixel x the candidate motion vec-

tor of CF (x) closest to the ground truth vector at x.

We distinguish between the BCF determined with the

candidates extension described in the preceding section

(or full BCF) and the BCF without it (or BCF w/o

extension).

In Table 1, we report the objective evaluation given

by the Endpoint Error (EPE) scores for the full BCF

and BCF without candidate extensions, on the training

sequences of the datasets MPI Sintel and Middlebury.

Overall, the full BCF is very close to the ground truth

motion field demonstrating the performance of the lo-

cal parametric motion computation. We also compare

these results with those of motion fields supplied by [83,

86], as obtained with publicly available code. Clearly,

full BCF outperforms these state-of-the-art methods in

the two benchmarks. Accuracy is especially improved

with full BCF for the MPI Sintel sequences where large

displacements and wide occluded regions are present. It

demonstrates that the combination of local affine esti-

mations in square patches with patch correspondences

as described in Section 2.1, is quite relevant to recover

very accurate motion vectors.

3 Variational motion reconstruction framework

We have now to recover the global dense motion field by

aggregating motion candidates available at each pixel.

We define an aggregation strategy in a variational set-

ting, which consists in minimizing an energy of the form

E(w) =

∫
Ω

ρ(w(x),CF (x)) + λ1φ(∇w(x))dx, (6)

where ρ(w(x),CF (x)) is a fidelity term and the second

term imposes smoothness of w, balanced by the pa-

rameter λ1. In the following, we consider a total varia-

tion (TV) regularization: φ(∇w(x)) = ‖∇w(x)‖1. Un-

like usual approaches for optical flow, the image in-

tensities are not used as input of the data potential

ρ(w(x),CF (x)), but are replaced by the motion candi-

date set CF (x). We detail in this section the modeling

and optimization issues related to this reconstruction

term, and the solution we adopted.

3.1 Preliminary observations

3.1.1 Candidates distribution

As a first investigation, we explore the information car-

ried by the distribution of the candidates of each pixel.

This analysis is motivated by the analogy with prac-

tices in other domains like image denoising or comple-

tion, where distribution of candidate image patches is

exploited [42,69]. We provide in Figure 2 six represen-

tative examples of the main forms of candidate distri-

butions that occur in practice, and their relations with

the ground truth motion vectors and the original image

data. The motion vector candidates are represented by

blue circles, the ground truth is the red rectangle, and

the estimated motion vector is the green triangle (the

full estimated motion field is given in Figure 7). In the

background of the distributions, we display the value

of the displaced frame difference (DFD) penalized by

the `1 norm, which can be seen as a data fitting term:

for the distribution at a given pixel xi (one of the six

pixels in Figure 2), the value displayed in background

at coordinates w = (v1, v2) is |v(xi +w)− u(xi)|. The

question is then to identify characteristic patterns that

can allow us to identify the ground truth, given the

candidates and the DFD values.

Firstly, we observe that the form of the candidate

distribution is highly variable. In some situations, e.g.

in Figures 2(a) and 2(d), a unique mode can be clearly

identified and gives a good estimate of the ground truth.

However, other examples show that the main modes do

not always correspond to the ground truth motion vec-

tor, and that the distribution can have highly multi-

modal and complex shape. In general, the form of the

distribution cannot be accurately predicted from the in-

put data. Thus, it turns out that the estimation cannot

be only driven by local empirical distributions. Options
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Ground truth motion field

(a) (b) (c)

(d) (e) (f )
Fig. 2 Visualization of the distribution of the motion candidates at several pixels in the image. The central image is the
ground truth motion field of the frame 23 of the temple 2 sequence of the MPI Sintel data set. The six plots represent the
motion vector candidates (blue circles), the motion vector ground truth (red rectangle) and the estimated motion vector with
our method (green triangle)(the estimated motion field on the whole image is given in Figure 7) at each corresponding pixel.
The horizontal and vertical axes are respectively the horizontal and vertical components of the motion vectors. The value of
the displaced frame difference (DFD) penalized by the `1 norm is displayed in the background of the distributions.

like dense linear combination of candidates, fitting of

a statistical distribution or clustering approaches are

then not recommended.

Secondly, the relation between the DFD and the

true motion vector also does not follow a general rule.

It can constitute a relevant information to disambiguate

complex distributions, as in Figures 2(c) and 2(f), where

the ground-truth motion vector falls in regions with low

values of the DFD (dark values in the background of

the distribution). However, following the lowest DFD

can sometimes be misleading, as it is in the case in the

other figures, and it cannot be used as a unique estima-

tion criterion.

Thirdly, cases where the true motion vector cannot

be retrieved from the distribution or from low values

of the DFD also occur in practice, and are illustrated



8 Denis Fortun et al.

by Figures 2(b) and 2(e). To handle this situation, a

third information must be introduced, which can take

the form of an a priori smoothness assumption.

To summarize, we have identified three sources of in-

formation to guide the design of the aggregation model:

the candidate distribution, a data fitting constraint,

and a smoothness assumption. These constraints are

complementary and only valid locally. They should be

incorporated jointly in the aggregation model in a spa-

tially adaptive way.

