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Abstract In computability theory and computable analysis, finite programs
can compute infinite objects. Such objects can then be represented by finite
programs. Can one characterize the additional useful information contained
in a program computing an object, as compared to having the object itself?
Having a program immediately gives an upper bound on the Kolmogorov com-
plexity of the object, by simply measuring the length of the program, and such
an information cannot usually be derived from an infinite representation of the
object. We prove that bounding the Kolmogorov complexity of the object is
the only additional useful information. Hence we identify the exact relation-
ship between Markov-computability and Type-2-computability. We then use
this relationship to obtain several results characterizing the computational and
topological structure of Markov-semidecidable sets.

This article is an extended version of [8], including complete proofs and a
new result (Theorem 9).
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1 Introduction

We assume that the reader is familiar with Turing machines and basic com-
putability theory over the natural numbers. To define computability over infi-
nite objects, one still uses Turing Machines but has to set up a way for them
to access such objects. In any case, the input of the machine is a finite or
infinite sequence of symbols written on the input tape and one has to choose a
suitable way to describe infinite objects by such symbolic sequences. We now
briefly describe the two main approaches that have been developed.

The first one was introduced and studied by Turing [22], Grzegorczyk [6],
Lacombe [11] and later Kreitz and Weihrauch [23] and is nowadays known as
Type-2-computability. In this model, the description itself is completely writ-
ten on the input tape of the machine. At any time, the machine can read a
finite portion of this description. We will call this the Type-2-model (the
machine computes a functional of order type 2, i.e. taking a function of or-
der type 1 as input). The second approach, promoted by the Russian school
led by Markov [12,10], gives an alternative. In this model one restricts the
action of the machine to operate on computable (infinite) objects only, in the
sense that they have computable descriptions. Instead of having access to the
description itself as in the Type-2-model, the machine here has access to a pro-
gram computing a description. We will call this the Markov-model (it could
also be called Tpye-1 model). These two approaches provide a priori different
computability notions, and their comparison has been an important subject
of study [15,13,20,9,1,4,14,7,21].

It is clear that the Markov-model is at least as powerful as the Type-2-
model, so the question is: does it allow to compute strictly more than the
Type-2-model? The answer depends on the input objects that we consider,
and the algorithmic tasks we want to perform on them. The computational
power of these models can therefore be classified according to these param-
eters. Table 1 summarizes the most celebrated results in this direction. The
computable objects considered are the partial computable functions and the
total computable functions. The algorithmic tasks considered are decidability
and semidecidability of properties about these objects.

Table 1 Some celebrated results comparing Markov-computability to Type-2-
computability.

Objects Decidability Semidecidability
Partial computable functions Markov = Type-2 Markov = Type-2
Rice Rice—Shapiro

Total computable functions | Markov = Type-2 | Markov > Type-2
Kreisel et al/Ceitin Friedberg
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Kreisel-Lacombe-Sheenfield /Ceitin’s Theorem [9, 1] for instance, states that
over total computable functions, Markov-decidability is equivalent to Type-2-
decidability!. This means that the machine trying to decide a property, when
provided with a program p for a function f, cannot do better than just running
p to evaluate f. The machine gains no additional information about f from
p. We note that Ceitin’s version of this result shows that over the real line,
Markov-computable functions and Type-2-computable functions coincide.

On the other hand, Friedberg [4] exhibited properties about total com-
putable functions that are Markov-semidecidable but that are not Type-2-
semidecidable. So that for semidecidability, a program p for a function f does
give some additional information that can be exploited by the machine. The
main question we raise in this paper is the following:

Can we characterize the additional useful information contained in a
program computing an object, as compared to having the object itself ?

