
HAL Id: hal-01411893
https://hal.inria.fr/hal-01411893

Preprint submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Top-k Queries over Real-Time Web Streams
Nelly Vouzoukidou, Bernd Amann, Vassilis Christophides

To cite this version:
Nelly Vouzoukidou, Bernd Amann, Vassilis Christophides. Continuous Top-k Queries over Real-Time
Web Streams. 2016. �hal-01411893�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80473486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01411893
https://hal.archives-ouvertes.fr

Continuous Top-k Queries over Real-Time Web Streams

Nelly Vouzoukidou
Sorbonne Universits, UPMC Univ Paris 06, UMR 7606, LIP6

Paris, France

nelly.vouzoukidou@lip6.fr

Bernd Amann
Sorbonne Universits, UPMC Univ Paris 06, UMR 7606, LIP6

Paris, France

bernd.amann@lip6.fr

Vassilis Christophides
INRIA Paris, LINCS

Paris, France

vassilis.christophides@inria.fr

October 21, 2016

Abstract

The Web has become a large-scale real-time information system forcing us to revise both
how to effectively assess relevance of information for a user and how to efficiently implement
information retrieval and dissemination functionality. To increase information relevance,
Real-time Web applications such as Twitter and Facebook, extend content and social-graph
relevance scores with “real-time” user generated events (e.g. re-tweets, replies, likes). To
accommodate high arrival rates of information items and user events we explore a pub-
lish/subscribe paradigm in which we index queries and update on the fly their results each
time a new item and relevant events arrive. In this setting, we need to process continuous
top-k text queries combining both static and dynamic scores. To the best of our knowledge,
this is the first work addressing how non-predictable, dynamic scores can be handled in a
continuous top-k query setting.

1 Introduction

The proliferation of social media platforms and mobile technology enables people to almost in-
stantly produce and consume information world-wide. In the real-time Web, traditional scoring
functions based on content similarity or link graph centrality are no longer sufficient to assess
relevance of information to user needs. For example, textual content relevance may severely be
obscured by the “churn” observed in the term distribution of real-time media news or social
content and those found in historical query logs [20], while social relevance [17] of short living
information cannot be reliably computed on static graphs. Streams of user events like “replies”
(for posting comments), “likes” (for rating content) or “retweets” (for diffusing information)

1

ar
X

iv
:1

61
0.

06
50

0v
1

 [
cs

.D
B

]
 2

0
O

ct
 2

01
6

represent nowdays valuable social feedback [18] on web content1 that is not yet exploited online
to assess contextual relevance aspects.

Real-time Web search engines are essentially confronted with a double challenge. First,
“ephemeral” Web content [12] should become searchable for millions of users immediately after
being published. Second, dynamic relevance of streaming information (e.g. user attention [28,
21], post credibility [14], information recency [10]) should be continuously assessed as users
provide their feedback.

To tackle both content and score dynamicity, a first solution consists in extending a con-
tent retrieval model (textual, spatial) and implementing adequate index structures and refresh
strategies for low-latency and high throughput snapshot query evaluation. Best-effort refresh
strategies [7, 16] could determine optimal re-evaluation of active user queries which combined
with real-time content indexing [3, 2, 31, 22, 19] can achieve high result freshness and com-
pleteness. However, real-time content indexing systems usually accommodate high arrival rates
of items at the expense of result accuracy by either (a) excluding a significant portion of the
incoming items (e.g. with infrequent keywords) from the index to reduce update costs or (b)
by ranking items only by arrival time to support append-only index insertion and thus ignore
content relevance to queries [31]. Coupling both static (e.g. content similarity to user queries)
with dynamic aspects of relevance beyond information recency [10] is clearly an open issue in
existing real-time search engines.

An alternative solution is a publish/subscribe architecture [15, 25, 27, 26, 4, 13, 5] in which
user (continuous) queries rather than information items are indexed while their results are
updated on the fly as new items arrive. In predicate-based [4, 13] publish/subscribe systems,
incoming items that match the filtering predicates are simply added to the result list of continu-
ous queries, while in similarity-based top-k [15, 25, 27, 26, 5] systems, matching items have also
to exhibit better relevance w.r.t. the items already appearing as the top-k results of continuous
queries. In publish/subscribe systems both (a) early pruning of the query index traversal for
locating relevant queries to an incoming item and (b) the efficient maintenance of their results
lists are challenging problems. Only recently, these problems have been studied for more dy-
namic settings such as decaying information relevance as time passes (e.g. for textual [26, 27]
or spatio-textual [5] streams). However, there is an important difference between information
decay and social feedback: while information freshness is defined as a known in advance, global
function applied on all item scores simultaneously, social feedback is locally defined as a stream
of non-predictable, random events per item. First, such randomness introduces a new degree
of freedom requiring adaptive optimization strategies to the incoming feedback events. Second,
the item score dynamics significantly varies and calls for new techniques to balance processing
cost (memory/CPU) between items with high and low feedback.

In this paper we are studying a new class of continuous queries featuring real-time scoring
functions under the form of time decaying positive user feedback for millions of social feedback
events per minute and millions of user queries. In a nutshell, the main contributions of our
work are:

• We introduce continuous top-k queries over real-time web streams aggregating both static
item content and dynamic real-time event scores. Then, we decompose the continuous top-
k query processing problem into two separate tasks matching item contents and feedback
events.

• We propose new efficient in-memory data structures for indexing continuous top-k queries

1This trend is expected to be amplified in the future Internet of Things (IoT) where users can provide online
feedback regarding almost any digital or physical object [8].

2

when matching incoming user events along with a family of adaptive algorithms for main-
taining the result of top-k queries with highly dynamic scores.

• We experimentally evaluate our index structures over a real-world dataset of 23 million
tweets collected during a 5-month period and compare the impact of dynamic scores in
the performance of our algorithms and associated data structures.

The rest of the paper is organized as follows. Section 2 gives a formal definition of the problem.
Section 3 presents our proposed solution and pruning techniques for event matching. Then,
Section 4 describes a number of index implementations that apply these techniques whose
experimental evaluation is detailed in Section 5. Related work is presented in Section 6 and the
main conclusions drawn from our work are summarized in Section 7.

2 Real-time top-k queries

In this section we formally define the problem of evaluating continuous top-k queries with
dynamic scores.

2.1 Data Model

The general data model builds on a set of search queries Q, a set of items I and a set of events
E. Each feedback event e ∈ E (e.g., “replies”, “likes”, “retweets”) concerns exactly one target
item i denoted by target(e) (e.g., media news articles, social posts). The set of all events with
target i is denoted by E(i). We also assume a time-stamping function ts : Q ∪ I ∪ E → T
which annotates each query, item and event with their arrival time-stamp in the system. This
function introduces a weak ordering between queries, items and events and formally transforms
all sets Q, I and E into streams Qts, Its and Ets.

Continuous top-k queries A continuous top-k query q = (k,Squ,Sdyn, α) is defined by a
positive constant k, a static query score function Squ, an event score function Sev and some non
negative query score weight α ≤ 1:

• The constant k defines the maximum size of the query result at each time instance.

• The query score function Squ : Q × I → [0, 1] returns a static score of query q ∈ Q and
item i ∈ I. It may capture popular content similarity measures (e.g. textual like cosine,
Okapi BM25 or spatial similarity), but it might also reflect other static, query independent
scores like source authority [24] or media focus [23].