3.1.2 Minimum distance

In addition to the qualitative analysis of the modeling

aspects of the aggregation given in the previous section,

another requirement that we derived from the analysis

of the BCF in Section 2.3 is the selection of a single

candidate at each pixel. To achieve this goal, we could

define ρ(w(x),CF (x)) as the distance to the closest el-

ement of CF (x):

ρmin(w(x),CF (x)) = min
i∈{1,··· ,M(x)}

‖w(x)−wi(x)‖pp,

(7)

wherewi(x) is a motion candidate, M(x) is the number

of candidates at pixel x, and p ∈ {1, 2}. The min func-

tion naturally selects one candidate used for distance

measure. The proximal operator of ρ(w(x),CF (x)) can

be computed exactly and the resulting energy can then

be minimized in a proximal splitting framework [24].

However, the problem of potential (7) lies in its high

non-convexity, leading inevitably to local minima. In

practice, we experimentally observe that the algorithm

converges but stays trapped in a local minimum which

is very dependent on the initialization. Thus, we have

to design a model that enforces the selection of a single

candidate while relaxing the non-convexity of the min

function (7) to facilitate minimization.

3.2 Aggregation model

To this end, we introduce an additional variable α(x) =

{αi(x)}i=1,..,M(x), weighting the contribution of each

candidate. The fidelity term is then expressed as

ρ(w(x),CF (x),α(x)) =

M(x)∑
i=1

αi(x)‖w(x)−wi(x)‖pp.

(8)

To ensure that only one candidate is selected, the weight

vector α(x) should be constrained to have binary values

with only one non-zero element. To achieve this goal,

we follow [66,65] and point the following property: if

the problem arg mini ‖w(x) − wi(x)‖pp has a unique

solution ı̂, then the solution of the problem

min
α(x)

M(x)∑
i=1

αi(x)‖w(x)−wi(x)‖pp, (9)

s.t.

{∑M(x)
i=1 αi(x) = 1

∀i ∈ {1, . . . ,M(x)}, αi(x) ≥ 0,

is ρmin(w(x),CF (x)) defined in (7), and is attained for

αı̂(x) = 1 and αj(x) = 0,∀j 6= ı̂. The case where sev-

eral coefficients are non-zero can only occur if the so-

lution of arg mini ‖w(x) − wi(x)‖pp is a non-singleton

set S. In that case, the non-zero coefficients are {αi}i∈S
and can take any configuration satisfying the constraints

of (9). We observed that this situation rarely occurs in

practice. The formulation (9) is convex w.r.t. to w and

thus offers an algorithmically tractable alternative to

the min function, while reproducing its behavior.

The fidelity term (8) relies only on the candidate

distribution to guide the selection of a candidate. As

mentioned in Section 3.1.1, purely distribution-driven

estimation is insufficient to handle certain situations

and should be complemented with a data-driven con-

straint. We exploit pre-computed confidence measures

βi(x) associated to each candidate wi(x). The fidelity

term is then enriched by defining

ρ(w(x),CF (x),α(x)) = (10)

M(x)∑
i=1

αi(x)
(
‖w(x)−wi(x)‖pp + λ2βi(x)

)
.

where λ2 > 0 is a balance parameter. The confidence

measure reflects a feature constancy assumption, e.g.

based on the DFD analysed in Figure 2. Low values

of βi(x) correspond to high confidence and promote

high value of αi(x), such that the similarity to a distri-

bution mode imposed by ‖w(x)−wi(x)‖pp is balanced

with a data fitting constraint imposed by the confidence

term. Apart from [51,52], existing confidence measures

are dedicated to specific motion estimation methods.

For a variational approach, [21] uses the inverse of the

global energy. For local approaches like [54], eigenval-

ues of the structure tensor are usually exploited [59].

For parametric estimations in general, the variance of

the estimate is also a possible confidence measure. To

keep the generality and simplicity of our method, we

consider the following simple weights based on a filter-

ing of the DFD:

βi(x) =
1

Z

∫
Ω

g(x− y)|v(y +wi(x))− u(y)|dy, (11)

where g is a convolution kernel and Z =
∑M(x)
j=1

∫
Ω
g(x−

y)|v(y +wj(x))− u(y)|dy.
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The analysis of Section 3.1.1 also revealed the ne-

cessity to introduce a smoothness assumption on the

motion field. We complete the model with a standard

Total Variation regularization to come up with the final

optimisation problem

min
w,α

{∫
Ω

N∑
i=1

αi(x)
(
‖w(x)−wi(x)‖pp + λ2βi(x)

)
+λ1‖∇w(x)‖1dx

}
, (12)

s.t.

{∑M(x)
i=1 αi(x) = 1

∀i ∈ {1, . . . ,M(x)}, αi(x) ≥ 0.