To get some intuition, consider the following fundamental difference be-
tween the two models. In the Type-2-model, at any given time only a finite
portion of the description of z is provided, which corresponds to a finite ap-
proximation of x. Clearly, this approximation is also good for infinitely many
other objects — all the ones that are “close enough” to x. In particular, x is
never completely specified. In the Markov-model on the other hand, the pro-
gram provided to the machine completely specifies x from the beginning of the
calculation! This increases the predictive power of M, which might therefore be
able to perform stronger calculations. The point is to understand in which sit-
uations this fact can be exploited. A trivial example is obtained when one con-
siders the partially relativized setting: every function is Markov-computable
relative to an appropriate (powerful enough) oracle. Whereas whatever ora-
cle A we consider, Type-2-computable functions relative to A must always be
continuous. This is a partial relativization as the programs used as Markov
names are not relativized.

This observation takes us to another interesting point that separates the
Markov-model from the Type-2-model, namely their topological structure. It
is well known that Type-2-computability and topology are closely related: e.g.
the Type-2-computable functions are exactly the effectively continuous ones,
and the Type-2-semidecidable properties exactly correspond to the effectively
open sets. The connection between Markov-computability and topology, on the
other hand, appears to be much less clear. In particular, Friedberg’s construc-
tion provides a Markov-semidecidable set which is not open (for the standard
topology restricted to computable elements).

An obvious solution to relate Markov-computability to topology is to con-
sider precisely the topology generated by all the Markov-semidecidable sets —
the so called Ershov’s topology. The question then becomes:

How do Markov-semidecidable sets look like? can we characterize Ershov’s
open sets ?

1 In its original form due to Kreisel-Lacombe-Shcenfield, this theorem is stated for func-
tionals.
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In the present paper we make use of Kolmogorov Complexity to provide
a fairly complete answer to these and other questions in different settings.
Our main result is a characterization of the additional information provided
by a program, when the class of objects considered are the computable points
of an effective topological space. It can be informally stated as follows (see
Section 3):

Theorem A Quver effective topological spaces, a program computing x pro-
vides as much information as (i) a description of x itself (ii) plus any upper
bound on the Kolmogorov complexity of x.

Here, the Kolmogorov complexity K (z) of a computable infinite object x is
to be understood as the size of the shortest program computing a description of
x (Kolmogorov complexity of infinite objects was first defined by Schnorr [17]).
Obviously, any program for x trivially provides, in addition to a description, an
upper bound on its Kolmogorov complexity. Theorem A says that this bound
is all the exploitable additional information it provides.

Thus, we have a third model to deal with computable infinite objects. In
this model, input x is presented to the machine as a pair (d, k), where d is a
description for x and k a bound on the Kolmogorov complexity of z. We shall
call this the K-model. In these terms, a particular case of Theorem A can
be stated as follows: if X', ) are effective topological spaces (not necessarily
metric) and X., Y. are the corresponding sets of computable points, then a
function f : X, — Y, is Markov-computable if and only if it is K-computable.

A simple observation (see Proposition 1 below) shows that one can not in
general compute a program for x from a K-description of z, meaning that the
two notions are not fully equivalent. Despite this fact, Theorem A states that
the same algorithmic tasks can be performed from these two representations.
We consider a wide range of possible tasks: deciding a property of the rep-
resented object, semideciding a property, computing the image of the object
under a function and also other weaker tasks. In proving this we make a fun-
damental use of the Recursion Theorem. Interestingly, although the Recursion
Theorem does not relativize (a well known fact), Theorem A does in many
cases.

The K-model also sheds light into the structure of the open sets of Ershov’s
topology, providing a nice characterization in terms of Kolmogorov complexity,
at least in the particular case of the extended natural numbers N = NU {co}.
We recall that Ershov’s topology is generated by the Markov-semidecidable
properties.

Theorem B On the extended natural numbers, the Markov-semidecidable sets
are unions of c.e. subsets of N and sets {n € N : K(n) < h(n)} U {oc} for
some computable order h.

Here K (n) is (any version, like prefix or plain) of the usual Kolmogorov com-
plexity of natural numbers.

