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Abstract
Increasing availability of multicore systems has led to greater
focus on the design and implementation of languages for writing
parallel programs. Such languages support various abstractions for
parallelism, such as fork-join, async-finish, futures. While they may
seem similar, these abstractions lead to different semantics, language
design and implementation decisions, and can significantly impact
the performance of end-user applications.

In this paper, we consider the question of whether it would be
possible to unify various paradigms of parallel computing. To this
end, we propose a calculus, called dag calculus, that can encode
fork-join, async-finish, and futures, and possibly others. We describe
dag calculus and its semantics, establish translations from the afore-
mentioned paradigms into dag calculus. These translations establish
that dag calculus is sufficiently powerful for encoding programs writ-
ten in prevailing paradigms of parallelism. We present concurrent
algorithms and data structures for realizing dag calculus on multi-
core hardware and prove that the proposed techniques are consistent
with the semantics. Finally, we present an implementation of the
calculus and evaluate it empirically by comparing its performance
to highly optimized code from prior work. The results show that the
calculus is expressive and that it competes well with, and sometimes
outperforms, the state of the art.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Parallel Programming; D.3.1 [Programming Languages]:
Formal Definitions and Theory; D.3.3 [Programming Languages]:
Language Constructs and Features

Keywords Calculus, operational semantics, parallelism, proofs,
experiments, concurrent data structures.

1. Introduction
Advances in multicore chips have dramatically broadened the
availability of parallel computers. This development led to much
work on the design of programming languages and systems for
writing parallel programs. Example languages include Cilk [20],
Fork/Join Java [32], Habanero Java [27], NESL [11], parallel
Haskell [15, 29, 34], parallel ML [19, 42, 47], TPL [33], and
X10 [16].

These programming languages are typically developed as exten-
sions to existing languages such as C, Haskell, Java, and ML. What
the extensions provide is support for parallelism by introducing a
collection of language primitives, including for example fork-join,
async-finish, and futures. The fork-join and async-finish primitives
are similar, but async-finish is more flexible. However, both of
these two primitives can be used to express nested-parallel compu-
tations. Futures originated from work on functional programming
languages (e.g., [22]) and is perhaps the most functional of all these
primitives. What futures provide beyond fork-join and async-finish
is the ability for parallel computations to be treated as first-class
values. Altogether, these parallelism primitives are broadly used
in many languages today and have had significant influence on the
practice of parallel computing (e.g., [11, 15, 16, 19, 20, 27, 29, 32–
34, 47]).

While various parallelism primitives may all appear similar at
a superficial level, there are deep differences between them. These
differences affect the design and the implementation of parallel
programming languages. Perhaps, for this reason, programming lan-
guages tend to support only some of these primitives. For example,
the Cilk language is primarily based on fork-join parallelism. The
X10 and the Habanero Java languages support both async-finish and
futures. The Parallel Haskell and Parallel ML languages support
both futures and fork-join parallelism. While they originated from
functional programming research, futures can now be found in many
languages and libraries including C++ [1] and Java.

The particular primitives used to express parallelism can also
have significant impact on applications. For example, fork-join prim-
itives tend to work well for balanced divide-and-conquer algorithms,
but may behave poorly in highly irregular algorithms, such as those
for graph problems. Such problems can, in certain cases, be solved
more efficiently using async-finish (e.g., [5, 17]). Fork-join programs
can preserve important locality properties of a parallel program
during execution but futures may not [2]; though more restricted
versions of futures may [24]. Futures can improve performance
of some applications asymptotically by enabling pipelining [10].
Furthermore, some applications can benefit from even more re-
laxed forms of parallelism where programs can be structured more
freely [41].

The relative diversity of parallelism abstractions and their impact
on the design and implementation of programming languages as
well as application behavior raises several important questions.

• Is there a unifying model or calculus that can be used to express
and study different forms of parallelism?

• Can such a calculus be realized efficiently in practice as a
programming language that can serve, for example, as a target
for compiling different forms of parallelism?

In this paper, we answer these questions affirmatively. We first
propose a calculus, called dag calculus, that allows expressing a
broad class of parallel computations (Section 3). We then prove that



dag calculus can serve as a target language for programs written
in fork-join (Section 4.1), async-finish (Section 4.2), and futures
(Section 4.3) by showing translations from languages with these
constructs to dag calculus. We show that dag calculus is realizable in
practice by describing the algorithms and concurrent data structures
needed for an implementation on modern hardware-shared-memory
computers, such as multicores (Section 5). Since the implementation
must handle difficult concurrency conditions that are not exposed
in the calculus, we prove that the implementation is faithful to the
semantics (Theorem 4). Finally, we present an actual implementation
and present an experimental evaluation (Section 6).

The starting point for dag calculus is a relatively well-known idea:
many parallel computations can be represented as directed-acyclic
graphs, written “dags”, where vertices represent sequential pieces of
computation, variously called threads, tasks, strands, fibers etc., and
edges represent the dependencies between them. This technique is
broadly exploited in algorithms research to express algorithms [28]
and also to analyze crucial scheduling algorithms used for parallel
programming languages (e.g., [2, 7, 13, 21, 24]). In the algorithms
world, however, dags are treated as known, static structures, used
primarily for modeling and analysis.

In this paper, we propose dag calculus as a system where
evaluation dynamically constructs a dag and where evaluation itself
is controlled by the dag. This approach gives the programmer
full control over the structure of the computation and thus over
crucial aspects of parallelism. In dag calculus, vertices of the
dag are labeled with expressions representing threads (units of
parallelism), and edges represent dependencies between threads.
Evaluation proceeds by taking the set of vertices whose parents
(dependencies) have been completed and evaluates them (their
expressions) in some non-deterministic order. When evaluated, an
expression performs some computation and also possibly creates
new vertices and edges. Evaluation in dag calculus can thus be
viewed as a concurrent interleaving of conventional computation
and updates to the structure of the dag.

We formalize this informal description of dag calculus by speci-
fying its syntax and semantics (Section 3). Dag calculus includes
expressions for creating threads and dependencies or edges between
them, as well as another primitive called yield that can be used
to suspend the execution of the running thread and to perform a
context switch to go back to the scheduler. The yield operation is
useful for starting parallel sub-computations and resuming the exe-
cution of a thread after completion of these sub-computations. The
practical realization of yield may depend on the control operators
and mechanisms available in the target platform.

The semantics of dag calculus abstracts away from several
important details that a realistic language implementation must deal
with. In the specification of dag calculus, we model parallelism
by using an interleaving semantics. An actual implementation
must run concurrently and thus must use efficient concurrent data
structures and algorithms to represent the state of the system.
Another challenge relating to concurrency involves the specification
of several key operations in dag calculus. These operations, such
as the updates to the vertices and edges of the dag maintained in
the calculus, occur sequentially and atomically in a single step. For
efficiency reasons, an actual implementation must perform such
operations concurrently in parallel. The second class of challenges
concern scheduling. Dag calculus models scheduling by a non-
deterministic choice. An implementation, however, must provide
an actual scheduler that executes the program and communicates
with it as needed. We address a number of these challenges by
specifying the algorithms and data structures for realizing the
calculus in a modern hardware-shared memory parallel computer
(Section 5). These concurrent algorithms and data structures are

relatively complex. We therefore prove that they implement the
semantics faithfully (Theorem 4).

Based on the algorithms and data structures proposed, we give
an actual implementation of dag calculus as a library (Section 6).
Since the implementation must deal with many lower level issues,
such as representation of memory, control, and concurrency, it
is written in C++11. Nevertheless, our implementation retains a
functional flavor, because it uses functional features of C++11, such
as lambda functions. We also implement the proposed encodings
for fork-join, async-finish, and futures in this library, empirically
verifying that they indeed work as theoretically established. We
perform an evaluation to show that the proposed techniques perform
well in practice. Our results show that the performance of our
implementation of dag calculus is compatible with highly optimized
implementations from prior work (e.g., Cilk), and in some cases
performs even better than them, sometimes thanks to its ability to
represent more interesting dependency relations than is possible
using parallelism primitives, such as fork-join, async-finish, and
futures.

The contributions of the paper include the following.

• Dag-calculus: the specific constructs and their semantics.

• Encodings of fork-join, async-finish, and futures in dag calculus,
and their proofs of correctness.

• Algorithms for implementing dag calculus in practice and a
proof establishing that the implementation is correct.

• An optimized C++ implementation and its evaluation.

Appendix. Due to space constraints, we have omitted the proof
details from the paper. The proofs can be found in the accompanying
technical report [6].

2. Background
We discuss, by means of a simple example, the different abstractions
for parallelism used in different languages and present a brief
comparison. The knowledgeable reader can skip this section. We use
a simple pseudocode language based on a strict functional language
such as the ML family.