This model fulfills the modeling criteria identified in

Section 3.1. Minimization w.r.t. α enforces the selection

of a single candidate at each pixel. The three terms of

(12) combine similarity to the distribution, data-driven

constraint and smoothness assumption. A key advan-

tage of this formulation is that, differently from usual

approaches based on non-linear feature conservation as-

sumption, the optimization problem (12) can be solved

without any linearization w.r.t w. As a result, it does

not impose coarse-to-fine optimization strategies with

successive linearizations at each level. Moreover, if good

motion candidates have been found at occluded pixels

(see Section 2.2), this data term provides a valid mea-

sure even at occlusions. It is worth noting that p = 1

enables more deviations from the candidates in case of

lack of good candidates or locally wrong candidate se-

lection.

In [37], we proposed a related model in a sparse rep-

resentation framework, where the number of selected

candidates was controlled by a sparsity constraint on α.

The confidence measures were associated to the spar-

sity constraint with a weighted `1 penalization func-

tion. The drawback of this approach comes from the

coupling of the sparsity constraint and the confidence

measures: to ensure the selection of a single candidate,

the parameter weighting the sparsity constraint has to

be very high, which also gives large weight to the con-

fidence measures. As a result, the weighted `1 term be-

comes predominant and the estimation is mainly driven

by the confidence measures. In the model (12), the se-

lection of a candidate is decoupled from the influence

of confidence measures.

3.2.1 Optimization

The minimization subproblems w.r.t. w and α being

both convex, we resort to a block-coordinate approach

alternating updates of the two variables.

Minimization w.r.t. w The minimum of (12) w.r.t.w is

obtained by solving the Euler-Lagrange equations. For

simplicity, we consider p = 1 in this section. The algo-

rithm is almost equivalent for p = 2. We approximate

the vectorial `1 norm by a differentiable relaxation such

that ‖z‖1 ≈ ψ(‖z‖22) =
√
‖z‖22 + ε2, with ε a small

constant that we fix to 0.001. Under this assumption,

the Euler-Lagrange equations at a given pixel x can be

written:
M(x)∑
i=1

ψ′(‖w(x)−wi(x)‖22)αi (vj(x)− [wi(x)]j)

− λ1div
(
ψ′(‖∇w(x)‖22)∇vj(x))

)
= 0 (13)

where j = {1, 2} and [·]j denotes the jth component of

a vector. Using standard forward finite differences for

the discretization of the gradient operator, equations

(13) yield a non-linear system of equations, where the

nonlinearity is due to the terms in ψ′(·). We solve this

system with the lagged nonlinearity method [18,81]. It

consits in fixing in an inner loop the nonlinear parts of

(13), and iterating linear system solving and nonlinear-

ity update until convergence.

Minimization w.r.t. α We solve the constrained op-

timization problem w.r.t. α with an Augmented La-

grangian approach [16,88]. To facilitate readability, we

omit the arguments in x in this section. The positivity

constraint is handled with the indicator function ιRM
+

defined as

ιRM
+

(z) =

{
0, if z ∈ RM+
+∞, else,

(14)

which leads to the following problem:

min
α

N∑
i=1

αi
(
‖w −wi‖pp + λ2βi

)
+ ιRM

+
(α),

s.t.

M∑
i=1

αi = 1. (15)

We reformulate (15) by introducing a splitting variable

z associated to the indicator function:

min
α,z

N∑
i=1

αi
(
‖w −wi‖pp + λ2βi

)
+ ιRM

+
(z),

s.t.

{
z = α∑M
i=1 αi = 1.

(16)

The scaled form of the Augmented Lagrangian of prob-

lem (16) writes

L(α, z,ρ1,ρ2) =

N∑
i=1

αi
(
‖w −wi‖pp + λ2βi

)
+ ιRM

+
(z)

+
µ1

2

∥∥∥∥∥
M∑
i=1

αi − 1 +
ρ1

µ1

∥∥∥∥∥
2

2

+
µ2

2

∥∥∥∥−α+ z +
ρ2

µ2

∥∥∥∥2

2

, (17)
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where ρ1 ∈ R, ρ2 ∈ RM are Lagrange multipliers and

µ1, µ2 are positive penalty parameters. We use the

alternated direction method of multipliers (ADMM),

which separates optimization subproblems w.r.t. each

variable to converge to the solution of the original prob-

lem (15). Each iteration k is composed of the following

steps:

αk+1 = arg min
α

L(α, zk,ρk1 ,ρ
k
2), (18)

zk+1 = arg min
z

L(αk+1, z,ρk1 ,ρ
k
2), (19)

ρk+1
1 = ρk1 + µ1

(
N∑
i=1

αk+1
i − 1

)
, (20)

ρk+1
2 = ρk2 + µ2(−αk+1 + zk+1). (21)

Minimization problems (18) and (19) have analytical

and efficiently computable solutions. The solution of

(18) is given by

αk+1 =
(
µ2I + µ11M1>M

)−1
(22)(

µ1M

(
1− ρ

k
1

µ1

)
+ µ2

(
zk +

ρk2
µ2

)
− bλ2

)
,

where we define theM -dimensional vector 1M = (1, . . . , 1)>

and the vector bλ2 = (b1, . . . , bM )> with bi = p‖w −
wi‖pp+λ2βi. The matrix inversion can be easily achieved

with the Sherman-Morrison formula. The update of z

is a simple projection onto the set RM+ given by

zk+1 = max

(
αk+1 − ρ

k
2

µ2
, 0

)
. (23)

We emphasize that the positivity and normalization

constraints of the original problem (12) define a convex

set for which efficient projection can be computed, e.g.

using [26] as proposed in [22]. However, we experimen-

tally observed that the decoupling of the constraints

yielding faster minimization subproblems in the aug-

mented Lagrangian framework described above yielded

similar results with a significantly lower computational

time.