With the same techniques, we are able to prove several other related results
that are interesting on their own. For example, we show that there is no
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effective enumeration of the Markov-semidecidable sets of N and that there
is a Markov-semidecidable subset of {0, 1} that is not X9.

Finally, in the search of the limitations of our techniques, we turn our atten-
tion to more general spaces and analyze functions with values on topological
spaces that have an admissible representation but are not countably-based. In
particular, when this is the space of open subsets of Baire space O(B), we show
that Markov-computability can be strictly stronger than K-computability:

Theorem C For functionals taking partial computable functions as inputs
and elements of O(B) as outputs, one has that:

Markov-computability > K-computability > Type-2-computability.

One of the main questions that remains open is whether the first strict
inequality in Theorem C holds if we replace the partial computable functions
by the total ones. The situation is summarized in Table 2.

Table 2 Some results comparing Markov-computability, K-computability, and Type-2-
computability. S = {L, T} is the Sierpiniski space whose topology is generated by {T}.

Space X Semidecidable (’-Semidecidable F: X - O(B)

S Markov = K = Type-2 | Markov > K = Type-2 | Markov > K = Type-2

Part. func. | Markov = K = Type-2 | Markov > K = Type-2 | Markov > K > Type-2

Tot. func. Markov = K > Type-2 | Markov = K > Type-2 | Markov 7 K > Type-2

The paper is organized as follows. We start by providing the basic no-
tions and definitions in Section 2. In Section 3 we introduce the K-model and
present our main results. Section 4 contains several results that shed light on
the structure of Markov-semidecidable sets and in Section 5 we present the an-
nounced negative results. Finally, Section 6 contains a list of related problems
for possible future work.

2 Background
2.1 Notations and basic definitions.

We assume the reader is familiar with computability theory. Let {p,}een be
an effective enumeration of the set of computable partial functions. We denote
by P.(N) the collection of c.e. subsets of N and W, = dom(ip,) the induced
effective enumerations of its elements. If A € P.(N), an index of A is a
number e such that W, = A. If A is a c.e. set, implicitly given by an index,
Als] is the finite subset of A enumerated by stage s, so that A[s] C A[s + 1]
and A = J, A[s]. We use the notation Afat s] = A[s] \ A[s — 1] if s > 1 and
Alat 0] = A[0]. If F is a finite subset of N then [F1] is the collection of supersets
of F. B = NV will denote Baire space. We will often consider two particular
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elements of the Cantor space {0, 1} of infinite binary sequences: if a € {0,1}
then a* denotes the infinite sequence with a’s only.

We will use the Recursion Theorem, which says that one can define a
program computing a function (or more generally other classes of objects, like
c.e. sets) and use the program in its own definition. See [16].

Theorem 1 (Recursion Theorem) For every total computable function f,
there exists e such that . = @) and We = Wy(). Moreover, e can be
computed from an index of f.

2.2 Effective topological spaces.

An effective topological space is a tuple (X, 7,B) where (X,7) is a non-
empty Ty topological space, B = {B;}ien is numbered basis such that there
exists a computable function f : NxN — N satisfying B;NB; = Ukewm,” B

Given an effective topological space X, the standard representation of
points is defined as a surjective map p : dom(p) C B — X satisfying p(f) =«
whenever {f(n) : n € N} = {i : 2 € B;}. We will call any f € p~(z) a
Type-2-name of x. A point x € X is computable if it has a computable
Type-2-name. We denote by X, the set of computable points.

The countable set X, has a canonical numbering v defined by v(e) = =
if . is a name of x. We will call such an e a Markov-name of z and we
write £, = z. Another numbering n of X, is admissible if it is equivalent
to the canonical numbering v in the sense that there exist partial computable
functions f and g such that v =no f on dom(v) and 7 = v o g on dom(n). We
will often use the admissible numbering 7 of X, defined by 7(e) =  whenever
W,={ieN:ze B}

Ezample 1 Let B = NN be the Baire space. For each finite sequence u, let [u]
be the set of infinite extensions of u, called a cylinder. We endow B with the
topology generated by the cylinders, which is an effective topology. The stan-
dard numbering ¢, of partial computable functions, restricted to the indices
of total functions is an admissible numbering of B..