• The event score function Sev : E → [0, 1] returns a positive score for each e ∈ E. Events
can be scored according to their type and content (e.g. comment, share, click, like) [11] as
well as their author (e.g. friend versus anonymous [1]). Distance measures between the
author of an even the user subscribing a query could be also considered [19].

• The dynamic (feedback) score function Sdyn : I × T → [0,∞] aggregates the scores of all
events e ∈ E(i) with target i up to time instant τ :

Sdyn(i, τ) =
∑

e∈E(i),ts(i)≤ts(e)≤τ

Sev(e)

Observe that we only allow positive event scores and the aggregated event score is un-
bound.

3

• The total score of some item i w.r.t. some query q is defined a linear combination of the
query score Squ(q, i):

Stot(q, i, τ) = α · Squ(q, i) + (1− α) · Sdyn(i, τ)

Observe that feedback on items is ignored when α = 1 whereas items are only ranked with
respect to their feedback (independently from the query score) when α = 0. As a matter
of fact, we consider a general form of static and dynamic scoring function that abstracts
several score aspects of items proposed in the literature.

Figure 1: Top-2 result evolution of query q

Example 1 Figure 1 illustrates the high dynamicity of the query result of a single continuous
top-k query over real-time web streams. It shows the evolution of the top-2 result of some q
for item set Its = {a, b, c, d}. The score evolution of each item is represented by a stepwise
line where each monotonic increase corresponds to the arrival of some event (aggregated event
score). The minimum score of q is represented by a bold line. Each item has an initial positive
query score and the query result is updated seven times: at the arrival of a new item (item
match at τa, τb and τd) as well as at the arrival of a new event (event match at τ1, τ2, τ3 and
τ4). Observe that the arrival of a new item does not necessarily trigger a query result update
(e.g. arrival of c) and an item can disappear and reappear in the result (item b disappears at τd
and reappears at τ3).

Decay function To take account of information freshness [10], we consider an order-preserving
decay function decay(s, d) which can be applied to query, item or event score values s: given
a time duration d such that decay(s, 0) = s and decay(s, d) ≤ decay(s, d′) for all d > d′, i.e. if
s > s′, then decay(s, d) > decay(s′, d) for any duration d. Order-preserving decay functions2

allow in particular the use of the backward decay techniques [9] where all scores are computed,
stored and compared with respect to some fixed reference time instant τ0 used as a landmark.
It should be stressed that two possible semantics for event decay can be defined. The aggregated
decay semantics consists in applying decay to the aggregated event score with respect to the
target item age, whereas the event decay semantics consists in applying decay to each individual
event with respect to the event age. In the first case, all events have the same decay, whereas

2Whereas any linear or exponential function is order-preserving, it is possible to define polynomial functions
which are not order preserving.

4

the second case favors recent events to old ones. In the special case of linear decay both seman-
tics lead to the same results. The aggregated decay semantics maintains the order preserving
property, whereas the event decay semantics might change the item order for order preserving
exponential decay. In the following and in our experiments, we assume a linear order-preserving
decay function.

Formal semantics and problem statement We denote by P(q) the set of relevant items
which have a strictly positive query score Squ(q, i) > 0. The top-k result of a continuous query
q = (k,Squ,Sdyn, α) at some time instant τ , denoted R(q, τ, k), contains the subset of maximally
k relevant items i ∈ P(q) with the highest total scores Stot(q, i, τ). In other words, for each item
i ∈ R(q, τ, k) there exists no other (relevant) item i′ ∈ I − R(q, τ, k) with a higher total score
Stot(q, i′, τ) > Stot(q, i, τ). Using the backward decay technique described before, we suppose
that all scores are computed, stored and compared with respect to some fixed reference time
instant τ0 used as a landmark.

We can now state the general real-time top-k query evaluation problem which we will address
in the rest of this paper:

Problem statement 1 Given a query stream Qts, an item stream Its, an event stream Ets

and a total score function Stot (with order-preserving decay), maintain for each query q ∈ Qts
its continuous top-k result R(q, τ, k) at any time instant τ ≥ ts(q).

2.2 Query execution model

This top-k query maintenance problem can be reformulated into a sequence of updates triggered
by the arrival of new queries, items and events at different time-instants. We will consider a
fixed time instant τ and denote by

• Q(i) = {q|i ∈ R(q, τ, k)}, the set of active queries where item i is published at time instant
τ ;

• C(q) = {i|i 6∈ R(q, τ, k) ∧ Squ(q, i) > 0}, the set of all candidate items which might be
inserted into the result of q on a later time instant τ ′ > τ due to feedback score updates.

• C(i) = {q|i ∈ C(q)}, the set of all candidate queries for item i;

Example 2 For the example of Figure 1, during time interval (τ2, τd] , query q appears in the
active sets of items c and b. After the arrival of item d, query q is inserted into the active set of
d and moves from the active set to the candidate set of b. The arrival of a new event targeting
b at time instant τ3 switches q from the active (candidate) set to the candidate (active) set of d
(b).

Problem statement 1 can be decomposed into three separate matching tasks at a given time
instant τ :

Query matching: Given a query q, compute the set R(q, τ, k)+ of items that should be added
to the top-k result of q;

Item matching: Given an item i, identify the set Q(i)+ of all queries that should be updated
by adding i in their result.

Event matching: Given an event e with target item i = target(e), identify the set Q(i)+ of
all queries that should be updated by adding i to their result.

5

Observe that through the definitions of Q(i) and R(q, τ, k) all three matching tasks are
strongly related and some tasks could be partially solved by using others. For example, item
matching can be solved by re-evaluating (refreshing the result of) all queries while event match-
ing can be solved by re-executing the item matching task for its target item with the updated
event score. We will show in Section 3 and experimentally verify in in Section 5, this solution
exhibits serious performance limitations for information items with highly dynamic scores. In
the rest of this article we are mainly interested in the definition and implementation of an effi-
cient solution for the event matching task by relying on existing efficient solutions for the query
and item matching task.

Query evaluation architecture and algorithm As a matter of fact, by considering dis-
tinct matching tasks, we can devise a modular architecture and experiment with different data
structures and algorithms. As depicted in Figure 2 the main processing modules Query Handler
(QH), Item Handler (IH) and Event Handler (EH) are independent and share data structures
for indexing queries (Query Index) and items (Item Index). Events are not stored but dynami-
cally aggregated in the corresponding item scores and updated in the Item Index.

Figure 2: Architecture

The general interaction of these models for processing incoming queries, events and items is
illustrated in Algorithm 1. Function QH.processQuery() indexes each new incoming query q.
Functions IH.processItem() and EH.processEvent() match new incoming items and events
against the registered queries and identify the queries whose result (top-k set) have to be
updated. Function QI.matchItem computes Q(i)+ for a given item (contents) i with a positive
constant event score. This supposes that the Item Handler supports continuous top-k queries
with inhomogeneous score functions aggregating a query-dependent score (e.g. cosine similarity)
and a query-independent constant value (for example item popularity). Such an index structure
has been proposed for example in [27].