Fork-join. Consider the very simple example of computing Fi-
bonacci numbers recursively. In fork-join parallelism, we can use
the primitive forkjoin to perform two computations in parallel, and
return the pair of their results.

function fib (n) (∗ Fibonacci with fork−join ∗)
if n <= 1 then n else

let (x,y) = forkjoin (fib (n-1), fib (n-2)) in
x + y

The key restriction of fork-join parallelism is that only two
parallel computations can be spawned each time. To spawn larger
number of parallel computations, fork-join calls can be nested. Cilk’s
“spawn” and “sync” primitives provide a bit more flexibility by
allowing any (statically) fixed number of parallel computations one
by one. The async-finish construct, described below, provides a more
direct, more flexible, and possibly more efficient way of spawning
arbitrarily many subcomputations.

Async-finish. The async-finish construct provides a common join
point for unbounded number of threads. This construct is more
powerful than the fork-join pattern, yet at the same time less-
structured: an async’ed computation has no return value—such
return values must be communicated through the memory. The



scoping is dynamic: we may use async within an expression to
spawn a thread within the finish block that encloses the expression.
The finish block only returns once all async’ed computations started
in its block have completed. The code for parallel Fibonacci can be
expressed as follows.

function fib (n) (∗ Fibonacci with async−finish ∗)
if n <= 1 then n else

let (x,y) = (ref 0, ref 0) in
finish { async (x := fib (n-1));

async (y := fib (n-2)) };
!x + !y

Futures. Futures are perhaps the most functional form of paral-
lelism. A future is a first-class value that captures a computation. It
is created by an expression of the form future e. The body of the
future, the expression e, can be evaluated in parallel as soon as the
future has been created. The result of the future may be obtained
using the force operation, which blocks until the body of the future e
completes.

function fib (n) (∗ Fibonacci with futures ∗)
if n <= 1 then n else

let (x,y) = (future fib (n-1), future fib (n-2)) in
(force x) + (force y)

Comparison. The difference between fork-join and async-finish
is the ability to spawn an arbitrary number of computations that
can join at the same point. With fork-join, we can only spawn
a fixed number of such computations. With async-finish, we can
spawn as many as desired. For this reason, async-finish is a powerful
mechanism for expressing parallel computations, especially those
with irregular synchronization behavior.

The comparison between async-finish and futures is less clear
cut. Neither appears superior to the other. In fact, they serve as du-
als of each other in a certain sense: futures enable synchronization
via data dependencies, whereas the async-finish construct enables
synchronization via control dependencies. More specifically, the
force primitive of futures synchronize between a computation with a
future at a data dependency, leaving control dependencies between
them implicit. Dually, the finish construct of async-finish synchro-
nizes a number of async’ed parallel computations by enforcing a
control dependency, leaving implicit the data dependencies between
them. It is thus perhaps not surprising that both futures and async-
finish have remained popular in many programming languages.

3. Dag Calculus
In this section we present a calculus for parallel computations, called
dag calculus. The calculus extends an imperative λ-calculus with
primitives for dynamically creating a directed acyclic graph, or a
dag, that represents the computation. We refer to such a dag as a
computation dag, or simply as a dag. In this work we focus on
the dynamic aspects of parallel computation using dags. Thus, the
programs in dag calculus can fail at runtime. We model failure by
the reductions getting stuck, and do not provide any static checks
that would prevent programs from doing so.

Abstract Syntax. Figure 1 shows the syntax of dag calculus. Meta-
variables x, y, f denote variables, n denotes a natural number, `
denotes a location, and t denotes the identity of a thread. The cal-
culus includes a unit value written “( )”, pairs, general recursion,
references. For operating on the dag, we introduce a new language
construct, newTd, and four primitive functions: release, newEdge,

e ::= v | e ⊕ e | e ⊗ e | (e, e) | fst e | snd e | let x = e in e |

e e | alloc( ) | e := e | ! e | if e then e else e |

newTd e | release e | newEdge (e, e) | self( ) | yield( )

v ::= x | ` | t | n | ( ) | (v, v) | fun f x is e end

K ::= • | let x = K in e | K := e | v := K | ! K | release K

| newEdge (K, e) | newEdge (v,K) | . . .

Figure 1. Abstract syntax for DAG-Calculus.

self and yield. When presenting examples, we use some straight-
forward syntactic sugar, e.g., semicolons for sequencing.

The expression newTd e creates a new thread for evaluating the
expression e, and returns the corresponding thread (identifier). Note
that this construct does not evaluate its argument, as its rationale
is to spawn e as a separate computation thread. When created, a
thread is not ready for execution but becomes available for addition
of edges to and from other threads. Such edges between threads
represent dependencies between them. When the depedencies are
set up, the expression release e, where e evaluates to a thread t, is
used to “release” the thread for evaluation. When released, a thread
may be scheduled for evaluation, but only after all the threads that it
depends on complete their evaluation.

As a thread evaluates, it may choose to add additional edges
between itself and other existing threads. The construct self( )
returns the identifier of the calling thread.

The expression newEdge (e1, e2) inserts an edge from thread e1
to thread e2, as long as the edge does not violate certain invariants
that are specified by the dynamic semantics. For instance, adding
the edge must not create a cycle in the dag.

The yield( ) construct suspends the calling thread by de-
scheduling the thread and returning control to the scheduler. This
control transfer permits a thread to suspend and wait for newly
discovered dependencies to complete, allowing on-the-fly updates
to the structure of the computation. Thus, we are able to exploit
parallelism regardless of the context in which a given parallel con-
struct is encountered. This ability is particularly important for nested
parallelism, where the thread that yields may itself have outgoing
edges, which are thus preserved, as observed in Section 4.

An example. Although dag calculus is not meant to be a user-
level programming language, we consider here an example, both to
illustrate how parallel programs may be expressed in dag calculus
and to present a high-level overview of the main ideas behind the
dynamic semantics of dag calculus. We note that this example is
relatively high level and does not give a precise accounting of all
the details. The precise semantics is specified later in the section
following the example.

Figure 3 shows the dag-calculus code for our running example, a
parallel Fibonacci function, based on the classic recursive definition
of Fibonacci numbers. As the function fib_dc evaluates, it creates
threads via newTd and synchronization edges via newEdge. A
synchronization edge or simply an edge from a thread t to t′
requires thread t to complete before t′ can start executing. The
synchronization edges between threads control how the evaluation
proceeds. At any point, those threads that are released and have no
incoming edges are said to be ready and can be executed in parallel.

Consider a call to fib_dc with input n, and let t be the thread
executing the call. If n is less than 2, then the thread returns n.
Otherwise, the thread t can compute in parallel the Fibonacci of
(n − 1) and (n − 2). To this end, the thread t allocates two locations,
la and lb, for the results of the two parallel computations. It then
creates two threads ta and tb for computing Fibonacci of (n − 1)
and (n − 2). These threads complete by writing their results to la



and lb respectively, making them available to the caller thread t.
After creating the new threads, thread t creates new edges from ta
and tb to itself, which is available via self. This operation creates
dependencies from the newly created threads to t itself. Thread t can
now release ta and tb, via release, allowing them to be evaluated,
and yields control by calling yield, which suspends t, stopping
its evaluation. By creating two new threads and yielding control
to them, the main thread t essentially nests the computations to be
performed inside itself.

Since ta and tb have no incoming edges, they can be evaluated
at any time after they are released. Since t has incoming edges from
ta and tb, its evaluation should be paused until ta and tb complete.
For this reason, it is important for thread t to yield after creating
dependencies from other threads to itself. In general, when adding
dependencies (edges), the programmer needs to make sure not to
create a cycle and not to add an edge into an evaluating thread,
except when creating a thread’s subcomputations. The rules of the
dynamic semantics of dag calculus include premises that enforce
these constraints.

When a thread completes, it notifies the threads that have an edge
from it. Thus, when ta and tb complete, they notify t, which becomes
ready and may be scheduled for evaluation. When evaluated, the
thread t resumes from where it yielded, computes the sum !la+!lb,
then returns the result.

3t

2u 1t

3t'

4t    

2t

4t'

Figure 2. The computa-
tion dag for fib_dc(4).

We can illustrate a complete eval-
uation of fib_dc by using a dag. In
this commonly used representation, each
vertex represents a continuous (not in-
cluding yields and resumptions) section
of the evaluation of a thread. To distin-
guish them from threads, such vertices
are sometimes called as tasks, strands,
or sparks. Figure 2 shows the dag for
an evaluation of fib_dc(4) used for
computing the 4th Fibonacci number. In
the dag, the subscripts denote the input
argument for the corresponding call to
fib_dc. The root thread t4 spawns two
threads t2 and t3, for each recursive call.
In the dag, the spawn action is illustrated
by spawn edges from t4 to t2 and t3 The
threads t2 and t3, in turn, synchronize
with the vertex representing the continuation of t4, labeled as t′4, via
edges from their continuation into t′4.