Ezample 2 Let P(N) be the space of subsets of N. For each finite set ' C N,
let [F] be the set of supersets of F. We endow P(N) with the Scott topol-
ogy, generated by the sets [F], which is an effective topology. The standard
numbering W, = dom(p.) of c.e. sets is an admissible numbering of P.(N).

To facilitate the reading of the paper, we will use the normal font (as in
A, N,U) when working on the space X, and the script font (as in A, N,U)
when working on X

2.2.1 Type-2-computability and Markov-computability

Let (X,7,B) and (¥, 7,B') be effective topological spaces. In what follows
R stands for both Type-2 and Markov. A set A C X, is R-semidecidable
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if there is a Turing machine M which, when provided with an R-name of x,
halts if and only if z € A. A function f : X, — Y. is R-computable if there
is a Turing machine M which, when provided with an R-name of z, writes
an R-name for f(x) on its one-way output tape. It is not hard to see that
a function f : X. — Y. is R-computable if and only if the sets f~1(B}) are
uniformly R-semidecidable.

The Markov-computability notions do not depend on the choice of the
admissible numbering.

Remark 1 Tt is worth noting that for a function f : X. — Y., being Markov-
computable is equivalent to having a machine M which, provided with a
Markov-name of z, outputs a Type-2-name of f(x). Indeed, combining the
program for x with the program for M gives a program for f(z). We also note
that a function f : X. — Y. which is Type-2-computable does not necessarily
extend to a Type-2-computable function f: X — V.

Type-2-computability and topology are closely related. A set U C X is
an effective open set if there exists e € N such that U = Uiewe B;. If
A =UNX,, we will then say that A is effectively open in X.. The connection
is established by the following result (see [23]).

Theorem 2 A set A C X, is Type-2-semidecidable if and only if it is effec-
tively open in X.. Therefore, a function f : X. — Y. is Type-2-computable
if and only if it is effectively continuous, i.e. the sets f~1(B.) are uniformly
effectively open in X..

As mentioned in the introduction, in order to have an analogous result for
Markov-computability, we have to use Ershov’s topology on X., which may
be different from the topology of X restricted to X..

3 Main results

In this section, (X, 7,B) is always an effective topological space and X, C
X is the set of computable elements. We start by explaining the main idea
behind our results. Let x € X, be a fixed element. From a machine Type-2-
semideciding a set A containing x, one can compute a neighborhood A of x
such that for every element y € X, the following implication holds:

yeN = ye A (1)

Now assume that A has the weaker property of being Markov-semidecidable,
and still contains z. From a machine Markov-semideciding A one cannot in
general compute such a neighborhood, which may not exist as shown by Fried-
berg’s example. However, from the Markov-name of any element y € X, one
can still compute a neighborhood N, of x such that implication (1) holds.
Further, as a finite intersection of neighborhoods is still a neighborhood, one
can compute a neighborhood N satisfying implication (1) for all y in a given
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finite set. Using this argument we can show that the problem = € A can be
Type-2-semidecided as soon as we know, in addition, a finite list of programs
containing at least one for x. This additional information is equivalent to hav-
ing any upper bound on the Kolmogorov complexity of x, which leads us to
the notion of K-computability that we now introduce.

3.1 K-computability

Definition 1 The Kolmogorov complexity K (z) of a computable element
x € X, is the length of a shortest program computing a Type-2-name of x.

As in the case of finite objects, there are several ways of formalizing the notion
of a program computing an infinite object, leading to several variants of the
notion of Kolmogorov complexity. However the choice of a formulation will not
make any difference so we do not need to specify the definition any further.