4 Experimental results

In this section, we analyze the performance of our VAFlow

(Variational Aggregation for optical Flow) aggregation

method. We highlight the versatility of VAFlow by deal-

ing with various issues: large displacements, occlusions,

motion discontinuities, noise in input images, and sub-

optimal candidates set. We also quantitatively demon-

strate its superiority over local parametric methods and

classical variational approaches on the Middlebury bench-

mark.

4.1 Experimental protocol

Evaluation metric When ground truth is available, we

use the standard error metric for optical flow evalua-

tion, which is the averaged endpoint error (EPE). It

is defined as the average of euclidean distances at each

pixel between the estimated motion vector and the ground

truth.

Implementation details The feature matching steps in-

volved in the candidates computation (Sections 2.1.1

and 2.2) are implemented with the available code of the

PatchMatch algorithm [7]2. To achieve robustness to il-

lumination changes, we consider a combination of sat-

uration and value channels of the HSV color space, fol-

lowing [89]. The distance to minimize with PatchMatch

is the sum of absolute differences (SAD) of patches.

The distance between pixel x of image u and pixel

y of image v is then defined for a patch size h by

SAD(x,y, h) = ‖pu(x, h)− pv(y, h)‖1.

The affine motion estimation involved in the candi-

dates computation step (3) is solved with the publicly

available Motion2D software3 [63], which implements a

multi-resolution incremental minimization scheme based

on the Iteratively Reweighted Least Squares (IRLS).

The occlusion detection required to extend the mo-

tion candidates in occluded regions (Section 2.2) is per-

formed with a simple approach exploiting motion candi-

dates computation. A coarse motion estimation is per-

formed by block matching using PatchMatch with the

smallest patch size (h = 15). The backward flow is

then computed and a standard forward/backward con-

sistency criterion [47,60] yields a coarse occlusion de-

tection. More sophisticated methods could give more

accurate occlusion regions and improve results.

In the optimization procedure described in Section

3.2.1, the motion field w is initialized by selecting at

each pixel the motion candidate with best confidence

measure (11). The weights α are initialized by setting

the weight corresponding to the best confidence mea-

sure to one and all the others to zero.

No post-processing is applied on the flow fields. The

candidates sets were obtained with parameters H =

{15, 35, 75}, r = 0.75, K = 2 (the typical number

of candidates per pixel with these parameter values is

around 100). The convolution filter g involved in the

definition of the confidence measures in (11) is a rect

function of size 5 × 5 pixels, which amounts to the SAD

distance measure defined above and used in the patch

matching step. The value of λ2 is set to 15. Convergence

of the ADMM optimization of α has been observed to

2 http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php
3 http://www.irisa.fr/vista/Motion2D/
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be reached for 500 iterations. To save computational

cost, we set a maximum number of 100 iterations, which

has a limited impact on the final results. The penalty

parameters are set to µ1 = 10 and µ2 = 10. The number

of alternate optimizations in the global minimization of

(12) was 4, for which convergence has been experimen-

tally observed. The number of outer iterations involved

in the fixed point iteration scheme of the minimization

w.r.t. w is 15, and the linear systems are solved with

the successive over-relaxation method [18].

Methods exploited for comparison The candidates of

VAFlow are obtained with parametric estimations. Thus,

the comparison with local parametric methods [54,63]

is informative about the efficiency of the aggregation

step. In the following we will refer to “multiscale [54]”

as the coarse-to-fine implementation of [54] described in

[15], and to “multiscale [63]” as an extension of “multi-

scale [54]” performing the robust affine estimation de-

scribed in [63] in each patch. The results of [54] are ob-

tained with the publicly available implementation4, and

we use the Motion2D software5 to apply the method

[63]. The method we call “block matching [63]” mim-

ics the candidates generation procedure of VAFlow. At

each pixel, an initial block matching is performed and

is followed by a parametric refinement between corre-

sponding patches. Only the motion of the center pixel

of the patch is kept.

As state-of-the-art results are achieved with global

variational approaches, we also compare to the meth-

ods of [18] and [24] providing open access softwares6,7,

which implement TV-l1 models with different optimiza-

tion strategies. We also consider the method [19] and

use the code made available by the authors8. It ex-

tends [18,24] with an additional energy term impos-

ing similarity to pre-computed feature matches. It aims

at reducing the undesirable effects of the coarse-to-fine

scheme. Current top performing methods [67,68,83,86]

rely on the baseline principles of [18,19,24], on which

they elaborate more sophisticated modules like efficient

feature matching, or non-local regularization. In this

paper, we propose a baseline version of our continu-

ous aggregation concept, with simple block matching

and TV regularization. Therefore, we compare it with

methods [18,19,24] using the same basic ingredients.