Function EH.matchEvent() matches each new incoming event and generates Q(target(e))+.
In the rest of this paper we are mainly interested in the efficient implementation of this function
and our approach will be described in Section 3. Function RTS.add() publishes item i in the
result of q. It also updates the publication and candidate sets for i and query q and, if necessary,
for item i′ which has been replaced by i in the result of q (see Example 2).

Theorem 1 Algorithm 1 guarantees that the results of all queries are correct.

Proof: [sketch] We assume that function II.matchQuery, QI.matchItem and EH.matchEvent

correctly compute the update sets R(q, τ, k)+ and Q(i)+, respectively, as defined in Section 2.
The correctness of the item matching function directly implies that all items are coherently
added to the query results by function RTS.add. We then have to show that an item can only

6

Algorithm 1: Real-time top-k query evaluation

1 QH.processQuery(q: Query)
2 QI.addQuery (q);
3 II.matchQuery (q);
4 foreach i ∈ R(q, τ, k) do
5 RTS.add (q,i);

6 IH.processItem(i: Item)

7 II.addItem (i);
8 QI.matchItem (i);
9 foreach q ∈ Q(i)+ do

10 RTS.add (q,i);

11 EH.processEvent(e: Event)
12 EH.matchEvent (e);
13 foreach q ∈ Q(target(e))+ do
14 RTS.add (q,i);

15 II.matchQuery(q: Query)
16 compute R(q, τ, k)+;

17 QI.matchItem(i: Item)

18 compute Q(i)+;

19 EH.matchEvent(e: Event)
20 compute Q(target(e))+; // see Section 3

21 RTS.add(q: Query, i: item)

22 remove top-k item (if it exists) from the result of q;
23 add item i to the result of query q;

7

be removed from the query result by being replaced by an item with a higher score (function
RTS.add). This can easily be shown by the fact that we allow only positive event scores (Stot
is monotonically increasing). Observe that with negative event scores, we would have to define
a new function RTS.del which allows to replace some item after one or several negative scores
and replace them by some other candidate item.

3 Event Handler algorithms

In this section we will present two algorithms for solving the (positive and negative) event
matching problems described in the previous section.

The first algorithm is called All Refresh (AR). The basic idea is to increase for each new
positive event e the query-independent score of its target item target(e) and to retrieve the
queries whose result have to be updated, by re-evaluating the item in the Item Handler.

Algorithm 2: The AR algorithm

1 EH.matchEventSimple(e : Event)
2 if Sev(e) == 0 then
3 return ∅;
4 i := target(e);
5 dynscore(i) := dynscore(i) + score(e);
6 II.updateItem(i);
7 QI.matchItem (i);
8 for q∈ Q(i)+ do
9 RTS.add (q,i);

Theorem 2 Algorithm AR is correct.

Proof: [sketch] We assume that function II.matchQuery, QI.matchItem and RTS.add are cor-
rect and condition AlgCorr(i) holds for target item i before the event. We show that for
a given item i there exists no query q ∈ C(i) where Stot(q, i) > Smin(q) after the execution
of EH.processEvent(e) processing an event e with target item i. EH.processEvent(e) calls
QI.matchItem (through function EH.matchEventSimple) and then RTS.add (i) after the up-
date of the dynamic score. By definition, the item matching function QI.matchItem returns
all queries where Stot(q, i) > Smin(q) and after processing RTS.add (i), Q(i) contains all these
queries.

The AR algorithm achieves an acceptable performance when events are quite rare, compared
to the item’s arrival rate, but becomes inefficient on a real-time web system suich as Twitter
with feedback events arriving from millions of users. In a highly dynamic setting we would
expect that a single event on an item, e.g. a single retweet or favorite, should have, on average,
a small impact on the set of queries that would receive it. However, by re-evaluating the item
through the Item Handler, we would have to re-compute a potentially long list of candidate
queries that have already received i.

We propose the Real Real-Time Search (R2TS) algorithm, which is based on the idea of using
the Item Handler for computing for each item a list of query candidates that could potentially
be updated by any future event. These lists are then processed by the Event Handler for
retrieving all queries whose result has to be updated with the item targeted by the incoming
events. Compared to AR, R2TS avoids examining the same list of candidate queries for an

8

item i each time a new event arrives targeting i. The efficiency of this algorithm relies on the
following observations:

• each item i has a partial set of query candidates q which might be updated by future
events;

• each event increases the score of a single item and triggers a limited number of updates

• there exists a maximal dynamic aggregated score θ(i)max for each item which depends on
the scoring function and the number of events it will receive.

The total scoring function (Equation 1) linearly increases the item score for each new event.
This leads to a straightforward way of choosing the candidates by setting a threshold θ(i) > 0 for
each item i which controls the number of query candidates and which is bound by the maximal
dynamic score i can receive by all future events.

Candidates and threshold condition: Given a positive threshold value θ, the candidates
|C(i, θ(i))| ⊆ Q of an item i is the set of queries: |C(i, θ(i))| = {q ∈ Q|Smin(q) ∈ (S(q, i), S(q, i)+
γ · θ]}. We say that the threshold condition T(e,θ) holds for some event e iff the dynamic score
of its target item does not exceed threshold θ: T(e, θ) = (Sdyn(target(e) + Sev(e)) < θ. It is
easy to see that when T(e,θ) is true, then all queries updated by e are in the candidate set
|C(i, θ(i))|. Otherwise, the candidate set is no longer valid and needs to be recalculated through
the Item Handler by increasing threshold θ.

The threshold-based approach of R2TS is detailed in Algorithm 3. Each new item i is
assigned with a constant positive threshold θ(i) (line 6) and a refresh counter r(i) (line 7).
θ = r(i) · θ(i) represents the aggregate threshold value after r(i) refresh steps. When a new
event arrives, function EH.matchEvent first increases the dynamic score (line 12) and updates
the item index. If the threshold condition does not hold, the candidate list is updated by
calling procedure EH.refreshCandidates. The instructions from line 23 to line 26 increment
the refresh counter and compute the query candidates by calling the item handler with the new
aggregated threshold (item c is a placeholder copy of item i with a virtual aggregated event
score corresponding to the threshold of i before the next refresh). Observe that for θ(i) = 0,
C(i) contains exactly all queries that have to be updated by the new event. At line 16 the
threshold condition holds for event e and EH.matchEvent copies all candidate queries q where
the minimum score of q is strictly smaller than the global score of i to the update set U(e)
(lines 16 to 19).

Theorem 3 Algorithm R2TS is correct for positive event scores.

Proof: [sketch] We have to show that both functions, IH.processItem and EH.matchEvent,
guarantee that for all items i and all queries q ∈ Q, if Stot(q, i) > Smin(q), then q ∈ Q(i)
(condition AlgCorr). It is easy to see that the correctness condition holds for some new item i
after the execution of function IH.processItem (proof of Theorem 1).