The dynamic semantics for dag calculus tracks the dynamic
state of the parallel computation also by maintaining a dag. But the
dags that are maintained by the calculus are significantly different
than the dag shown in the example. The example dag should
therefore be taken for intuition but should not be interpreted as
an accurate representation of the dags maintained by the semantics.
For example, the example dag in Figure 2 illustrates a complete
evaluation. In contrast, dag calculus must construct the dag on the fly
during evaluation and also use it to guide evaluation by scheduling
its vertices. To this end, the dynamic semantics of the calculus
maintains the dag as a set of vertices representing the currently live
set of threads and a set of edges representing the currently live set of
synchronization dependencies. The semantics ensures that a thread
is never executed before its dependencies are completely satisfied.
In addition, the semantics does not represent spawn edges explicitly.
Intuitively speaking, the spawn edges are implicitly represented
by creating a thread exactly when it is created and released for
scheduling. The rest of this section presents a precise specification
of the dynamics semantics of dag calculus.

1 function fib_dc n is
2 if n < 2 then n else begin
3 let la = alloc () in
4 let lb = alloc () in
5 let ta = newTd (la := fib_dc (n - 1)) in
6 let tb = newTd (lb := fib_dc (n - 2)) in
7 newEdge (ta, self ());
8 newEdge (tb, self ());
9 release ta;

10 release tb;
11 yield ();
12 !la + !lb
13 end

Figure 3. Dag-calculus code for a parallel Fibonacci function.

Dynamic Semantics. We present the dynamic semantics for the
dag calculus as a contextual semantics with a reduction relation
over computation dags. Formally, a computation dag is a pair (V, E)
consisting of vertices V and edges E. Each vertex represents a
thread. The edges E consist of pairs of vertices corresponding
to synchronization dependencies between threads. Vertices are
specified by the map V , which maps a thread to an expression and to
a thread status. A thread status, denoted by s, is one of new, released,
executing, and finished, written as N, R, X, and F, respectively. The
thread status encodes the current point in the life-cycle of a thread: a
thread is always created in the N (new) state, and when released the
thread makes the transition to the R (released) state. After a thread t
is released and all other threads on which it depends are finished, t
can be scheduled for evaluation. When scheduled for evaluation, the
status of a thread changes to X (executing). When the evaluation of
thread completes, its status changes to F (finished). As it evaluates, a
thread may also yield the control by calling yield, thereby causing
the thread to be suspended and having its status changed back to R
(released).

The dynamic semantics for dag calculus, shown in Figure 4,
involves two judgments: one for thread-local reductions and one
for dag reductions. The first judgment, written σ, e→ e′, σ′, relates
an input store and an expression with an output expression and an
output store. Its reduction rules have no impact on the computation
dag. They include the evaluation relation for pairs (Fst, Snd), appli-
cation (Apply), as well as rules for memory allocation, dereference,
assignment (Alloc, Deref, Assign), which are the only instructions
that modify the store.

The judgment for parallel steps, written V, E, σ � V ′, E′, σ′,
describes the evolution of the dag, represented with V and E, and of
the store σ. The rule Start selects a thread that is ready to execute,
i.e., that has status R (released) and that has no incoming edges,
and sets the status of the thread to X (executing). The rule Step
reduces an expression in a thread t with status X (executing). The
rule Stop applies to a thread t whose computation has completed.
It updates the thread status from X (executing) to F (finished) and
removes from the dag all the outgoing edges of t. Note that the
value produced by the thread, typically the unit value, is “dropped
on the floor” and is not communicated to other threads along the
dependency edges. Values can, however, be communicated to other
threads through the store.

The rule NewTd creates a fresh thread identified as t′, associates
with it the expression e and the status N (new), and returns t′. The
rule Release changes the status of the given thread, namely t′, from
N (new) to R (released).

The rule NewEdge inserts a dependency edge between two given
threads, namely t1 and t2. It is the programmer’s responsibility not
to introduce cyclic dependencies, otherwise the program can get
stuck. The NewEdge further requires that the target vertex t2 has



σ, fst (v1, v2)→ v1, σ
Fst

σ, snd (v1, v2)→ v2, σ
Snd

l < dom(σ)
σ, alloc ( )→ l, σ[l 7→ ( )]

Alloc
σ(l) = v

σ, ! l→ v, σ
Deref

l ∈ dom(σ)
σ, (l := v)→ ( ), σ[l 7→ v]

Assign
F = fun f x is e end

σ, (F v)→ e[ f 7→ F][x 7→ v], σ
Apply

σ, e→ e′, σ′

σ,K[e]→ K[e′], σ′
Context

V(t) = (e,R) {t′ | (t′, t) ∈ E} = ∅

V, E, σ� V[t 7→ (e,X)], E, σ
Start

V(t) = (e1,X) σ1, e1 → e2, σ2

V, E, σ1 � V[t 7→ (e2,X)], E, σ2
Step

V(t) = (v,X) E′ = E \ {(t, t′) | t′ ∈ dom(V)}
V, E, σ� V[t 7→ (( ),F)], E′, σ

Stop
V(t) = (K[newTd e],X) t′ fresh

V, E, σ� V[t 7→ (K[t′],X)][t′ 7→ (e,N)], E, σ
NewTd

V(t) = (K[release t′],X)
V(t′) = (e,N)

V, E, σ� V[t 7→ (K[( )],X)][t′ 7→ (e,R)], E, σ
Release

V(t) = (K[newEdge (t1, t2)],X) t1, t2 ∈ dom(V)
(status(V(t2)) ∈ {N,R} ∨ t2 = t) E′ cycle-free

E′ = E ] (if status(V(t1)) = F then ∅ else {(t1, t2)})
V, E, σ� V[t 7→ (K[( )],X)], E′, σ

NewEdge

V(t) = (K[self ( )],X)
V, E, σ� V[t 7→ (K[t],X)], E, σ

Self
V(t) = (K[yield ( )],X)

V, E, σ� V[t 7→ (K[( )],R)], E, σ
Yield

Figure 4. Dynamic semantics for dag calculus. Thread status are: N (new), R (released), X (executing) and F (finished). Besides, we write
“status(V(t))” to denote the status of thread t, i.e. the second component of V(t).

not already started executing, unless t2 is equal to the thread that is
trying to insert the edge.

The rule Yield encodes a very restricted form of control, particu-
larly designed for parallelism. The effect of yield with respect to
our dynamic semantics is simple: the status of the thread is changed
from X (executing) to R (released), meaning that the thread is no
longer running. The consequences are far-reaching, however, due to
its interaction with NewEdge. In particular, since NewEdge allows
the calling thread, t, to serve as the target of the edge, t2, it is possible
to insert an edge ending at a thread t that is currencly executing. If
an edge (t1, t) is inserted and thread t yields, its evaluation will stop
and t cannot be scheduled again until t1 completes its evaluation
and the edge (t1, t) is deleted. As shown in the fib_dc example
discussed earlier in this section, this ability to insert an edge enables
a thread to “turn over control” to other threads that it creates and
to wait for them to complete. As such, this feature allows nesting,
parallel computations, a crucial ability for expressing a broad range
of parallel programs. In order to facilitate such nesting by allowing
threads to insert edges targeting themselves, the dynamic seman-
tics provides the rule Self, which returns the thread that fires the
rule. Note that if a given thread yields and has no incoming edges,
that thread can be rescheduled immediately because the rule Start
applies.

4. Parallelism in the Dag Calculus
In this section, we show how to translate three classic, high-level
parallel constructs into our dag calculus. The source calculi consid-
ered in this section are minimal, and hence do not include features,
such as conditional expressions or unit values. These and other se-
quential features are orthogonal to the task of translating the parallel
constructs, and the translations we present can be trivially extended
to handle them.

4.1 Fork-Join
To describe the translation of fork-join into the dag calculus, we
consider as source language a pure lambda-calculus extended with
a fork-join construct, written forkjoin (e1, e2). In this construct,
also called parallel pair, reduction can take place on either the left
or the right branch. We present the language in A-normal form, with
evaluation context written K.

e ::= v | fst v | snd v | let x = e in e | v v | forkjoin (e, e)
v ::= x | n | (v, v) | fun f x is e end

K ::= • | let x = K in e | forkjoin (K, e) | forkjoin (e,K)

Reduction rules are standard. A parallel pair whose two components
have terminated is reduced to a conventional pair by the evaluation
rule: (forkjoin (v1, v2))→ (v1, v2).

Translation The translation from this source language to our
dag calculus is written ~e� for expressions and ~v� for values. Its
definition is entirely structural. For constructs other than parallel
pairs, we have, in particular:

~let x = e1 in e2� = let x = ~e1� in ~e2�

~fun f x is e end� = fun f x is ~e� end
~v1 v2� = ~v1� ~v2�.

The translation of parallel pairs is shown below.