Definition 2 A K-name of a computable element x € X, consists of a pair
(f, k) where f is a Type-2-name of x and k > K(z).

This representation does not change the notion of computable element: the
elements that have computable K-names are exactly the computable elements.
However this representation is useful when considering computations that take
K-names as inputs.

Remark 2 Note that k is only an upper bound on the Kolmogorov complexity
of x and not necessarily of f, which may even be non computable. Note also
that knowing any such k is effectively equivalent to knowing any upper bound
on a Markov-name of z. This is what we will rather use in our proofs.

The K-computability notions are defined in the same way as in the pre-
vious section. We will denote by X.(k) the set of computable elements whose
Kolmogorov complexity is at most k. Note that X. = (J, Xc(k) and that K-
computability is the same as Type-2-computability on X.(k), uniformly in
k. In particular, a set A C X. is K-semidecidable iff there exists uniformly
effective open sets Uy, such that AN X (k) = U, N X (k).

Thus, for each notion of computability we have so far three versions, de-
pending on the way the objects are represented.

It is clear that one can compute K-names from Markov-names. An impor-
tant first observation is the fact that the converse does not necessarily hold.
In other words, the representations underlying Markov-computability and K-
computability are not equivalent.

Proposition 1 In general, it is not possible to compute Markov-names from
K-names.
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Proof We are on {0,1}Y. We denote by z. the computable sequence with
Markov-name e. There is a computable function f : N — N such that

o ov if ;(7) does not halt,
T 7081 if () halts in time ¢.

Assume that there is an oracle Turing machine M that converts each K-
name of a sequence into a program computing the sequence (a Markov-name).
There is a computable function & : N — N such that k() is an upper bound
on the complexity of z ;) and of 0. For each i, (04, k(7)) is a K-name of 0
so M must halt on it and output an index of 0“. Let u; be the number of bits
of 0“ read by the machine when it halts. If z ;) starts with u; zeroes then M
will output the same on (z¢(;y, k(4)), which is a K-name of 2 (;), which implies
that z ;) must be 0“.

As a result, for each 4, if ;(7) halts it must halt in time w;, which enables
one to decide the Halting problem, a contradiction.

In other words, a machine cannot convert a computable binary sequence x
and a finite list of programs, one of them computing x, into a program com-
puting z. Actually the proof shows that it is true even when the list contains
two programs only.

One can show that on Cantor space, Markov-names are limit-computable
(can be learned) from K-names: given x and k > K(x), one can compute a
sequence of natural numbers converging to an index of x (this problem was
investigated in the context of inductive inference [3]). To see this, given a finite
list of programs build a new program that on each input n € N runs all the
programs of the list in parallel and outputs the result of the first program that
halts. Now, start proposing the program (or index) built from the finite list
of programs of size < k. Progressively remove from the list the programs that
output something different from z. Each time one of the programs is rejected,
propose a new program built from the smaller list. In finite time, the list will
stabilize and the proposed program will compute z.

One can moreover show that relative to the halting set, Markov-names
are uniformly computable from K-names (the previous procedure is a limit-
computation, hence a computation relative to the halting set).

A c.e. set, however, cannot be learned. Actually one can prove a stronger
statement.

Proposition 2 There is no Turing functional & that, given an index e and
a Type-2-name of a set W which is either N or W, computes a sequence of
numbers converging to an indezx of W.

Proof Here a Type-2-name of a c.e. set W is a function ¢ : N — N such
that W = {n : 3k, t(k) = n + 1}. When we say that a number n appears in ¢,
we mean that n + 1 = t(k) for some k.

Assume that such a @ exists. Using the Recursion theorem, we define an
index a in the way described below. At the same time we enumerate a c.e. set
W, and we build an oracle ¢.
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We will define W, as a union |J; F; where (F;);cn is a computable sequence
of finite sets and F; C F;11. At the same time we will define a Type-2-name ¢
pf W, as the limit of a computable sequence of finite strings ¢; such that ¢;41
extends t;. The finite string ¢; contains exactly the elements of F;.