We now show that AlgCorr also holds after the execution of function EH.matchEvent. If
Sev(e) = 0 the result does not change (line 9). Otherwise, lines 11 to 13 update the event
score of target item target(e). Line 14 checks if the candidate set |C(i, θ(i))| of item i has to be
updated. If this is the case, lines 23 to 26 increment r(i) by one and recompute the candidate
set |C(i, θ(i))|. We know at line 16 that the candidate set |C(i, θ(i))| of i contains all queries
q ∈ Q−Q(i) where

Smin(q) ≤ Stot(q, i) = α · Squ(i, q) + (1− α) · r(i) · θ(i) (1)

9

Algorithm 3: The R2TSalgorithm

1 IH.processItem(i: Item)

2 II.addItem(i);
3 QI.matchItem(i);
4 for q∈ Q(i)+ do
5 RTS.add (q,i);

6 θ(i) := EH.initThreshold;
7 r(i) := 0;

8 EH.matchEvent(e: Event): set(Query)
9 if Sev(e) == 0 then

10 return ∅;
11 i := target(e);
12 Sdyn(i) := Sdyn(i) + Sev(e);
13 II.updateItem(i);
14 if Sdyn(i, τ) > r(i) · θ(i) then
15 EH.refreshCandidates(i);

16 for q ∈ |C(i, θ(i))| do
17 for i′ ∈ R(q, τ, k) do
18 if Stot(q, i)>Stot(q, i′) then
19 RTS.add (q,i);

20 EH.refreshCandidates(i: Item)

21 c := copy(i);
22 if θ(i) > 0 then
23 r(i) := r(i) + bSdyn(i, τ)/θ(i)c+ 1;
24 Sdyn(c, τ) := r(i) · θ(i);
25 QI.matchItem(c);
26 C(i):=Q(c)+ - Q(i);

Then we can show that |C(i, θ(i))| contains all queries that have to be updated by event e
(and other queries which are not updated). By definition and equation 1, for all queries q′ to
be updated by event e the following holds

Smin(q′) < Stot(q′, i) = Sstat(q′, i) + γ · Sdyn(i, τ)

≤ Sstat(q′, i) + γ · r(i) · θ(i)

which means that q′ ∈ |C(i, θ(i))| and if Stot(q, i) > Smin(q), then q ∈ Q(i) after executing
lines 16 to 19 (condition AlgCorr).

The challenge arising from this algorithm is twofold. Identify optimal threshold values θ(i)
for each item and index the obtained candidate queries in a way that allows efficient retrieval
of updates during the event matching operation (see Section 4).

Cost analysis: The choice of threshold θ(i) controls the number of candidate query refresh
operations and has an important impact on the overall performance of the system.

From Algorithm 3 we can easily understand that higher values of θ(i) minimize the number of
costly candidate refresh operations (by calling the Item Handler) but also might generate a large
number of false positive query candidates which will never be updated by an event targeting i.

10

On the other hand, low values of θ(i) lead to more frequent costly candidate re-evaluations on
the Item Handler.

In the following we will use the notation in Table 1. Under the assumption that each event

i target item

θ(i) estimated threshold value for i

θ(i)max estimated maximal aggregated
event score for i

Ni estimated total number of events
for i

r(θ(i)) estimated number of candidate
refresh operations for i

costIH(i, θ(i)) aggregated item matching cost

costEH(i, θ(i)) aggregated event matching cost

|C(i, θ(i))| average size of the candidate list
of item i.

costT cost of checking if item i updates
candidate q

costM(i) average item matching cost for i

costC(i, θ(i)) average candidate list construc-
tion cost for i and θ(i)

cost(i, θ(i)) aggregated total matching cost

Table 1: Cost function parameters

targets only one item and that items are processed independently, we are interested in finding an
optimal value for the threshold value θ(i) that minimizes the aggregated total cost cost(i, θ(i))
for each item i. This local optimization leads to a globally optimized evaluation cost.

By definition the total aggregated matching cost is defined by the sum of the aggregated
item and the aggregated event matching costs:

cost(i, θ(i)) = costIH(i, θ(i)) + costEH(i, θ(i))

If we suppose that all events have the same event score Sev(e), then r(θ(i)) = dθ(i)max/θ(i)e.
We can estimate the aggregated item and event matching costs costIH(i, θ(i)) and

costEH(i, θ(i)) as follows (Algorithm 3). First, each candidate list is refreshed r(θ(i)) times
where each refresh consists in matching the item and constructing the candidate list (function
EH.refreshCandidates):

costIH(i, θ(i)) = r(θ(i)) · (costM(i) + costC(i, θ(i))) (2)

Second, each event is matched in the Event Handler Ni times. Supposing that there is no
early stopping condition when checking the candidates, the cost of every event match operation
depends on the average size of the candidate list |C(i, θ(i))| and on the (constant) cost costT of
checking if item i updates a given query candidate q:

costEH(i, θ(i)) = Ni · |C(i, θ(i))| · costT (3)

Finding optimal θ(i): The value of |C(i, θ(i))| depends on the distribution of the query
minimum scores. Our cost model relies on the assumption that the average size of all candidate
lists produced by each refresh step linearly depends on threshold value θ(i): |C(i, θ(i))| = a ·θ(i),

11

where a is a positive constant3. Similarly, we assume that the candidate creation costC(i, θ(i))
depends linearly on θ(i): costC(i, θ(i)) = b·θ(i). This cost abstractions simplify the computation
of the optimal θ(i)and they have been also experimentally validated.

Given r(θ(i)) = θ(i)max/θ(i) (we consider here the real value instead of the integer floor
value), Equations (2) and (3) the total cost(i, θ(i)) can be written as:

cost(i, θ(i)) =
1

θ(i)
·

c1︷ ︸︸ ︷
θ(i)max · costM(i)

+θ(i) ·Ni · a · costT︸ ︷︷ ︸
c2

+ θ(i)max · b︸ ︷︷ ︸
c3

We minimize the cost function using the first derivative:

d(cost(i, θ(i)))

dθ(i)
= − c1

(θ(i))2
+ c2

Function cost is monotonically decreasing in the interval (0,
√
c1/c2) and increasing in

(
√
c1/c2, θ(i)

max], thus making θ(i) =
√
c1/c2 the optimal value:

θ(i)opt =

√
1

a
· θ(i)

max

Ni
· costM(i)

costT

This equation essentially shows that θ(i)opt depends on the query distribution in the Item
Handler index (first factor) and increases with the ratio costM(i)/costT between the item
matching cost and the event test cost (third factor).

4 Candidate indexing

The Event Handler matches incoming events against a precomputed list of query candidates
which has to be regularly refreshed. In the above cost model, we do not take account of the
cost of maintaining the candidate list. This cost clearly depends on the size of the list, as well
as, on the choice of the data structures for indexing candidates in the Event Handler. In this
section we introduce three indexing schemes aiming to optimize the cost of storing and retrieving
candidates. We are particularly interested in finding efficient early stopping conditions during
event matching in order to avoid visiting all candidates.

The main task of the Event Handler is to retrieve result updates triggered by any arriving
event. Since each event e increases the score of a single item target(e), these updates will
only concern a subset of this item’s candidate queries. Hence, the building block of all the
indexes we propose is a dictionary from each item to its set of candidates. The proposed
indexes aim at organizing the posting lists, i.e. the candidates sets in a way that decreases the
number of false positives encountered during event matching and to efficiently support insertions
and deletions. Although deletion in both cases in not necessary for the correctness of the
algorithm, maintaining these queries as candidates would lead to an unnecessary number of false
positives, deteriorating the overall event-matching performance for following event evaluations.
A straightforward implementation of the Event Handler posting lists is to maintain an unordered
set of candidates as illustrated in Figure 3-(a). Assuming a dynamic array implementation of
this index, insertions and deletions of candidates can be performed in (amortized) constant time.