1 ~forkjoin (e1, e2)� =
2 let l1 = alloc ()
3 l2 = alloc ()
4 t1 = newTd (l1 := ~e1�)
5 t2 = newTd (l2 := ~e2�)
6 in newEdge (t1, self ()); newEdge (t2, self ());
7 release t1; release t2; yield ();
8 (!l1, !l2)

We allocate two memory cells, l1 and l2, for storing the results
of the branches (line 2–3). We then create two threads, t1 and
t2, for the two branches (lines 3–4), assigning the results of the
two computations to the corresponding locations. The results are
subsequently read from these locations and put into a pair (line 8),
but before that point, some interesting dag manipulation happens.

Firstly, we create edges from t1 and t2 to the thread that
spawned them. Once the setup of the edges is complete, the threads
are released (line 7). After releasing the subcomputations, the main
thread needs to wait for the completion of t1 and t2 before reading
the result values, and thus calls yield to suspend its execution. At
the point when both t1 and t2 have finished, the main thread can
be rescheduled—and at this point the results of the subcomputations
can be safely read. Due to nondeterminism, the subcomputations
can finish even before the main thread yields: in this case, the main
thread is allowed to restart the computation immediately.



This pattern closely resembles the code of the recursive branch
of the parallel Fibonacci function shown in Figure 3. In fact, if we
applied our translation to the fork-join version of Fibonacci from
Section 2, we would obtain code that is virtually identical to the one
from Figure 3.

Theorem 1 (Correctness of the translation of fork-join). Let t be
the identifier of the main thread, e be the source program stored in
this thread, and l be a designated location in which to store the final
result. For any integer result n, final state σ such that σ(l) = n, and
final set of vertices V, assuming that all threads t′ in V are finished
(i.e. status (V(t′)) = F), we have:

[t 7→ (l :=~e�,R)], ∅, [l 7→ ()]�∗ V, ∅, σ ⇒ e→∗ n.

Furthermore, divergence in the dag calculus entails divergence in
the source language:

[t 7→ (l :=~e�,R)], ∅, [l 7→ ()]�∞ ⇒ e→∞ .

The proof may be found in the technical appendix. This proof,
like the other two correctness proofs presented further, involves one
key difficulty, related to administrative reduction steps, i.e. to the
fact that one reduction step in the source language may correpond to
several reduction steps in the target language. Most compiler proofs
deal with administrative reduction steps using well-known proof
techniques, typically based on simulation diagrams. However, we
have found that these techniques were not directly applicable to the
parallel semantics of a language such as that the fork-join language
considered here. We next explain why.

When the target program takes a reduction step, this step corre-
sponds either to an administrative step, or to a real step from the
source program. Consider the latter case. With a sequential seman-
tics, when the target program takes a real step, the target program
then typically corresponds exactly to the translation of the source
program. However, with a parallel semantics, this might not be the
case. For example, since the two branches of a parallel pair may re-
duce independently, one branch may take a real step while the other
branch is in the middle of performing a sequence of administrative
steps. Although the target program takes a real step, it is not, at this
point, the translation of any source program. Thus, we cannot easily
close a simulation diagram.

To address this challenge, we introduce an instrumented pro-
gramming language, similar to the source programming language,
except that each parallel pair that began executing gets annotated
with information about identities associated with the representation
of the parallel pair in the target language: number of administrative
steps already performed, thread identifiers, locations for the results,
etc. We then set up a two-layer simulation diagram: the first layer
relates the source program with the instrumented program, while
the second layer relates the instrumented program with the target
program. We are able to reason about both layers independently, us-
ing conventional simulation diagrams, and then conclude by relating
the source and the target programs.

4.2 Async-Finish
We now describe the translation of async-finish into our dag calculus.
To that end, we consider an imperative lambda-calculus extended
with two constructs: async(e) and finish({e}). The general form
for the finish construct is written finish(S ), where S denotes the
set of all expressions that evaluate in parallel within the scope of
this finish block considered. The grammar below, presented in
A-normal form, includes contexts for reduction, written K, and

contexts not traversing finish blocks, written L.

e ::= v | fst v | snd v | let x = e in e | v v

| alloc | v := v | ! v | async(e) | finish(S )
v ::= x | n | l | ( ) | (v, v) | fun f x is e end

S ≡ {e1, e2, . . . , en}

K ::= • | let x = K in e | finish({K} ] S )
L ::= • | let x = L in e

The operational semantics is standard. We show below the
reduction rules for async and finish, omitting the state since
it is not altered by these rules. The first rule spawns an async task
within its enclosing finish block, adding it to the set of tasks
already present. The second rule removes a completed async task.
The third rule closes a finish block when all the tasks spawned in
his scope have completed.

finish({L[async(e)]} ] S )→ finish({L[( )]} ] {e} ] S )
finish({( )} ] S )→ finish(S )

finish(∅)→ ( )

Translation The translation from this source language to our dag
calculus is written ~e�t for expressions, and ~v�t for values. It takes,
in addition to the expression e (or value v), an argument t that denotes
the identity of the dag vertex that corresponds to the immediately
enclosing finish block. The translation thus has a destination-passing
style flavor. It is entirely structural. In particular, we have:

~let x = e1 in e2�t = let x = ~e1�t in ~e2�t

~fun f x is e end�t = fun f (x, t′) is ~e�t′ end

~v1 v2�t = ~v1�t (~v2�t, t).

In order to translate a complete program e, we introduce a dummy
thread identifier t0 and compute ~e�t0 . If it reaches an async out-
side of any finish block, the program is considered stuck by the
semantics.

The translation of async is shown below. We create a new vertex,
named t’, describing the spawned computation, and we add a new
edge from t’ to the vertex t associated with the enclosing finish
block. We then release the vertex t’.

1 ~async(e)�t =
2 let t’ = newTd ~e�t in newEdge (t’, t); release t’

The translation of finish is shown below and explained next.
Since we only need to translate surface programs, we do not need to
translate the general form finish(S ).

1 ~finish({e})�t =
2 let t2 = self ()
3 t1 = newTd (~e�t2)
4 in newEdge (t1, t2); release t1; yield ()

Like we did in the translation of fork-join, we need to create a
thread for the subcomputation, t1, and synchronize t1 with the
main thread. However, because the translation of e requires a name
of the join node, we capture the name of the main thread by binding
the result of self. Thus, any async calls within e will have the
appropriate thread identifier passed to them. Because the finish block
is a computation and always returns a unit value, we do not need to
perform any additional work in the main thread after yielding: after
all the async calls finish, the main thread can simply continue its
work.

Theorem 2 (Correctness of the translation of async-finish). Let t
be the identifier of the main thread, e be the source program stored
in this thread, l be a designated location in which to store the final



result, and t0 be a dummy thread identifier. For any integer result n,
final state σ such that σ(l) = n, and final set of vertices V, assuming
that all threads t′ in V are finished (i.e. status (V(t′)) = F), we have
(for some source-language heap h):

[t 7→ (l :=~e�t0 ,R)], ∅, [l 7→ ()]�∗ V, ∅, σ⇒ ∅, e→∗ n, h
[t 7→ (l :=~e�t0 ,R)], ∅, [l 7→ ()]�∞ ⇒ ∅, e→∞ .

4.3 Futures
We now describe the translation of futures into our dag calculus.
We consider a pure lambda-calculus extended with two constructs:
future and force. We present it in A-normal form, and let f
denote the identity of a future.

e ::=v | fst v | snd v | let x = e in e | v v

| future(e) | force(v)
v ::=x | n | f | (v, v) | fun g x is e end

K ::=• | let x = K in e

The operational semantics is defined using two judgments. The
first judgment, written e� e′, captures the reduction relation for
all expressions that are neither a future nor a force. Its rules are
standard. The second judgment, written M → M′, describes tran-
sition over configurations. A configuration, written M, associates
an expression (possibly a value) with the identity of each allocated
future. For simplicity, we view the main program expression as the
body of a particular future, identified as f0. The initial configuration
thus takes the form of a singleton map [ f0 7→ e]. A configuration M
is final when every future in M is bound to a value.

We show below the reduction rules that define the judgment
M → M′. The first rule is for expressions other than future and
force. The second rule reduces an expression future(e) to a fresh
identity, called f ′, and adds in the current configuration M a binding
from f ′ to e. The third rule reduces an expression force( f ′) to a
value v, assuming that f ′ is bound to v in the current configuration M.
Note that the expression force( f ′) cannot reduce until the future f ′
has completed its evaluation.

M( f ) = e e� e′

M → M[ f 7→ e′]
M( f ) = K[future(e)] f ′ fresh

M → M[ f 7→ K[ f ′]][ f ′ 7→ e]
M( f ) = K[force( f ′)] M( f ′) = v

M → M[ f 7→ K[v]]

Translation The translation from the language with futures to our
dag calculus is written ~e� for expressions, and ~v� for values. It
is entirely structural. In particular, constructs other than future
and force are translated exactly like in the case of fork-join (recall
Section 4.1). In our dag calculus, we represent futures as pairs
made of a thread identifier and of a location. The former is used for
synchronization, while the later is used for communicating the value
computed by the future.