More sophisticated features could be integrated as well

in our method to still improve results in the future.

4 http://www.mathworks.com/matlabcentral/fileexchange/23142-
iterative-pyramidal-lk-optical-flow
5 http://www.irisa.fr/vista/Motion2D/
6 http://lmb.informatik.uni-freiburg.de/resources/software.php
7 http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
8 http://lmb.informatik.uni-freiburg.de/resources/software.php

Table 2 Average EPE results on the Middlebury benchmark
for p = 1 and p = 2.

p = 2 p = 1

Average EPE on Middlebury 0.415 0.284

Frame 1 Ground truth motion field

Estimated motion field Estimated motion field
with p = 2 with p = 1

Fig. 3 Illustration of of the impact of the choice of `p for the
data fidelity term.

Finally, we also compare VAFlow with the discrete

optimization approach we introduced in [38]. We re-

move the exemplar-based aggregation term and post-

processing of [38] to compare only the baseline aggre-

gation methods. We refer to this method as Discrete

Aggregation.

4.2 Results

Choice of the `p norm We first point out the impor-

tance of the choice of p in the `p norm promoting sim-

ilarity to the selected candidate in (12). Table 2 gives

the Average EPE obtained on the Middlebury dataset

with ground truth for p = 2 and p = 1, and Figure 3

illustrates these results on an example. Choosing p = 1

yields robustness in the similarity constraint to the cho-

sen candidate, such that few large differences between

estimated motion vectors and the chosen candidate are

allowed. This is a desirable property in case of locally

wrong candidate selection. In Figure 3, the result with

p = 2 contains two regions of large errors where the can-

didate selection was not optimal, whereas with p = 1,

these outliers are properly handled. Few large errors

could have a significant impact on the average EPE, as

it can be seen in Table 2. In the light of these results,

we will take p = 1 in the rest of the experiments.
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Frame 1 Frame 2

VAFlow Brox et al. [18]

Chambolle and Pock [24] Brox and Malik [19]

Fig. 4 Estimated motion fields with VAFlow and [18],[24],[19]
on the Bird sequence.

Large displacements of small objects One of the main

limitations of coarse-to-fine schemes arises in case of

large displacements of small objects, as illustrated on

real sequences without ground truth in Figures 4,5 and

6. The results supplied by [18,24] are typical examples

of failures due to coarse-to-fine schemes, which pre-

vent here from satisfyingly recovering the duck head

in Fig. 4, the ball in Fig. 5 and the foot in Fig. 6.

In contrast, VAFlow estimates correctly all these large

displacements. In most cases, [19] also captures these

movements, but at the same time, it generates large er-

rors in other parts of the image. This is due to its high

sensitivity to feature matching errors, which is better

handled by VAFlow.

Motion details and discontinuities Motion details like

the legs of the girl in Fig. 5 and the duck legs in Fig. 4

are better preserved by VAFlow compared to the three

competing methods. In Fig. 6, the discontinuities of the

motion field supplied by VAFlow are sharper and delin-

eate better the leg and the foot of the football player.

Occlusion handling When the large displacements con-

cern large parts of the image, occlusions become a promi-

Frame 1 Frame 2

VAFlow Brox et al. [18]

Chambolle and Pock [24] Brox and Malik [19]

Fig. 5 Estimated motion fields with VAFlow and [18],[24],[19]
on the Backyard sequence of the Middlebury dataset.

nent issue, as illustrated in the three image pairs of

Fig. 7. To demonstrate the effect of our occlusion han-

dling, we desactivate the occlusion handling module

(VAFlow w/o occlusions) in the motion candidate gen-

eration step, and compare the results with those ob-

tained by the full VAFlow method. In each case, VAFlow

w/o occlusion still captures well large displacements,

but it also exhibits large errors at occluded pixels, due

to the absence of good candidates. When occlusion han-

dling is activated, the result is visually greatly improved

in these regions and is very close to the ground truth.

This observation is confirmed by the large decrease of

the EPE in each case (also reported in Fig. 7).

Quantitative evaluation We provide a quantitative eval-

uation in Table 3, reporting the EPE obtained with

VAFlow, local approaches [54,63], and variational meth-

ods [18,19,24] for the sequences of the Middlebury dataset

with ground truth. The candidates of VAFlow are com-

puted by local methods. In particular, they are obtained

with the same estimation procedure as block match-

ing [63]. Therefore, the large improvement offered by

VAFlow on these methods is due to the efficiency of

the aggregation step, which is able to select the best

motion candidate rather than just keeping the motion

estimate at the central point of each patch. VAFlow

also outperforms the global variational approaches [18,

19,24] on almost all the sequences.
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Frame 1 Frame 2

VAFlow Brox et al. [18]

Chambolle and Pock [24] Brox and Malik [19]

Fig. 6 Estimated motion fields with VAFlow and methods
[18],[24],[19] on the Football sequence.