3A more precise cost model estimating the optimal threshold for each individual refresh would need a
query/item/event distribution model which is difficult to obtain for a real-world workload.

12

(a) (b) (c)

Figure 3: (a)Simple (b)Ordered (c)Partitioning indexes

On the one hand, if θ(i) is large enough, this solution has the advantage of avoiding candidate
list updates for a potentially big number of arriving events (as long as the θ(i)-condition holds).
On the other hand, it is not possible to apply any early stopping condition, and all candidate
queries need to be checked for updates.

Following the “sort and prune” principle, we try to define an efficient ordering and ap-
propriate data structures for matching query candidates that will allow us to define an early
stopping condition (Figure 3-(b)). As defined in Section 3, a query q is a candidate of an item i
if diff(q, i) = Smin(q)−S(q, i) ∈ (0, θ(i)] and diff(q, i) represents the lower dynamic score bound
i must receive before updating q(Smin(q) is monotinically increasing). So, if candidates are
ordered by value diff(q, i), on event arrival, it is sufficient to visit only candidates with negative
diff(q, i). Notice that this set of visited candidates guarantees not only zero false negatives but
also zero false positives. Nevertheless, maintaining this order in a dynamic environment is a
non-trivial problem: from the moment a query becomes a candidate of an item i until to a
new event with target i, the minimal scores of other candidates might have changed (increased)
due to result updates or, more frequently, due to events received by their k-th item. In the
following, we will discuss the implications of maintaining the accurate order and present two
lazy re-orderinf approaches reducing update costs.

Exhaustive ordering Index: This solution accurately maintains the order of query candidates
by the score difference diff(q, i). To achieve this, it executes all necessary re-orderings on each
Smin(q) change, independently to whether it is due to an event or an item and in all postings of
items that q is a candidate. We will observe in our experiments that in a real-world workload
the performance gains from avoiding false positives are outperformed by the time wasted to
maintain the order.

The following two solutions follow a lazy re-ordering approach, in order to achieve a rea-
sonable trade-off between the cost of eliminating false positives and the cost of re-orderings
candidates.

Static-order Index: This solution sorts all candidates only at the creation of the candidate
list. New queries are inserted to the beginning of the candidate lists, independently of their
diff(q, i) values. All minimal score Smin(q) changes are also ignored. On event arrival, the
matching algorithm vists all candidate queries for which the stored (and not actual) difference
score is lower than the item’s dynamic score: diff(q, i) < Sdyn(i, τ). It is easy to show that this
condition is safe but also converges with time to the previous simple Event Handler solution.

Lazy re-ordering Index: The two previous approaches either have a very high maintenance

13

cost due to frequent re-ordering operations (Exhaustive), or an inefficient event matching due
to lack of maintenance of this order (Static-order). The Lazy approach lies in-between by
following a lazy “on false-positive” update approach. Given an item i, any order changes caused
by minimal score updates are ignored until the next arrival of a new event with target i. The
heuristics behind this approach is that many re-orderings of the Exhaustive approach never are
exploited because candidate queries are moved several times before actually being visited on an
event arrival. Therefore, the Lazy approach attempts to minimize the number of re-orderings
at the expense of introducing false positives on event matching. Given that in the general case
the cost of re-ordering an element in a sorted list has a logarithmic complexity, while the cost
of eliminating a false positive is constant, the Lazy approach is expected to outperform the
Exhaustive one.

Item Partitioning Event Handler: Ordered indexes reach their limits for highly varying
diff(q, i) values. The Item Partitioning approach relies on the following observation: if two
queries q1 and q2 are both candidates of an item i and both have the same item i’ as their
k-th result item, both difference score values diff(q1, i) and diff(q2, i) are synchronized and the
relative order of both queries in the posting list of i will remain the same. For this reason,
we organize the query candidates of each item, with respect to their k-th element. The order
assigned in each such group during insertion remains constant for as long as their k-th result
remains the same, i.e. as long as they do not receive any updates. For example, in Figure 3, item
i has 5 candidate queries, two of which (q2 and q5) have i’ as their k-th element. These queries
are grouped together (Figure 3-(c)) in a sorted list, (ordered according to diff). For as long as i’
remains the k-th element of both these candidate queries, the ordering of the list is static. On
event arrival, the matching operation checks each one of these groups if the corresponding item,
until reaching true negative candidate. In case of an update, however, of a query q by an item,
q has to be re-indexed in the group of its new k-th element in all items where it is a candidate.
Despite the additional cost on the query update operation, as we will see later in Section 5, the
minimization of both re-orderings (only on the case of updates) and false positives leads to an
overall better performance than the previous approaches.

5 Experiments

In this section we experimentally evaluate the algorithms presented in Section 3 and the data
structures proposed in Section 4, using a real dataset collected from Twitter’s public streams.
Through these experiments we compare the performance of the R2TS algorithm implemen-
tations over the simple candidates (Simple), the lazy ordering (LazyOrder) and the item
partitioned (ItemPart) index with the näıve approach of the AR algorithm (Naive) over a
number of parameters, like the total number of stored continuous queries, the size k of query
result lists, and the weight of user feedback (γ) on the total score function. Additionally, we are
interested in assessing the impact of the θ(i) tuning parameter over the overall system perfor-
mance. Our experiments rely on a slightly modified version of the item matching algorithm4

(Item Handler) presented in [27] to additionally detect candidate queries given a value of θ(i).
Experiments were conducted using an Intel Core i7-3820 CPU@3.60. Algorithms were im-

plemented in Java 7 and executed using an upper limit of 8GB of main memory (-Xmx8g). The
configuration used only one core for the execution of the different algorithms. We present the
average execution times of three identical runs after an initial warm-up execution. All queries
were stored before any item or event evaluation and their insertion time is not included in the
results. We collected a real-world dataset from the Twitter Stream API over a period of 5

4Available as an open source library continuous-top-k: https://code.google.com/p/continuous-top-k/

14

#items #events min avg

DS1 10 676 097 13 787 349 1 1.29
DS5 (default) 201 581 2 013 427 5 9.99
DS10 56 417 1 105 639 10 19.60

Table 2: Number of items and events in each dataset

parameter default value range

#queries 900 000 [100 000, 900 000]

α 0.3 (1− γ)/2
β 0.3 (1− γ)/2
γ 0.4 [0.05, 0.95]

k 1 [1, 20]

θ(i) strategy θ(i)max/2 [0, 0.2] or [0, θ(i)max]

Table 3: Experimental parameters

months (from March to August 2014). In our data model, an original tweet corresponds to an
item and a retweet to a feedback signal, i.e. an event for the original item. From this set we
have filtered out non-English tweets, as well as those without any retweets (events), leading to
a dataset of more than 23 million tweets and retweets (DS1) (Table 2). Two additional subsets
were created by considering only tweets (and the corresponding retweets) with at least 5 (DS5)
or 10 retweets (DS10) per item. DS5 dataset is the default dataset for the experiments and con-
tains 2.2 million tweets and retweets. Queries were generated by uniformly selecting the most
frequent n-grams of 1, 2 or 3 terms from the tweet and retweet dataset leading to an average
length of 1.5 terms per query. In each of the following experiments we change one parameter
within a given range, while all system parameters remain constant. Table 3 shows the default
values for each parameter, as well as the range of each parameter used for the corresponding
experiments.