The translation of an expression future(e) appears below. We
allocate a location, l, and a thread t which executes the body of
the future. The thread is then released so that the future can begin
evaluation, and the pair built of t and l is returned.

1 ~future(e)� =
2 let l = alloc ()
3 t = newTd (l := ~e�)
4 in release t; (t, l)

The translation of an expression force(v) appears below. The
argument v is expected to be the representation of a future, that is, a
pair of the form (t, l). The translation creates an edge from t to the
calling thread and, in order to ensure proper synchronization, the

calling thread yields. After the calling thread is restarted, i.e., after
the future has finished its computation, the final value of the future
can be recovered by reading the location l. In case the future has
finished before being forced, the edge-creation results in a no-op,
and the calling thread can be restarted the moment it yields control.

1 ~force(v)� =
2 let (t, l) = ~v�
3 in newEdge (t, self ()); yield (); !l

The translation above can be optimized by testing whether the future
has already completed; in this case, force(v) may immediately
return the value !l. This optimization may be useful to reduce
scheduler overheads that are caused by yielding.

Theorem 3 (Correctness of the translation of futures). Let t be the
identifier of the main thread, e be the source program stored in this
thread, and l be a designated location in which e stores its final
result. For any number n, final state σ such that σ(l) = n, and final
set of vertices V, assuming that all threads t′ in V are finished (i.e.
status (V(t′)) = F), if

[t 7→ (l :=~e�,R)], ∅, [l 7→ ()]�∗ V, ∅, σ

then there is a configuration M such that [ f0 7→ e] →∗ M and
M( f0) = n. Furthermore, divergence is preserved:

[t 7→ (l :=~e�,R)], ∅, [l 7→ ()]�∞ ⇒ [ f0 7→ e]→∞ .

5. Representing the Computation Dag
We present algorithms that can be used to implement dag calculus
as part of the run-time system of a language. We assume an im-
perative machine with shared-memory concurrency where parallel
computations of the dag calculus can be executed concurrently on
the processors of the machine. Such an implementation poses three
main challenges.

• Concurrency: the semantics assumes the operations for adding
and removing edges to be atomic, whereas in fact many of these
operations might execute concurrently.

• Control flow: the yield operation, which suspends the execution
of a thread, requires a context switching operation. In particular,
it involves storing continuations in vertices, with the additional
complication that these continuations may be resumed on a
different processor.

• Efficiency: the data structures used to represent the dag and
algorithms used for scheduling should be efficient. In particular,
contention must be minimized by using a dag representation that
permits fast concurrent accesses by different processors, and by
using a scheduling algorithm that maintains the pool of ready
vertices in a distributed fashion.

We present the pseudo code for the algorithms that can be viewed
as a reference implementation of the dag calculus. Our pseudo-
code specifies 1) the main loop executed by the scheduler instance
running on each of the processors, and scheduling execution of
vertices obtained from the work queues; 2) the control flow, which
alternates in a coroutine fashion between the execution of the main
loop of the scheduler and the execution of the code associated with
the dag vertices; and 3) the interaction of dag calculus primitves
with the concurrent data structures that are used to represent the
edges of the computation dag.

Before we describe this pseudo-code, we first motivate and
present the context-switching operations on which we rely, and
also describe our runtime representation of vertices and edges.



Suspending and resuming computations. An important design
constraint for the implementation is the need to suspend and resume
computations in the manner specified by the semantics of yield.
In our approach, each instance of the scheduler executes in a
main loop and switches to running the computation assigned to
a dag vertex. This design allows us to implement a resumption
mechanism that closely resembles coroutines: the main loop of the
scheduler and the computations assigned to the dag vertices switch
control to each other, resuming the partially executed thread when
needed. The pattern is as follows. To begin working on a fresh
vertex, the scheduler suspends itself and switches control to the
computation associated with the vertex. When the execution of the
vertex finishes, the control is switched back to the scheduler. Then,
the scheduler resumes its work and can continue executing other
vertices. Alternatively, during the execution of the vertex, the yield
command may be encountered. In this case, the execution of the
vertex is suspended, and the control is passed back to the scheduler.
The suspended computation, also referred to as a continuation in the
following, is attached to the vertex. The execution of the suspended
vertex may be subsequently resumed, when the vertex gets scheduled
again.

In our pseudo-code, we assume an abstract data type called cont
for representing continuations. We may create, save and load contin-
uations using the three functions described next. First, the function
new cont(f) creates a new continuation that corresponds to the
state at the beginning of the evaluation of f(). We use this function
to create an initial state of each vertex the first time it is sched-
uled for evaluation. Second, the function jump cont(c) restores
the continuation c and continues evaluation there, discarding the
continuation (context) in which the command was encountered. We
use this function to finish the evaluation of a vertex and return con-
trol to the scheduler. Third, the function swap cont(c1,c2) saves
the current continuation into c1 and then restores the continuation
c2. (Remark: jump cont is an optimized version of swap cont
that does not require saving the current continuation.) We use the
function swap cont both when starting the execution of a vertex
and when a vertex yields. Altogether, these three functions allow us
to precisely describe the coroutine manipulation in our pseudocode.

Representation of vertices and edges. We represent vertices of
the computation dag as records, one for each vertex. Edges are, in
constrast, represented by two data structures: we record in each
vertex the number of its incoming edges, and the targets of its
outgoing edges. This representation is realized, respectively, by the
incounter and outset concurrent data structures. The corresponding
signatures appear in Figure 5.

Each vertex is represented as a record with five fields. The run
field contains a pointer to the code of the computation associated
with the initial execution of the dag vertex, that is, before the vertex
performs any yield operation. If a dag vertex has been suspended
as a result of a yield operation, then the corresponding continuation
is stored in the cont field; otherwise the field contains a null value.
The record also contains three fields for representing edges. The
in field describes the vertex incounter data structure, which keeps
track of the number of edges incoming to the vertex. Symmetrically,
the out field describes the vertex outset data structure, which keeps
track of the targets of edges outgoing from the vertex. Last, the
releaseHandle field is used to keep track of an artificial in-edge
that we introduce to ensure that the vertex cannot be considered
for execution when it has status N (new) or X (executing). We
explain the purpose of releaseHandle in detail after discussing
the incounter and outset structures.

An incounter data structure is responsible for counting the
number of incoming edges into a particular vertex, and detecting
when this number reaches zero. When reaching zero, the incounter

pushes the vertex into the work queue. There are two methods
for manipulating an incounter: increment and decrement. These
operations can occur concurrently in any order, as long as the
following two invariants are satisfied. First, each call to decrement
must match an anterior call to increment. Second, when the counter
reaches zero, no further increment can be performed. To enable key
optimizations in the implementation of the incounter data structure
(and in particular to allow the use of concurrent tree data structures
that avoid contention), the operation increment returns a handle,
which points somewhere into the structure of the incounter. Any call
to decrement is required to match a prior call to increment by
providing the corresponding handle.

The outset is responsible for representing a set of vertex identi-
ties, corresponding to the targets of the outgoing edges of a vertex.
The outset provides two methods which may be called concurrently:
add and parallelNotify. The add operation is used for storing
an outgoing edge. More precisely, it stores a handle returned by the
increment operation performed on the incounter associated to the
target vertex of the outgoing edge. This operation may return false
in case the vertex has already terminated, in which case the edge is
not created. The parallelNotify operation is called exactly once
by the scheduler, when the execution of the corresponding vertex
completes. Its purpose is to call the decrement operation on all
the handles stored, i.e. those for which the add operation returned
true. This parallel-notification operation is allowed to distribute its
work across several processors. Parallelism is useful for efficiently
processing very large out-degree vertices. For our current purposes,
we do not specify how the notification operation may get distributed.

We next explain the role of the releaseHandle field associated
with every vertex. This field is used to introduce artificial in-edges,
whose purpose is to prevent from being added to the work queue
threads that are either not yet released or already executing. To
understand the potential issue, consider the following example—the
description of this example may safely be skipped in first reading.
Assume a vertex t with no incoming edges to be executing the
following operations: create a vertex t′ (intuitively, a sub-task of t),
create an edge from t′ to t, execute a few additional computations,
then yield (with the intention of resuming only after completion of
t′). While t is executing the additional computations and has not
yielded, the thread t′ might get migrated to a second processor,
and may run to completion before t reaches its yield point. In
such a situation, the termination of t′ leads to the removal of the
outgoing edges of t′, that is, to the removal of the edge from t′ to
t. As a consequence of the removal of the only incoming edge into
t, the vertex t would get added to the work queue of the second
processor (by virtue of the decrement operation), and may thus
may get scheduled immediately afterwards for execution on the
second processor. At this point, the vertex t would thus be executing
both on the first and on the second processor, a situation that is
clearly undesirable.