In Table 4, we report results obtained on the MPI

Sintel training dataset [23], characterized by the pres-

ence of sequences with very large displacements. We

give the average error on the whole benchmark, and

we also give average errors obtained on the seven se-

quences with the largest displacements. The advantage

between of VAFlow over the other methods is larger

than in Table 3, which confirms the ability of our aggre-

gation strategy to handle large displacements, in par-

ticular compared to the integration of feature match-

ing as an additional constraint in a classical variational

approach [19]. We mention some recent methods like

0.01 1

Fig. 8 Average distribution of the coefficients α on the tem-

ple 2 sequence of the MPI Sintel benchmark (50 frames). Only
coefficients greater than 0.01 are displayed. 98.7% of the co-
efficients are below 0.01.

[4] and [57] are able to outperform these results with

an average endpoint error of respectively 2.61 and 2.25

on the whole MPI Sintel training dataset. However, as

explained in Section 4.1, these methods exploit sophis-

ticated modules that could be integrated in our frame-

work. For instance, the contributions of [4] and [57] are

coarse feature matching methods that have to be re-

fined with the variational method [68], which integrates

a sophisticated edge detection to sharpen motion dis-

continuities. These ingredients could be incorporated

in our aggregation model to improve results and com-

pete on state-of-the-art computer vision benchmarks.

Our primary aim is to propose a general aggregation

framework for motion estimation.

We also report in Table 3 and Table 4 results ob-

tained by selecting at each pixel the candidate with

the best confidence measure (the lowest value of βi(x)),

which we refer to as “Best confidence flow”. The results

are always significantly worse than those of VAFlow. It

demonstrates that the motion estimation with VAFlow

is not over-guided by the confidence measures and can

deviate from them to improve global accuracy of the

motion field.

Values of the selection weights α The averaged final es-

timation of α obtained for the whole sequence temple 2

of the MPI Sintel dataset (50 frames) is illustrated in

Figure 8. 98.7% of the coefficients are lower than 0.01

and are considered to have no siginificant influence on

the final results. Therefore, only coefficients superior

to 0.01 are displayed in Figure 8. Among coefficients

greater than 0.01, 96% are greater than 0.95, which

confirms that the algorithm selects only one candidate

for the reconstruction most of the time. In that sense,

our method finds the sparsest solution in most cases.

Robustness to noise Existing optical flow benchmarks

do not integrate robustness to noise as an evaluation cri-

terion. However, it is common to deal with noisy images
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ambush 2 - Frame 1 ambush 2 - Frame 2 Occlusions ground truth (in white)

Motion field ground truth VAFlow w/o occlusions - EPE=17.909 VAFlow - EPE=4.363

temple 3 - Frame 19 temple 3 - Frame 20 Occlusions ground truth (in white)

Motion field ground truth VAFlow w/o occlusions - EPE=9.495 VAFlow - EPE=2.545

temple 2 - Frame 23 temple 2 24 - Frame 2 Occlusions ground truth (in white)

Motion field ground truth VAFlow w/o occlusions - EPE=7.474 VAFlow - EPE=3.286

Fig. 7 Comparison of motion fields computed with VAFlow and with VAFlow without the occlusion handling module (w/o
occlusions). Results are obtained on sequences of the MPI Sintel dataset [23] with large displacements. The EPE of each result
is given in the captions attached to the motion fields.

when specific optical devices are used, as in microscopy

or astronomy.

VAFlow performs patch-based parametric motion

estimation, in the candidates generation step. The ag-

gregation step (motion reconstruction) does not exploit

any pixel wise feature conservation assumption, but

only uses a patch-based confidence measure. Paramet-

ric estimations in patches [54,63] are known to be more

robust to noise than global variational methods. There-

fore, we expect VAFlow to provide with robustness to

noise while ensuring of the accuracy global variational

methods in the absence of noise, as previously demon-

strated in Table 3.

In Fig. 9, we plot the average EPE for Middle-

bury sequences with ground truth after adding Gaus-

sian noise to the input images with different standard

deviations. The results supplied by VAFlow are com-

pared with those of [18,24] in Fig. 9.a and with [19]
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Table 3 Endpoints error obtained with VAFlow, the local methods [54,63] and the variational methods [18,24,19] on the
Middlebury dataset with ground truth.

Grove2 Grove3 Urban2 Urban3 Venus RubberWhale Dimetrodon Hydrangea Average

Best confidence flow 0.324 1.203 1.885 2.002 1.510 0.134 0.172 0.506 0.928
VAFlow 0.161 0.630 0.374 0.395 0.298 0.134 0.090 0.194 0.284

Local methods

multiscale [54] 0.670 1.871 2.603 3.144 1.646 0.476 0.638 0.896 1.493
multiscale [63] 0.461 1.347 1.570 1.611 0.859 0.409 0.249 0.627 0.892
block matching [63] 0.437 1.362 1.512 1.766 1.678 0.448 0.241 0.571 1.002
Global methods

Brox et al. [18] 0.184 0.724 0.420 1.044 0.484 0.138 0.175 0.177 0.358
Chambolle and Pock [24] 0.193 0.645 0.353 0.559 0.351 0.132 0.178 0.219 0.329
Brox and Malik [19] 0.176 0.680 0.343 0.586 0.402 0.116 0.100 0.198 0.325

Table 4 Endpoints error obtained with VAFlow, the local methods [54,63] and the variational methods [18,24,19] on the MPI
Sintel dataset with ground truth. The last column gives the average result on the whole data set, and results on the seven
sequences with the largest displacements are also given.