Exact maximal threshold θ(i)max: In this experiment we use as maximal threshold θ(i)max

the exact final aggregated event score Sdyn(i, τ) (Equation 2.1) of each item i. The horizontal
axis of Figure 4a represents the percentage (from 0 to 100%) of the θ(i)max value assigned as
θ(i) value to an incoming item while the vertical axis represents the time required to match the
items and events of the dataset DS5. Naive execution time is independent of the θ(i) value and
thus shown as a constant line. Note that in the special case of θ(i) = 0 all indexes converge to
the Naive one. ItemPart outperforms the other three indexes, while LazyOrder has higher
execution time than Simple, despite the early stopping condition defined. The relatively good

(a) Time exact threshold
θ(i)max/Th

(b) Selectivity exact threshold
θ(i)max/Th

(c) Time global threshold value θ

Figure 4: Exact and Global Threshold

15

(a) Number of queries (b) Dynamic score weight γ (c) Result parameter k

Figure 5: Scalability

performance of Simple is attributed to the low maintenance cost (no re-orderings) and the use
of a dynamic vector data structure, which guarantees fast access, insertions and deletions. These
factors compensate for the lack of an early stopping condition. LazyOrder and ItemPart
use much “heavier” data structures and need to prune a large portion of the candidates lists in
order to outperform Simple.

We can also observe a particular pattern in this plot: execution time exhibits local minima
for θ(i) values which are fractions of θ(i)max, i.e., 100%, 50%, 33%, 25% etc. To understand this
form, consider for example the case of θ(i) = 0.5 · θ(i)max. On the first evaluation of any given
item i, the list of candidates with a difference up to θ(i) is computed. Since θ(i) corresponds to
half the maximal value of the aggregated item score, the item will be re-evaluated through the
Item Handler a second time, and there will be no need for a third evaluation. When a higher
value is chosen, e.g., 0.6 · θ(i)max, two evaluations in the Item Handler would also be required,
with the difference that some already known candidates would be retrieved again. Hence, an
additional cost incurs to a) compute the redundant candidates and b) to filter out the probably
higher number of false positives on event matching in the Event Handler.

Figure 4b shows the average percentage of lists visited, until the stopping condition becomes
true. The size of the candidate lists is the same for all algorithms for the same θ(i) threshold.
Simple always visits 100% of the lists due to the lack of a stopping condition. We can observe
that ItemPart has a 20% smaller execution time (Figure 4a) while visiting in average only 5%
of the candidate lists.

Global threshold θ: In this experiment we assign the same θ value to all items without using
any knowledge of the maximal dynamic score per item. Figure 4c shows, for each absolute value
θ assigned to all items, the time required to evaluate the whole dataset (DS5). We can observe
that as the value of θ(i) increases from 0, there is a quick improvement in the performance of the
indexes Simple, LazyOrder and ItemPart while after exceeding the optimal θ(i) point, it
deteriorates with a smaller slope: for very small values of θ, the lists become frequently obsolete
(when the θ(i)-condition no longer holds) and a large number of incoming events need to be
evaluated in the Item Handler. This explains the first phase where execution time decreases.
As values of θ become much bigger, the lists become longer: computing the candidates becomes
more costly and more false positives are likely to appear. Unlike in the previous experiment the
three indexes exhibit similar performance with no more than 5% of difference in execution time.
This behavior indicates that the stopping condition for both LazyOrder and ItemPart fails
to prune as much query candidates as in the previous experiment. This is attributed to the
arbitrary assignment of the same θ value to all items. For some items this value can be large
w.r.t. θ(i)max and the algorithms thus spend unnecessary time for finding candidate queries
which will never be used. On the other hand, a small value of the θ(i) w.r.t. θ(i)max means
that there will be to many costly evaluations of events in the Item Handler.

16

Scalability and throughput: In this experiment, we are interested in the scalability of our
indexes w.r.t. the number of continuous queries stored in the system (index creation time is
excluded from our measurements). As we can see in Figure 5a all implementations scale linearly
with the number of continuous queries. ItemPart scales better: over 100, 000 queries it
requires 50% of the corresponding time for Naive while over 900, 000 it only requires 36%. The
low slope of ItemPart indicates the good performance of its stopping condition to prune more
candidate queries over increasing list sizes. In terms of throughput, over 900, 000 continuous
queries ItemPart is able to serve using a single CPU core an average of 3.2 million items
(tweets) or events (retweets) per minute which is one order of magnitude more than the number
of tweets Twitter actually receives. Over a total of 100, 000 stored continuous queries the
throughput would go up to 10.9 million items and events per minute.

Item/event score weight γ: In this experiment, we vary the weight of the dynamic score
(aggregating event scores) to the total score of an item (i.e., the γ parameter in Equation 1).
Recall that when γ is small, each arriving event has a minimal impact on the total item score and
only a small number of queries will be updated by the corresponding target items of incoming
events. As shown in Figure 5b, Naive performance improves for values of γ up to 0.2 and then
exhibits a constant behavior. On the contrary, the three other indexes require a higher execution
time for greater γ values. In fact, the more γ becomes important, the more the initial static
score between queries and items becomes obsolete. As score changes due to any single event
become more significant, the candidate lists computed on item matching are soon invalidated
given that minimal score of indexed candidate queries has changed. This leads to an increasing
number of false positives and explains the increase in execution time. For realistic γ values in
[0.1, 0.5] the performance difference of any of these three indexes to their optimal value is of
less than 10%.

Result size k: Figure 5c shows the performance of the four indexes over different values of
the k parameter. Higher k values result in lower values of minimal scores for the stored queries
and consequently increase the number of item updates received by the queries. As we can see
in Figure 5c all indexes scale linearly on the value of k and that ItemPart and Simple exhibit
a better performance of about 20% than the other two indexes when the k = 20.

Events per item: In this experiment we measure the overall performance of our indexes
over the three datasets DS1, DS5 and DS10 (see Table 2) that feature a different average
number of events each of the items receives: DS1 has an average of only 1.29 events per item
while DS10 has 19.60. Figure 6 shows per dataset the average execution time for matching
a single item or event along with the average number of updates (#updates) implied. We
can observe that for all indexes execution time increases proportionally w.r.t. the number of
updates. Additionally, the performance of the R2TS algorithm for the three indexes (Simple,
LazyOrder and ItemPart) is better than Naive as the number of events per items increases.
Over the DS1 dataset (with the smallest number of events/item), ItemPart, which is the best
performing index, needs 68% of the time required by Naive, while over DS10 it only requires
29,8%.

Decay: In our final experiment in Figure 7, we measure the performance of all indexes over
linear decay. The horizontal axis shows the time it would take for a score of 1.0 to decay to 0, i.e.,
the maximum expiration time of an “idle” item (an item receiving no further events). A general
observation is that as score decay becomes faster, indexes performance become worse: fast decay
leads to a high number of updates (see number of updates in Figure 7), which in turn, leads to
a higher delay in matching items and events. More precisely, while Simple exhibits a 20-30%
overhead over Naive the performance of LazyOrder and ItemPart becomes worse than
Naive even with a small decay factor. This behavior indicates that the ordering maintained by

17

these two indexes becomes very dynamic and the stopping condition employed, is not sufficient
to overcome the high maintenance cost. Simple on the other hand, does not require any order
maintenance and achieves a faster item and event matching time.