The strings t; are built such that &' (a) outputs a (finite or infinite) se-
quence of indices of length at least ¢ and changing after position 4, before
reaching the end of ¢;. Hence &*(a) outputs an infinite sequence of indices that
does not converge, contradicting the assumptions about .

To define a using the Recursion Theorem (Theorem 1), given e we define
a c.e. set Wy(.). The construction being uniform, f is a computable function
and we take for a a fixed-point of f, i.e. a satisfies W, = Wy (q).

Let e € N. We start with Fy = 0 and tq is the empty string. Assume
F; and t; have been defined. Look for a finite extension u of t; such that
before reaching the end of u, #¥(e) outputs a sequence containing an index j
occurring after position ¢ in the sequence, such that W; contains some number
that is not in w (such a u must be found: on a representation of N starting
with ¢;, @ must output an infinite sequence converging to an index j of N, let
u be the finite part of the oracle that is read when such an index is output
after position 7). Let F;,1 be the set of elements enumerated in u. Run #“°” (e)
and look for a number k # j appearing later than j in the output sequence.
If such a k is found then let t;11 be the part of the oracle that is used in the
computation of k, otherwise ¢;y1,t;12,... and F;yo, Fiy3,... are undefined.

As the construction is effective, there exists a computable function f :
N — N such that Wy () is the union of the sets Fj that are defined. Let a be a
fixed-point of f, i.e. W, = Wy(4). We prove that the sequences ¢; and F; are
entirely defined. Assume otherwise that for some 4, t; is defined but not ;1.
One has W, = Wy, = Fiy1 and u0% is a Type-2-name of Wy, so @“Ow(a)
should output an infinite sequence converging to an index k of W,. As W;
contains a number which is not in u, W; # W, so k # j, and occurrences
of k appear later than j in the sequence. As a result, the search procedure will
terminate and ¢;;1 will be defined, contradicting the assumption.

Now by construction @' (a) outputs a sequence that changes after position i
(from j to k # j) so the sequence produced by &'(a) does not converge. We
get a contradiction with the assumption about @, so no such @ exist.

The rest of this section is devoted to show that, despite the facts above, the
notions of Markov-computability and K-computability are indeed equivalent
to a large extent.

3.2 Equivalence between Markov-computability and K-computability

The following Lemma contains the main technical arguments.

Lemma 1 Let A be a c.e. subset of N. There exist uniformly effective Scott
open sets U, C P(N), such that for every c.e. set E the following hold:

i) if all the indices of E belong to A then E € Uy, for every k,
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it) if no index of E belongs to A then E ¢ Uy, for every k > K(E).

The argument is uniform: the open sets Uy, are effective, uniformly in a c.e.
index of A.
We first reproduce the proof given in [8] which uses the Recursion Theorem.

Proof Using the Recursion theorem, there is a computable function e(a,b)
such that for all a,b € N,

W )W, if e(a,b) ¢ A,
@) =Y w, [(f]UW,  if e(a,b) € Alat t].

Let k € N. We define an effective open set Uy,. Compute by such that every
element whose complexity is less than k has an index less than by. If a is such
that for all b < by, e(a,b) € A then let ¢ be minimal such that e(a,b) € Aft]
for all b < by, enumerate [W,[t]] into Uj.

We now check the two announced conditions. i) Let £ C N be a c.e. set.
Assume that every index of F belongs to A and let a be an index of E. For
all b, e(a,b) € A (otherwise e(a,b) is an index of W, = E but e(a,b) ¢ A,
contradiction), so Uy, contains [W,[t]] for some ¢, which contains F. ) Assume
that K(F) < k, that no index of F belongs to A and that E € Uy. Let b < by,
be an index of E. As E € Uy, E belongs to some [W,[t]] enumerated into Uy
(here @ is not the same as above and is not assumed to be an index of E). As
e(a,b) € A, Weiapy) = Walt'] UW, for some ¢ < t. As W, [t'] € W, [t] € Wy,
e(a,b) is an index of F that belongs to A, contradicting the assumption.