Sequences with cave 2 market 6 temple 3 ambush 5 ambush 6 ambush 2 market 5 Average on
large displacements whole benchmark

Best confidence flow 22.02 12.95 21.19 16.86 25.90 26.13 38.87 11.19
VAFlow 7.99 4.82 8.74 6.34 7.86 10.17 11.79 3.90

Brox et al. [18] 27.54 7.30 15.84 12.72 15.44 34.94 23.07 7.31
Chambolle and Pock [24] 25.01 8.55 21.43 12.22 16.07 35.67 23.74 7.91
Brox and Malik [19] 9.20 5.61 14.67 10.90 11.11 20.73 14.98 5.03

in Fig. 9.b. The impact of noise is significantly lower

on the performance of VAFlow than on those of [18,

24]. The difference is even more pronounced between

VAFlow and [19], which is due to the high sensitivity of

[19] to wrong feature matches, as already emphasized

in previous results.

Suboptimal candidates set The final output of VAFlow

is dependent on the quality of the motion candidates.

More patches should be considered to augment the va-

riety of candidates. A crucial parameter is the overlap

ratio r ∈ [0, 1], defining the amount of common area

shared by two neighbor patches. When r is close to

one, there are as many patches as pixels for a given

patch size, and the number of candidates the is high-

est. However, the number of patches also increases the

computation time, such that a trade-off has to be found

between accuracy and complexity. The impact of the

overlap ratio on these two aspects is reported in Ta-

ble 5, which summarizes the evolution with r of the

average EPE on the Middlebury benchmark sequences

with ground truth on and the computational time on

the Urban 2 sequence of the Middlebury dataset. While

the computation time increases slowly when r is small,

it changes much faster when r > 0.5. In the same time

the error increase remains relatively limited for r > 0.5.

Table 5 Evolution with the overlap ratio r of the Average
EPE on the Middlebury dataset with ground truth and the
computational time on the Urban 2 sequence of the Middle-
bury dataset.

Overlap ratio 0.75 0.5 0.25 0.1

Average EPE 0.296 0.310 0.329 0.354
Computation time (s) 305 142 117 111

This robustness to suboptimal candidates sets is further

emphasized by the visual results of Figure 10, where we

can observe that the results stay very similar when r de-

creases, in particular when r > 0.5. In practical scenar-

ios where computational time matters, this robustness

can allow us to make huge gains in complexity without

loosing too much accuracy.

Comparision with discrete optimization [38] We focus

now on the comparison between the variational aggre-

gation scheme of VAFlow and the aggregation based on

discrete optimization described in [38], that we call Dis-

crete Aggregation. Table 6 reports the EPE obtained on

sequences of the Middlebury and MPI Sintel datasets

with ground truth by VAFlow and Discrete Aggrega-

tion. Results supplied by Discrete Aggregation are in
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Fig. 9 Evolution of the EPE with the standard deviation of the added Gaussian noise in the input images. The reported EPE
is the average EPE over all the sequences of the Middlebury dataset with ground truth. Fig. 9a compares VAFlow with [18,
24] and Fig. 9b compares VAFlow with [19].

Ground truth r = 0.75 r = 0.5 r = 0.25 r = 0.1

Ground truth r = 0.75 r = 0.5 r = 0.25 r = 0.1

Fig. 10 Visual evaluation of the impact of the overlap ratio r on the results of VAFlow, for the Grove2 (top) and Dimetrodon

(bottom) sequences of the Middlebury dataset.

general slightly more accurate than those of VAFlow.

However, the advantage of VAFlow lies in its robust-

ness to suboptimal candidate sets and its computation

time. Figure 11 compares the impact of the overlap ra-

tio on the EPE and the computation time. While the

EPE of Discrete Aggregation is lower for a large over-

lap ratio, the results of VAFlow are less impacted by a

lower quality of the candidates, and it gives lower EPE

when the overlap ratio is approximately below 0.45. In

the same time, the computation time of Discrete Aggre-

gation increases faster than the one of VAFlow with r.

For r = 0.75, Discrete aggregation is almost two times

slower than VAFlow.

5 Conclusion

We have proposed a variational aggregation framework

for optical flow estimation based on a sparse represen-

tation of the motion field. We combine in two succes-

sive steps local parametric estimation yielding motion

candidates, and global aggregation supplying the global

recovered flow. We formulated the aggregation step as a

global energy minimization problem without coarse-to-

fine strategy, combining the best motion candidates at

every pixel while preserving motion discontinuities. We

promoted sparse solutions, that is, the selection at each

pixel of a few candidates in space-variant motion vec-

tor dictionaries. We handle occlusion with an exemplar-

based motion inpainting approach in the candidates

computation step. We demonstrated the improvements

yielded by our method over standard variational ap-

proaches in various situations of large displacements of
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Table 6 Endpoints error obtained with VAFlow and Discrete Aggregation on the sequences with ground truth of the Middlebury
and MPI Sintel datasets.