Conclusions on the experiments: Our experiments demonstrate that the ItemPart and
Simple solutions outperform the Naive and LazyOrder ones over all settings, with ItemPart
having a slight edge over Simple of about 5%. Comparing the stopping conditions, ItemPart
manages to filter with the defined stopping condition a big percentage of the candidate lists and

Figure 6: Scalability events per item

Figure 7: Scalability (linear) decay

on most cases only had to visit about 10% of the candidates before having correctly identified
all updates and stopping the algorithm. However, the heavy data structures maintained for
each item (an unsorted set of sorted lists) only allows ItemPart to require from 50 to 35% the
time used by the Naive index, which always visits all stored candidates. Our indexes perform
better over highly dynamic environments with high numbers of events per published item.

18

6 Related work

Real-time search engines: Twitter Index (TI) was the first system proposed for real time
search [3]. It relies on a general form of scoring functions combining linearly textual similarity
of items to queries with (static and dynamic) query-independent parameters. A “User PageR-
ank” authority measure is employed to estimate statically the importance on an item while its
dynamic score is computed by counting tweet replies. A rational decay function is applied on
the result to capture the freshness of information: Stot(q, i)/∆τ , where Stot(q, i) is the initial
query-item score and ∆τ is the time difference since the publication of the item. TI adopts a
partial indexing approach that distinguishes frequent keyword queries from infrequent ones. For
any new tweet, if it is relevant to at least one frequent query, it is inserted into an inverted index
immediately; otherwise, it is inserted to an append-only log, the content of which is periodically
flushed into the inverted index. However, user queries are evaluated only using the inverted
index without looking at the log. The posting lists of this index are ordered on decreasing
arrival time of tweets to privilege access to recent tweets even without sufficient consideration
of their relevance to queries.

Deeper insights on how Twitter’s Search actually works have been published in [2]. To
efficiently index all incoming tweets, Earlybird uses compression techniques for tweets’ contents
and for long posting lists, multi-threaded algorithms and resources allocation optimizations. It
relies on an append-only inverted index where each posting list stores tweets sorted by arrival
time. This order enables to consider an effective stopping condition: when, during the traversal
of the posting list, k items with a similarity score greater than a value smin have been found,
the scanning of the posting lists can stop iff smin is greater than the maximal value of any
other available tweet given that it is published exactly the same time as the one currently being
checked. The estimation of this maximal value is based on the score decay function. Several
works that followed [31, 22, 19] proposed improved versions of the inverted index for increasing
the accuracy of results returned to real-time search or for supporting various forms of analytic
queries without considering continuous query evaluation issues.

Top-k publish/subscribe on text streams: The Incremental Threshold (IT) algorithm [25]
was the first work that introduced continuous top-k queries with sliding information expiration
windows to account for information recency. It maintained two inverted indexes: one for queries
and the other for items. The latter contains only the most recent items belonging to the current
window and its posting lists are sorted by decreasing weight of the terms assigned to represent
the items. In the former the posting lists are sorted in decreasing order of a value θq,t, where
t is the term of the posting list and q the continuous query that contains it. IT relies on the
Fagin’s Threshold Algorithm (TA) to evaluate queries and on an early stopping condition to
maintain their result lists. It continuously updates the inverted index on item publication and
expiration and thus incurs a high system overhead. This limitation is addressed by the COL-
filter algorithm [15] maintaining only an inverted index of queries with a sorted posting list
for each query term. The sorting criteria takes account for the term weight and the minimum
query score and allows to define a necessary and sufficient stopping condition for monotonic,
homogeneous scoring functions such as cosine or Okapi-25. [15] maintains posting lists where
queries are sorted according to the minimum top-k scores and items expire after some fixed
time period (window based decay). Minimum top-k scores can change frequently and induce
an important resorting overhead. This body of work cannot address continuous top-k queries
beyond query-dependent item scores (i.e., content similarity). Efficient stopping conditions
over a two-dimensional representation of queries featuring both a query-dependent and query-
independent scores (with time decay) have been firstly proposed in [27]. In this paper, we
leverage the item matching algorithm implementing the Item Handler for static scores with

19

time decay and propose several alternative index structures for implementing event matching
in the Event Handler (see Figure 2) that accounts for the dynamic score of items due to social
feedback.

Finally, [26] considers the problem of annotating real-time news stories with social posts
(tweets). The proposed solution adopts a top-k publish-subscribe approach to accommodate
high rate of both pageviews (millions to billions a day) and incoming tweets (more than 100
millions a day). Compared to our setting, stories are considered as continuous queries over
a stream of tweets while pageviews are used to dynamically compile the top-k annotations of
a viewed page (rather than for scoring the news). The published items (e.g., tweets) do not
have a fixed expiration time. Instead, time is a part of the relevance score, which decays as
time passes. Older items retire from the top-k only when new items that score higher arrive.
This work adapts, optimizes and compares popular families of IR algorithms without addressing
dynamic scoring aspects of top-k continuous queries beyond information recency, namely TAAT
(term-at-a-time) where document/tweet scores are computed concurrently one term at a time,
and DAAT (document-at-a-time) where the score of each document is computed separately.

Top-k publish/subscribe on spatio-textual streams: AP (Adaptive spatial-textual
Partition)-Trees [30] aim to efficiently serve spatial-keyword subscriptions in location-aware
publish/subscribe applications (e.g. registered users interested in local events). They adaptively
group user subscriptions using keyword and spatial partitions where the recursive partitioning
is guided by a cost model. As users update their positions, subscriptions are continuously
moving. Furthermore, [29] investigates the real-time top-k filtering problem over streaming in-
formation. The goal is to continuously maintain the top-k most relevant geo-textual messages
(e.g. geo-tagged tweets) for a large number of spatial-keyword subscriptions simultaneously.
Dynamicity in this body of work is more related to the queries rather than to the content and
its relevance score. Opposite to our work, user feedback is not considered. [6] presents SOPS
(Spatial-Keyword Publish/Subscribe System) for efficiently processing spatial-keyword contin-
uous queries. SOPS supports Boolean Range Continuous (BRC) queries (Boolean keyword
expressions over a spatial region) and Temporal Spatial-Keyword Top-k Continuous (TaSK)
query geo-textual object streams. Finally, [5] proposes a temporal publish/subscribe system
considering both spatial and keyword factors. However, the top-k matching semantics in these
systems is different from ours (i.e., boolean filtering).

In our work, online user feedback is part of the ranking score of items, which renders ex-
isting spatial-keyword solutions inapplicable, while challenges index structures and matching
algorithms for top-k continuous query evaluation.