We now present an alternative proof that does not use the Recursion The-
orem.

Proof There is a computable function e(a, b, ¢) such that

W W, if p.(c) does not halt,
elabe) =y, [tJUW, if pc(c) halts in time t.

Given k € N we define an effective open set Uy. Compute by such that every
element whose complexity is less than k has an index less than by. If @ is such
that for all b < by, there exists ¢ = ¢(a,b) such that e(a,b,¢c) € A and ¢.(c)
halts then let ¢ be the maximal halting time of . (c) for ¢ = ¢(a, b) with b < by,
enumerate [W,[t]] into Uy.

We now check the two announced conditions. Let £ C N be a c.e. set.

i) Assume that every index of E belongs to A and let a be an index of
E. Let us prove by contradiction that for each b € N there exists ¢ such that
e(a,b,c) € A and @.(c) halts, which implies that W, is contained in U, for
all k. Let us assume that it is false for some b € N, i.e. that for each ¢ such
that ¢.(c) halts, e(a,b,c) ¢ A. Observe that for each ¢ such that ¢.(c) does
not halt, e(a,b,c) is an index of E so it belongs to A. Hence the complement
of the halting set is many-one reducible to A via the function ¢ — e(a, b, ¢),
which is a contradiction.
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it) Assume that K(E) < k, that no index of E belongs to A and that
E € Uy. Let b < by, be an index of E. As E € Uy, E belongs to some [W,[t]]
enumerated into Uy, (here a is not the same as above and is not assumed to be
an index of E). There is ¢ such that e(a, b, ¢) € A and p.(c) halts in ¢’ < ¢ steps.
One has We(qp,c) = Wo[t'TUW, = Wy, as W, [t'] € W, [t] € Wy, hence e(a, b, c)
is an index of W}, = E that belongs to A, contradicting the assumption.

We now state the main explicit versions of Theorems A and B.

Theorem 3 Let X be an effective topological space. A set A C X, is Markov-
semidecidable iff it is K-semidecidable. The equivalence is uniform.

Proof Every effective topological space is Type-2-computably homeomorphic
to a subspace of P(N): to z € X, associate {i € N : x € B;} where B; is the
canonical enumeration of the basis of X. Hence we can assume that X is a
subspace of P(N). Let I C N be a c.e. set such that for all e € N for which
W, € X, it holds W, € A <= e € I. Each c.e. set E € X, either has all
its indices in I or has no index in I, so the effective open sets U), provided by
Lemma 1 coincide with A on the set of elements of X, whose complexity is at
most k. Now, a machine K-semideciding A works as follows: given a Type-2-
name of £ € X, and k > K(F), it tests whether E' € U}, and halts in this case
only.

Corollary 1 Let XY be effective topological spaces. A function f: X, — Y,
is Markov-computable iff f is K-computable. The equivalence is uniform.

Proof Let B; be the numbered basis of ). f is Markov-computable iff the
sets f~1(B;) are uniformly Markov-semidecidable iff these sets are uniformly
K-semidecidable (Theorem 3) iff f is K-computable.

We now show that the argument in the proof of Lemma 1 can be extended
from semidecidability to weaker classes of properties, showing that for most
algorithmic tasks, the additional information given by programs is indeed just
an upper bound on the Kolmogorov complexity.