As illustrated by the above example, there is an issue if a vertex
might get its last incoming edge removed while it is still executing.
To prevent such a situation, we add for every executing vertex
an artificial incoming edge into the vertex. We store the handle
associated with this edge in the releaseHandle field of the vertex,
so as to be able to remove the artificial in-edge when the thread
completes. We use exactly the same mechanism for dealing with
freshly-created vertices, preventing them from being scheduled
before they are released. (Remark: a naive approach of using a field
of the vertex structure in order to explicitly keep track of the status
of each vertex leads to potentially harmful races; by instead reusing
the concurrent incounter data structure, we avoid such races.)

Structure of the scheduler. The declarations at the top of Figure 6
describes the per-processor variables. For each processor, we use



three variables: the work queue of the processor, the vertex that
is currently executing (if any), the continuation used to switch the
control back to the main loop of the scheduler (valid when a vertex
is executing). These processor-local variables are always accessed
at the processor that is executing the code, even when a continuation
gets migrated form a processor to another.

The function schedulerLoop near the top of Figure 6 describes
the main loop executed by each of the processors. At each iteration
of the loop, we check whether its work queue is empty. If it is
empty, then we enter a load-balancing scheme (not detailed here,
e.g. relying on the work-stealing scheme) in order to attempt to
populate its work queue. When the work queue is not empty, we
pick a vertex out of it, store it into the current variable, and process
the vertex as described next.

Before executing the current vertex, we first need to prepare
it in two ways. First, we add an artificial in-edge onto the vertex
(for reasons explained earlier), setting up the releaseHandle field
of the vertex. Second, if the vertex has never been executed before
(i.e., its cont field is null), then we set its cont field, using the
new cont function applied to the enter function. The function
enter performs a sequence of three actions: first, it executes the
run method associated with the current vertex, second it marks the
vertex as finished, and third it returns the control to the scheduler.

Once the current vertex is prepared, we begin its execution
by switching the control to the continuation stored in the vertex,
using the swap cont operation. Eventually, either as a result of
completion of the vertex or upon a call to the yield operation, the
control is returned to the scheduler, at line 15. At this point, we test
whether the vertex has completed or not. If the vertex has completed,
then we call the parallelNotify operation in order to call the
decrement operations on the incounters of the vertices associated
with all the outgoing edges of the vertex. If, however, the vertex
has only yielded, then we just remove the artificial in-edge whose
handle was stored in the releaseHandle field of the vertex. At this
point, the scheduler is ready for the next iteration of its main loop.

Implementation of primitive dag operations. The implementa-
tion is shown in the bottom half of Figure 6.

The newTd primitive, which applies to an expression e, is
implemented using the function createThread, which allocates a
vertex and assigns: the computation body to e, a fresh incounter, and
a fresh outset. We also set up an artificial in-edge into the vertex,
storing the corresponding handle into the releaseHandle field.
This artificial in-edge is removed when the vertex gets released.

The operation release, when called on a vertex, calls the
decrement operation on the handle stored in the releaseHandle
field of the vertex. This removes the artificial in-edge that was set at
the creation of the vertex. If no other edges have been added in the
meantime, then the vertex gets pushed into the local work queue.

The operation newEdge creates an edge. It first increments the
incounter of the target vertex, obtaining an incounter handle, and
then stores this handle into the outset of the source vertex. This
operation, however, might return false if the source vertex has
already completed. In this case, the increment operation needs
to be undone by decrementing the incounter. Incrementing the
incounter before adding the edge to the source vertex’s outset is
crucial for correctness. If we added the edge to the outset of v1
first, it could finish concurrently with the rest of the implementation
of newEdge— and cause the incounter of v2 to be decremented
before the matching increment, potentially bringing it to zero. Thus,
the order of operations that implements the transaction is not an
artifact of our use of handles, but of the concurrent nature of the
implementation of the dag.

The operation yield suspends an executing vertex and switches
control back to the scheduler, using swap cont to save the current

1 struct vertex
2 void run() // computation body of the vertex
3 cont* cont // suspended continutation (null if finished or never yielded)
4 incounter* in // counter of the number of incoming edges
5 outset* out
6 // set of handles, each handle being associated with the
7 // incounter of the target vertex of one of the outgoing edges
8 incounterHandle* releaseHandle
9 // a handle on an artificial in−edge used to prevent new and executing

10 // vertices from being added to the work queue
11

12 struct incounter // abstract
13 struct incounterHandle // abstract, depends on the incounter type
14 incounter* new_incounter(vertex* v)
15 // creates a counter with value zero
16 incounterHandle* increment(incounter* i)
17 // increments the counter by one, and return a handle to be
18 // provided for performing the matching decrement operation
19 void decrement(incounterHandle* h)
20 // when reaching zero, decrement calls workQueue.push
21 // on the vertex v that was provided at construction
22

23 struct outset // abstract
24 outset* new_outset()
25 // creates an empty set of incounter handles
26 bool add(outset* o, incounterHandle* h)
27 // add a handle to the set; may return false if parallelNotify
28 // has been called already; if add returns true, then the
29 // handle is guaranteed to be processed by parallelNotify
30 void parallelNotify(outset* o)
31 // calls the decrement operation on all handles that were added to the set

Figure 5. Representation of dag vertices and edges. Some imple-
mentation details are left abstract.

continuation into the cont field of the vertex and restore the
continuation of the scheduler.

The operation self returns a pointer to the current vertex.

Correctness of the implementation with respect to the semantics.
We now prove a correctness theorem that establishes a correspon-
dence between the algorithm (Figure 6) and the semantics of dag
calculus (Figure 4), i.e., that the evaluation of the scheduler loop
matches a valid execution of the dag calculus semantics. To state the
correctness theorem, we introduce an additional safety property. In
the semantics of the dag calculus certain rules have side conditions
that the scheduling algorithm does not check dynamically. In par-
ticular, the NewEdge rule must not introduce cyclic dependencies
or target vertices that are executing, and Release can only be called
on a new node. Programs that can execute in such a fashion “go
wrong”; we therefore do not consider them in the correctness theo-
rem. To specify the offending programs, we extend the semantics
(Figure 4) with an error state, which can be reached if the newEdge
or release commands are used improperly (i.e., create a cycle,
release an already released vertex, etc.). We call a program safe if
it can never reach an error state, and we only state the correctness
of the scheduling algorithm for safe programs. This extension is
presented fully in Section E of the technical appendix [6].

This assumption may seem big. However, when the dag calculus
is used as an intermediate language, it is the responsibility of the
translation to ensure well-behavedness. When using structured par-
allelism primitives, well-behavedness is relatively straightforward to
honor, as shown by our translations. As a result, the assumption of
Theorem 4 holds. If, on the other hand, the dag calculus is used as a
source language itself, then the programmer must guarantee well-
behavedness themselves, perhaps with an aid of a static analysis or
a type system. We leave such techniques to future work.



1 processor_local queue<vertex*> workQueue // bag of vertices
2 processor_local vertex* current // running vertex
3 processor_local cont* proc_cont // continuation of the scheduler
4

5 void schedulerLoop() // executed by each processor
6 while true // termination details omited
7 if workQueue.empty()
8 // implementation−dependent load balancing
9 acquireWork() // blocking call

10 current = workQueue.pop()
11 current→releaseHandle = increment(current→in)
12 if(current→cont == null) // initialize the continuation
13 current→cont = new_cont(&enter)
14 swap_cont(proc_cont, current→cont) // execute the vertex
15 if(current→cont == null) // vertex has finished
16 parallelNotify(current→out)
17 else // vertex has yielded
18 decrement(current→releaseHandle)
19

20 void enter() // execute the current vertex, assuming it has never yielded
21 current→run()
22 current→cont = null // mark vertex finished
23 jump_cont(proc_cont)
24

25 // ‘‘newTd e’’ is short for ‘‘createThread(fun ()⇒ e)’’
26 vertex* createThread(runMethod)
27 vertex* v = new vertex
28 v→run = runMethod
29 v→in = new_incounter(v)
30 v→out = new_outset()
31 v→releaseHandle = increment(v→in)
32 return v
33

34 void release(vertex* v)
35 decrement(v→releaseHandle)
36

37 void newEdge(vertex* v1, vertex* v2)
38 incounterHandle* h = increment(v2→in)
39 bool success = add(v1→out, h)
40 if not success // vertex v1 has already completed
41 decrement(h) // roll back on edge creation
42

43 void yield()
44 swap_cont(current→cont, proc_cont)
45

46 vertex* self()
47 return current

Figure 6. Realization of the scheduler loop and primitive opera-
tions. Details of load balancing and termination detection are omited.