7 Conclusions

To support real-time search with user feedback, we have introduced a new class of continuous
top-k queries featuring complex dynamic scores. The main problem we solved in this context,
is the search of queries that need to update their result lists when new information items
and user events affecting their scores, arrive. To accommodate high arrival rates of both items
and events, we have proposed three general categories of in-memory indexes and heuristic-based
variations for storing the query candidates and retrieving the result updates triggered by events.
Using an analytic model we have theoretically proven efficient early stopping conditions avoiding
visiting all candidate queries for each item. Our experiments validated the good performance
of our optimized matching algorithm. All three indexes for candidate maintenance (Simple,
LazyOrder and ItemPart) achieve a high throughput of items and events, with ItemPart
being able to handle 3.2 million events per minute over 900 thousand stored continuous queries.
This performance has been achieved using a centralized single-threaded implementation of our

20

algorithms. The usage of posting-lists as basic data structures for filtering events opens a
number of opportunities for parallelization. The main challenge in this direction concerns the
reordering cost of the ordered solutions (LazyOrder and ItemPart) with early stopping
conditions. One direction of future work is to consider workload-oriented parallelization by
identifying independent item clusters (for example, with disjoint query keywords). Another
direction is to extend the unordered solution Simple, which is certainly a good candidate for a
first parallel implementation Finally, we intend to study richer top-k query settings with random
negative feedback scores. The efficiency of our solution is strongly based on the monotonicity
of the scoring function and adding negative score might need the exploration of completely
different multi-dimensional indexing approaches.

References

[1] A. Alkhouli, D. Vodislav, and B. Borzic. Continuous top-k processing of social network
information streams: a vision. In In ISIP 2014 post proceedings, Springer 2015, 2015.

[2] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird: Real-time
search at twitter. In IEEE 28th International Conference on Data Engineering (ICDE),
pages 1360–1369, April 2012.

[3] C. Chen, F. Li, B. C. Ooi, and S. Wu. Ti: An efficient indexing mechanism for real-time
search on tweets. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 649–660. ACM, 2011.

[4] L. Chen, G. Cong, and X. Cao. An efficient query indexing mechanism for filtering geo-
textual data. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 749–760, New York, NY, USA, 2013. ACM.

[5] L. Chen, G. Cong, X. Cao, and K. Tan. Temporal spatial-keyword top-k publish/subscribe.
In 31st IEEE International Conference on Data Engineering, pages 255–266, Seoul, South
Korea, 2015.

[6] L. Chen, Y. Cui, G. Cong, and X. Cao. Sops: A system for efficient processing of spatial-
keyword publish/subscribe. Proc. VLDB Endow., 7(13):1601–1604, Aug. 2014.

[7] J. Cho and H. Garcia-Molina. Effective page refresh policies for web crawlers. ACM Trans.
Database Syst., 28(4):390–426, 2003.

[8] V. Christophides and T. Palpanas. Report on the first international workshop on personal
data analytics in the internet of things (pda@iot 2014). SIGMOD Rec., 44(1):52–55, May
2015.

[9] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. Forward decay: A practical time
decay model for streaming systems. In IEEE International Conference on Data Engineering
(ICDE’09), pages 138–149, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[10] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and H. Zha. Time is
of the essence: Improving recency ranking using twitter data. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages 331–340. ACM, 2010.

[11] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum. An empirical study on learning
to rank of tweets. In Proceedings of the 23rd International Conference on Computational

21

Linguistics, COLING ’10, pages 295–303, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[12] M. Grinev, M. P. Grineva, M. Hentschel, and D. Kossmann. Analytics for the realtime
web. PVLDB, 4(12):1391–1394, 2011.

[13] L. Guo, D. Zhang, G. Li, K.-L. Tan, and Z. Bao. Location-aware pub/sub system: When
continuous moving queries meet dynamic event streams. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 843–857, New York,
NY, USA, 2015. ACM.

[14] A. Gupta and P. Kumaraguru. Credibility ranking of tweets during high impact events. In
Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, PSOSM
’12, pages 2:2–2:8. ACM, 2012.

[15] P. Haghani, S. Michel, and K. Aberer. The gist of everything new: personalized top-k
processing over web 2.0 streams. In Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM’10), pages 489–498. ACM, 2010.

[16] R. Horincar, B. Amann, and T. Artieres. Online change estimation models for dynamic web
resources. In M. Brambilla, T. Tokuda, and R. Tolksdorf, editors, Web Engineering, volume
7387 of Lecture Notes in Computer Science, pages 395–410. Springer Berlin Heidelberg,
2012.

[17] A. Khodaei and C. Shahabi. Social-textual search and ranking. In Proceedings of the First
International Workshop on Crowdsourcing Web Search, Lyon, France, April 17, 2012,
pages 3–8, 2012.

[18] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th International Conference on World Wide Web, WWW
’10, pages 591–600, New York, NY, USA, 2010. ACM.

[19] Y. Li, Z. Bao, G. Li, and K.-L. Tan. Real time personalized search on social networks.
In Data Engineering, 2015 IEEE 31st International Conference on, pages 639–650, April
2015.

[20] J. Lin and G. Mishne. A study of ”churn” in tweets and real-time search queries. In
Proceedings of the Sixth International Conference on Weblogs and Social Media (ICSWM),
Dublin, Ireland, 2012.

[21] J. Liu, P. Dolan, and E. R. Pedersen. Personalized news recommendation based on click
behavior. In Proceeding of the 14th international conference on Intelligent user interfaces
(IUI’10), IUI ’10, pages 31–40. ACM, 2010.

[22] A. Magdy, M. Mokbel, S. Elnikety, S. Nath, and Y. He. Mercury: A memory-constrained
spatio-temporal real-time search on microblogs. In Data Engineering, 2014 IEEE 30th
International Conference on, pages 172–183, March 2014.

[23] X. Mao and W. Chen. A method for ranking news sources, topics and articles. In Computer
Engineering and Technology (ICCET), 2010 2nd International Conference on, volume 4,
pages 170–174, Apr. 2010.

[24] Y. Miao, C. Li, L. Yang, L. Zhao, and M. Gu. Evaluating importance of websites on news
topics. In PRICAI 2010: Trends in Artificial Intelligence, volume 6230 of LNCS, pages
182–193, 2010.

22

[25] K. Mouratidis and H. Pang. Efficient evaluation of continuous text search queries. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 23:1469–1482, 2011.

[26] A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski. Top-k publish-subscribe for social
annotation of news. Proc. VLDB Endow., 6(6):385–396, Apr. 2013.

[27] N. Vouzoukidou, B. Amann, and V. Christophides. Processing continuous text queries
featuring non-homogeneous scoring functions. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages 1065–1074.
ACM, 2012.

[28] C. Wang, M. Zhang, L. Ru, and S. Ma. Automatic online news topic ranking using media
focus and user attention based on aging theory. In Proceeding of the 17th ACM Conference
on Information and Knowledge Management (CIKM’08), pages 1033–1042. ACM, 2008.

[29] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang. Skype: Top-k spatial-keyword
publish/subscribe over sliding window. Proc. VLDB Endow., 9(7):588–599, Mar. 2016.

[30] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree: Efficiently support
location-aware publish / subscribe. The VLDB Journal, 24(6):823–848, 2015.

[31] L. Wu, W. Lin, X. Xiao, and Y. Xu. Lsii: An indexing structure for exact real-time search
on microblogs. In Data Engineering (ICDE), 2013 IEEE 29th International Conference
on, pages 482–493, 2013.

23

	1 Introduction
	2 Real-time top-k queries
	2.1 Data Model
	2.2 Query execution model

	3 Event Handler algorithms
	4 Candidate indexing
	5 Experiments
	6 Related work
	7 Conclusions