Middleburry Grove2 Grove3 Urban2 Urban3 Venus RubberWhale Dimetrodon Hydrangea

VAFlow 0.161 0.630 0.374 0.395 0.298 0.134 0.090 0.194
Discrete aggregation 0.166 0.621 0.337 0.381 0.287 0.121 0.122 0.179

MPI Sintel cave 2 market 6 temple 3 ambush 5 ambush 6 ambush 2 market 5

VAFlow 7.99 4.82 8.74 6.34 7.86 10.17 11.79
Discrete aggregation 8.228 4.547 8.314 5.50 6.251 9.456 11.958
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Fig. 11 Comparison of the behaviour of VAFlow and Discrete Aggregation w.r.t. the overlap ratio. Fig. (a) show the evolution
of the average EPE on the sequences with ground truth of the Middlebury benchmark, and Fig. (b) shows the evolution of the
computational time on the Urban 2 sequence of the Middlebury benchmark.

small objects, occlusions, noise in input images and mo-

tion discontinuities. We also achieved a lower compu-

tational time and more robustness to suboptimal can-

didates set compared to the discrete aggregation ap-
proach introduced [38]. The framework is generic, and

both the local and global steps could be adapted for

specific purposes, especially using more sophisticated

feature matching techniques.

Acknowledgements This work was realized as part of the
Quaero program, funded by OSEO, French State agency for
innovation. The authors acknowledge France-BioImaging in-
frastructure supported by the French National Research Agency
(ANR-10-INBS-04-07, “Investments for the future”). They
thank also the reviewers for useful comments helping im-
proving the paper. Finally, they thank Ferreol Soulez, Martin
Storath, Olivier Demetz, Simon Setzer and Joachim Weickert
for inspiring discussions at different stages of this work.

References

1. Alba, A., Arce-Santana, E., Riviera, M.: Optical flow es-
timation with prior models obtained from phase correla-
tion. Advances in Visual Computing pp. 417–426 (2010)

2. Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A vari-
ational framework for exemplar-based image inpainting.
Int. J. of Computer Vision 93(3), 319–347 (2011)

3. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detec-
tion with optical flow. Int. J. of Computer Vision 97(3),
322–338 (2012)

4. Bailer, C., Taetz, B., Stricker, D.: Flow fields: Dense cor-
respondence fields for highly accurate large displacement
optical flow estimation. In: IEEE International Confer-
ence on Computer Vision, pp. 4015–4023 (2015)

5. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.,
Szeliski, R.: A database and evaluation methodology for
optical flow. Int. J. of Computer Vision 92(1), 1–31
(2011)

6. Bao, L., Yang, Q., Jin, H.: Fast edge-preserving patch-
match for large displacement optical flow. In: Com-
puter Vision and Pattern Recognition (CVPR). Colum-
bus (2014)

7. Barnes, C., Shechtman, E., Finkelstein, A., Goldman,
D.B.: Patchmatch: a randomized correspondence algo-
rithm for structural image editing. ACM Trans. On
Graphics 28(3), 24 (2009)

8. Barron, J., Fleet, D., Beauchemin, S.: Evaluation of opti-
cal flow. Int. J. of Computer Vision 12(1), 43–77 (1994)

9. Berkels, B., Kondermann, C., Garbe, C.S., Rumpf, M.:
Reconstructing optical flow fields by motion inpainting.
In: Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR), pp. 388–400.
Bonn, Germany (2009)



18 Denis Fortun et al.

10. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Im-
age inpainting. In: Proceedings of the 27th annual confer-
ence on Computer Graphics and Interactive Techniques,
pp. 417–424 (2000)

11. Bigun, J., Granlund, G.H., Wiklund, J.: Multidimen-
sional orientation estimation with applications to texture
analysis and optical flow. IEEE Trans. Pattern Analysis
and Machine Intelligence 13(8), 775–790 (1991)

12. Black, M., Anandan, P.: The robust estimation of multi-
ple motions: Parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding 63(1), 75–
104 (1996)

13. Black, M.J., Anandan, P.: A framework for the robust
estimation of optical flow. In: Int. Conf. on Computer
Vision (ICCV), pp. 231–236 (1993)

14. Black, M.J., Yacoob, Y.: Recognizing facial expressions
in image sequences using local parameterized models of
image motion. Int. J. of Computer Vision 25(1), 23–48
(1997)

15. Bouguet, J.Y.: Pyramidal implementation of the affine
lucas-kanade feature tracker description of the algorithm.
Intel Corporation 5, 1–10

16. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning 3(1), 1–122 (2011)

17. Braux-Zin, J., Dupont, R., Bartoli, A.: A general dense
image matching framework combining direct and feature-
based costs. In: International Conference on Computer
Vision (ICCV) (2013)

18. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High
accuracy optical flow estimation based on a theory for
warping. In: European Conference on Computer Vision
(ECCV), pp. 25–36. Prague, Czech Republic (2004)

19. Brox, T., Malik, J.: Large displacement optical flow: de-
scriptor matching in variational motion estimation. IEEE
Trans. Pattern Analysis and Machine Intelligence 33(3),
500–513 (2011)

20. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets
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