The correctness theorem relates a dag configuration (V, E, σ)
with a machine state, written (M, S ), where M denotes the memory
and S describes the state of the processors. The state S p of a
processor p consists of the processor-local variables: work queue,
current vertex, and current scheduler continuation; as well as the
code pointer and the execution context of the processor.

Theorem 4. Let e0 to be a dag calculus expression, t0 to be a thread
identifier, l0 a location for the final result. Assume that:
• r0 the code pointer to the compiled code for e0, i.e. in the sense

that Compile(e0, r0) holds (Compile is defined in the appendix),

• V0 = [t0 7→ (e0,R)], which describes the initial vertex map,
storing the initial vertex t0 with body e0 and released status,

• E0 = ∅, which describes the initial set of edges,

• σ0 = [l0 7→ ( )], which describes the initial heap,

• M0 = [l0 7→ ( ), t0 7→ InitVertex(r0)], which describes the
initial memory state, with a memory cell at location l0, and a
representation of the initial vertex with run method r0, fresh

incounter and outset, and null continuation and releaseHandle
(as described by the auxiliary InitVertex operator),

• S 0, which describes the initial state of the processors, by as-
serting that they are entering schedulerLoop (i.e., ∀p. Lp = 6,
where Lp denotes the line of processor p), and asserting that all
work queues are empty except one that contains exactly t0 (i.e.,
∃p. Qp = {t0} ∧ (∀p′. p , p′ ⇒ Qp′ = ∅), where Qp denotes the
work queue of processor p).

• the source program is well-behaved in the sense that none of its
execution may reach an error state: ¬ (V0, E0, σ0)�∗ ⊥,

• the machine evaluates to a terminal state, in the sense that
(M0, S 0) →∗ (M′, S ′), for some (M′, S ′) where the state S ′ is
such that all work queues are empty (∀p. Q′p = ∅) and all
processors are idle (∀p. L′p = 9).

Then, there exists a configuration (V ′, E′, σ′) such that:

• we have a corresponding reduction in the dag semantics:
(V0, E0, σ0)�∗ (V ′, E′, σ′),

• (V ′, E′, σ′) is a terminal configuration: in the sense that vertices
are finished (∀t ∈ dom(V ′). status(V ′(t)) = F), and no edges
remain (E′ = ∅),

• the value M′(l0) stored at location l0 by the machine execution
matches the value σ′(l0) stored at that same location in the dag
semantics, written CompileVal(σ′(l0),M′(l0)) in the appendix.

We prove the theorem using a global invariant relating machine
configurations and dag configurations. We refer to the appendix for
details. We believe that the theorem could be extended to capture
preservation of divergence; we leave this extension to future work.

6. Implementation and Experiments
In this section, we address the following question: can an implemen-
tation of dag calculus provide an efficient substrate for various forms
of parallelism? To this end, we implemented the algorithm described
in Section 5 as a C++ library and evaluated its performance using
several pre-existing benchmarks and comparing to the state of the
art in multicore algorithms.

Implementation. We implement yield using a shallow context-
switch mechanism that saves the state of the registers (but not the
signal mask). More generally, in a parallel runtime system that
provides general-purpose control operators, e.g., call-cc, they can
be used to implement yield.

One notable optimization that we perform is to avoid creating
artificial in-edges for vertices involved in the translation of fork-join.
This optimization is safe, because we are careful not to migrate
freshly created vertices before the executing vertex yields.

For load balancing, we reused an implementation of a work-
stealing scheduler from another study [4]. In the scheduler, each
processor is assigned a private work queue in which to store the
threads (i.e., dag vertices) that are ready to be executed. To realize
load balancing, processors issue work request to a randomly selected
processor, through shared memory. To ensure that each work request
is eventually handled, each processor polls on a regular basis for
work request.

For the implementation of incounters and outsets, our implemen-
tation includes a flexible mechanism by which the programmer can
decide, for each vertex created at runtime, how its incounter and
its outset should be represented. The choice of the representation
essentially depends on the arity of the vertex. On the one hand, we
have simple implementations with little overhead but that may suffer
contention when the arity of a vertex is large. On the other hand, we



have more complex tree data structures that can scale to large arity.
In what follows, we give more detail.

Regarding incounters, there are essentially three useful imple-
mentations. The first one is specific to the case of vertices with
at most one incoming edge, in which case no synchronization is
needed. The second implementation relies on an atomic counter, up-
dated using a fetch-and-add operation. It is particularly well-suited
for small in-degree vertices, such as vertices involved in the encod-
ing of fork-join. The third implementation is designed for the case
of vertices with potentially many incoming edges. It consists of a
(modified version of) scalable non-zero indicators [18]. In short,
such structures represent a counter by a tree data structure, where
incounter handles correspond to nodes in the tree. The tree can be
modified concurrently and is able to detect the moment at which
zero is reached.

Regarding outsets, there are also three useful implementations.
The first one accommodates only the case of vertices with at most
one outgoing edge (as, e.g. forked vertices in fork-join), in which
case no synchronization is needed. The second implementation
relies on a Treiber stack, i.e. a locked queue, which is well-suited
for small-outdegree vertices. The third implementation is based on
a growable tree data structure, where outgoing edges can be added
concurrently with limited contention.

Experimental setup. We considered a collection of benchmark
programs, described next, executing them on up to 40 cores.We
compiled the code using GCC -O2 -march=native (version 5.2).
Our machine is running Ubuntu Linux kernel v3.13.0-66-generic. It
has four Intel E7-4870 chips and 1Tb of RAM. Each chip has ten
cores and shares a 30Mb L3 cache. Each core runs at 2.4Ghz and
has 256Kb of L2 cache and 32Kb of L1 cache. Additionally, each
core hosts two SMT threads, giving a total of 80 hardware threads.
However, to avoid complications with hyperthreading, we did not
use more than 40 threads. For each data point, we report the average
running time over 30 runs.

Parallel graph-traversal benchmark. Our first experiment con-
siders the performance of a graph-traversal algorithm in which paral-
lelism is expressed in the style of async/finish. What this experiment
shows is that our dag calculus can support state-of-the-art graph
traversal and deliver the same or even slightly better results than a
state-of-the-art implementation. The algorithm we consider is the
Pseudo DFS algorithm of Acar et al [5]. This algorithm performs
reachability analysis for a given in-memory graph. We obtained
the authors’ code, labeled ACR, to use as baseline for our compari-
son. Both our implementation and that of ACR use work stealing
to balance load among processors. The ACR code uses their own
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Figure 7. Parallel DFS using 40 cores, for various input graphs.

implementation of termination detection, whereas ours uses an in-
counter data structure. In this case, for the implementation of the
incounter, we used the solution based on the scalable non-zero indi-
cator [18]. Figure 7 shows the results for a subset of the real-world
graphs that are reported in the ACR paper. We selected the graphs
to represent small-world and high-diameter cases. The reason that
our version is always faster is that ours is always faster on a single
core, improving parallel performance as a consequence.

Parallel stencil-computation benchmark. Our next experiment
compares a Cilk-based implementation of the Gauss-Seidel heat-
transfer simulation to our implementation in the dag calculus. We
obtained the Cilk code unmodified, from the authors of another
study [41]. The algorithm simulates the propagation of heat through
a plane using a five-point stencil. The purpose of this study is to
demonstrate that flexible synchronization primitives that sit outside
of async/finish or futures can be encoded in our dag calculus and
can deliver performance that is the same or slightly better than
well-optimized code.

The Cilk implementation of this algorithm proceeds by advanc-
ing a hyperplane through a three-dimensional space (first two dimen-
sions are spatial and the third is time), exploiting parallelism within
the processing of a hyperplane. The Cilk code uses its spawn/sync
primitives to enforce a barrier between the processing of successive
hyperplanes. Their use of spawn/sync is equivalent to a function-
local, non-nested async/finish block. To implement this synchroniza-
tion mechanism, the Cilk system uses a single atomic fetch-and-add
counter. For block size, we selected the best setting on our machine
independently for each algorithm.

Our algorithm uses the same algorithm to handle processing
inside a base-case block, but a completely different, relaxed-
syncronization technique to enforce data dependencies between
blocks. We enforce inter-block dependencies by allocating one
incounter per block (to be used for all time steps) and using each
incounter to count the number of unsatisfied data dependencies of
each block computation. Since each block depends on just a small,
fixed number of surrounding blocks, we used for incounter the
simple, atomic fetch-and-add cell. Because we store our incounters
directly in a matrix data structure, our algorithm does not fit directly
into the regimes of async/finish or parallel futures.

One additional optimization that is employed by our algorithm is
the use of lazy binary splitting [49, 50]. In particular, our algorithm
creates one initial dag vertex to start the stencil computation. In this
vertex, we store in a queue the indices of all the blocks that are ready
to be processed. The initial dag vertex proceeds to process blocks
from its queue in a sequential fashion until a work request is received
from an idle processor. Once received, the work request triggers
the dag vertex to fork off a copy of itself, such that the original dag
vertex keeps half of the queue and the new one the other half. The
idle processor subsequently starts working on the new dag vertex,
while the original dag vertex continues to be processed on its original
processor. This splitting process continues until there is no work left
to do. The name for this technique is lazy binary splitting because
the work queues are split only when there is an idle processor that is
ready to receive the work. The benefit of this optimization is that the
algorithm can express parallelism between blocks without having to
pay the cost of creating a dag vertex for each and every block.

Figures 8 and 9 show the results from this experiment. Owing to
space limitation, we show the plots for only the grid sizes 1k and 8k,
which we selected to match those reported in another study [41]—
we obtained consistent results from other settings of the grid size.
Results show that, for a large grid of size 8k, the Cilk version and
ours achieve fairly similar speedups, with ours being slightly faster.
But for a smaller grid size of 1k, the Cilk version achieves no more
than 2x speedup, whereas our version achieves 10x. We explain
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Figure 8. Gauss-Seidel with 40 cores. Input size: 8192 x 8192.
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Figure 9. Gauss-Seidel with 40 cores. Input size: 1024 x 1024.

this difference by the fact that the Cilk implementation can exploit
parallelism only within one wavefront, whereas ours is limited only
by the inter-block dependencies.

Futures benchmark. Our next experiment uses a benchmark to
evaluate our implementation of futures. Futures have been studied
extensively since the early days of parallel computing [22]. Yet, there
are very few, if any, practical, comparative studies involving futures.
It might be because specific uses of futures can in many cases be
replaced with another construct, such as async-finish or fork-join.
For example, PPBS benchmarking suite [12], which is perhaps the
most comprehensive parallel benchmarking suite that targets shared
memory computers has no benchmarks that are futures-specific.
Facebook’s Folly library uses futures in a more practical fashion to
mask latencies imposed by IO calls [1]. But Folly applications, being
IO bound, are too coarse grained for benchmarking the effectiveness
of threading primitives.

Instead, we consider here a synthetic benchmark that is inspired
by earlier work on algorithms for implementing futures on the
PRAM machine [21]. The function mixed, shown below, creates a
future f and forces it in a parallel loop for a specified number n times.
The parallel for loop is implemented with async-finish. What
makes this benchmark challenging is that future f has a potentially
very high number of dependencies that must be woken up and
scheduled. In our evaluation, we take n to be 10 million.

function mixed n =
if n > 1 then

let f = future(mixed(n/2)) in
parallel for i = 1 to n do force f

More specifically, a call to mixed(n) leads to the creation of one
future and n touches of it. This future recursively calls mixed(n/2),
and so on. In total log n futures are allocated and 2n touch operations
are performed. We count five basic operations per touch (newTd,
increment, decrement, add, and parallelNotify). Therefore,
10n operations are performed in total.

The results are shown in Figure 10. To evaluate our implementa-
tion, we considered two different implementations of our concurrent
dag structure. The first one uses for incounter the atomic counter
cell and for outset a Treiber stack. The second one uses for incounter
and outset the tree-based structures described in the beginning of
the section. Results show that the shared incounter and Treiber stack
perform best only when the number of processors is strictly fewer
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Figure 10. Performance, measured as number of dag operations per
second per thread, of the call to mixed(107), for two combinations of
incounter/outset implementations, showing that tree-based structures
have higher overheads but better scalability.

than ten. The reason is that these two structures are relatively simple
and perform better under light or no contention, but quickly dete-
riorate when there is sufficient contention among the participating
processors. Overall, this benchmark demonstrates the ability of our
implementation to scale gracefully with large numbers of concurrent
operations. Furthermore, the results suggest that, under low load, a
simple implementation of the incounter and outset performs best,
whereas the scalable implementation performs best otherwise. As we
see in the next benchmarks, often it is easy to identify cases where
the simple implementation suffices. In other cases, one can use the
scalable implementations, paying what seems to be a reasonable
overhead when the scalability of the structures is not needed.

Fork-join benchmarks. The final part of this study shows results
from three benchmarks taken from the Problem-Based Benchmark
Suite (PBBS) [12]. The first one is a parallel sample sort. Each
input consists of 240 million doubles. The second is a suffix-array
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Figure 11. Results for fork-join programs: sample sort, string suffix,
and nearest neighbors, all using 40 cores.

algorithm that takes as input a string S and returns an equal-length
array A that specifies in sorted order the suffixes of S . We use
an input with 10 million characters. The third is the K-nearest
neighbors algorithm, which for n points in two or three dimensions
and parameter k, returns for each point its k nearest neighbors. For
each input, we used n = 10 million points. We implemented each of
these algorithms in our dag-calculus implementation and compared
results with the original codes in Cilk. For each incounter, we used
a counter cell that is updated by atomic fetch and add, and for each
outset, we used a single non-atomic cell to store the pointer to the
next dag vertex. These encodings are a good match for these fork-
join applications because, in these applications, each thread has zero,
one, or two incoming edges and zero or one outgoing edges. Results
are shown in Figure 11. The results show that, even though the Cilk
system has benefited from significant, long-term engineering effort,
the encodings in our dag-calculus implementation perform nearly
as well as the Cilk-based counterparts.

Summary. The experimental results presented in this section
show that, even when compared to highly engineered parallel-
programming systems, the dag calculus performs well. In two
high-performance parallel algorithms, namely PDFS and Gauss
Seidel, we improve over implementations of the same algorithms for
different systems, manual scheduling with Pthreads and with Cilk
Plus, respectively. The improvements are due to increased flexibility
in allowing expression of non-standard forms of synchronization.
In the case of fork-join benchmarks, our implementation achieves
similar performance to Cilk Plus, a highly optimized system. We
also show that in some benchmarks using futures, the concurrent
data structures employed in the implementation of the computation
dag can affect performance. These findings suggest further research
on efficient and scalable data structures for concurrent dags.

7. Related Work
We discussed most closely related work in the rest of the paper; we
present a broader account here.

Semantics of concurrency has been studied extensively and
many concurrent calculi has been proposed, including CSP [26],
π-calculus [35, 36] and actors [25]. These calculi model concurrent
computations involving interaction between many processes via
some communication medium, typically called channels. Many dif-
ferent calculi have been studied (several surveys exist, e.g. [8, 23]),
and several programming languages such as Concurrent ML [43]
and Pict [40] have been designed based on these calculi. Operational

semantics for concurrent versions of ML have also been developed
(e.g. [9, 39]).

This abundance of formal semantics of concurrency contrasts
starkly with its paucity for parallelism: relatively little exists beyond
the well-known work on futures and fork-join parallelism. One
recent exception is the work on Featherweight X10 by Lee and
Palsberg [38], who give formal semantics of a language with async-
finish parallelism. The core of their work is a type system for may-
happen-in-parallel analysis. In contrast, we focus on the dynamics
of parallel computations in general, which includes async-finish and
also other parallelism abstractions.

In addition to their use in parallel-algorithm design [7, 13, 21,
28]), dags are sometimes used for presenting a cost-semantics [3, 44–
46] for parallel programs. For example, Greiner and Blelloch [21]
present a cost semantics for a language with futures based on dags.
They also present algorithms for the PRAM model. Spoonhower et
al. [48] use a similar technique for presenting a cost semantics to
account for space use for a language with parallel tuples.

There have been several other proposals for structured/implicit
parallel programming in addition to fork-join, async-finish, and
futures approaches. OpenStream is a data-flow system that offers
relaxed synchronization for parallel applications [41]. Our exper-
iment with Gauss Seidel repeats theirs, but uses our dag calculus
implementation. We were, however, unable to compare to their work,
because of difficulties in reproducing their results; We have been
working with the authors to address this issue. Concurrent Revisions
[14] resembles futures, but provides a mechanism for deterministic
programming with shared mutable state. LVars [30] are one alterna-
tive approach that have recently been extended to support primitives
with the same power as both async/finish and futures [31].

The semantics and the proofs presented in this paper all assume
a sequentially consistent memory model. Our C++ implementation,
however, operates on an Intel X86 machine with a weak memory
model [37], and employs the necessary atomic read-modify-write
operations and memory fences to ensure correct behavior. We leave
it for future work to generalize the semantics and the proofs for
weak memory models.

8. Conclusion
Calculi for concurrent programming abound. In contrast, there is
relatively little work on calculi for parallel computing. In this paper,
we present a calculus that can express a variety of common paral-
lelism paradigms and show that the calculus can be implemented on
modern parallel computers. Our experiments show that the proposed
calculi and its practical implementation, however young, performs
well compared to the state of the art parallel systems that have bene-
fited from many years of engineering. Natural future directions of
research include development of parallel programming languages
that uses dag calculus as an intermediate language, extensions of our
model to interact with shared memory with relaxed semantics, and
development of a type system for enforcing safety of dag calculus
programs.
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