3.2.1 Hierarchies.

Let & be an effective topological space. We consider the finite levels of the
effective Borel hierarchy, defined as follows. The class XY consists of the ef-
fective open sets. The class X0 ; consists of the effective unions of differences
of X9-sets (in a Polish space it is equivalent to the more common effective
unions of IT9-sets). The class II? consists of complements of X0-sets. The
class A is the intersection of X9 and I10. Inside the class A we consider
the finite levels of the effective difference hierarchy. For n € N, an element of
the class D,, is the difference of n effective open sets Uy 2 ... D U,_1, i.e.
(U \UL) U ..U Up—2 \Up—1) if nis even and (U \U1) U ... UU,_1 if n is
odd. We denote this difference by D, (Up,...,Up—1). In the case X = N with
the discrete topology, the effective Borel hierarchy is exactly the arithmetical
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hierarchy, the class D,, of the effective difference hierarchy is exactly the class
of n-c.e. sets.

Theorem 4 A set A C X, is Markov-n-c.e. iff it is K-n-c.e.

More precisely, it means that the following statements are equivalent, where v :
dom(v) — X, is the standard numbering of X,:

— there exist c.e. sets Ip,...,I,,_1 C N such that
v (A) =D, (I, ..., I,_1) Ndom(v),

— there exist uniformly effective open sets Uy, ... ,U%_; such that for all k,

ANX (k) =D,UE,.... Uk )N X.(k).

Proof One direction is trivial: if a set is K-n-c.e. then it is Markov-n-c.e., as
every Markov-name can be converted into a K-name.

We prove the other direction. Again we can assume w.l.o.g. that X is a
subspace of P(N). Let Iy 2 Iy O ... 2 I,,_1 be c.e. sets such that if W, € X,
then W, € A < ee D,(ly,...,I,_1). It is convenient to define I,, = ), so
that e € D, (Ig,...,I,—1) if and only if e € Iy and for each odd i < n, e € I;
implies e € I; 1. We denote a tuple (ao, ...,a,) € N**! by a.

Using the Recursion theorem, we define a computable function e(a) in the
following way. Let

We@ = [ Wa, [t;] U Wa,,
j<i
where

— ¢ < n is minimal such that e(a) ¢ I;,
— for j < i, t; is such that e(a) € I;[at t;].

The enumeration of W) is indeed effective. Start with ¢ = 0 and enumer-
ate W,,. When one discovers that e(a) € I, stop enumerating W,,, start
enumerating W, , and increment 7.

Given k, we define effective open sets U},...,U*_,. Let by be an upper
bound on the indices of elements whose Kolmogorov complexity is at most k. If
ap is such that for all ay,...,a, < by, e(ag, ..., a,) € Iy then let ¢y be minimal
such that all these numbers belong to Iy[to] and enumerate [W,,[to]] in UL
By induction, let 1 < ¢ < n and assume ay,...,a;—1 have been accepted with
to,...,t;—1. If a; is such that for all a;11,...,a, < bg, e(ag,...,a,) € I; then
let ¢; be minimal such that all these numbers belong to I;[t;] and enumerate
(Wi, lto] U ... U Wy, [t;]] in UE. For convenience we also define U* = .

Let E € X (k). We now prove that E € A < FE € D,,(Uy,...,Un_1).

(i) We show that if E € A then E € U} and for all odd i < n, if E € UF
then F € Z/Ifﬂ. Assume F € A and let ag be an index of E. For all ay,...,ay,
e(a) € Iy (otherwise e(a) is an index of E that does not belong to Ip) so Uy
contains some [Wy, [to]] which contains E. Let i < n be odd. If E € U} then

there is some [Wy,[to] U ... U Wy, [t;]] (not necessarily the same ag as before)
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containing E enumerated in UF. Let a;41 < by be an index of E. For all
Aitr2, ..., an, e(@) € I; hence e(@) must belong to I; 11, otherwise it is an index
of E but does not belong to D, (I, ..., I,—1). As a result, some neighborhood
of E is enumerated in UF, ;.

(i) We now show that if £ € D, (U¥,...,U*_|) then E € A. Let i be
maximal such that E € UF: E € D, (UE,...,U~%_) means that i is even.
As E € UF, E is in some [W,,[to] U ... U W,,[t;]] enumerated in UF. Let
ai+1 < by be an index of E. As E ¢ Z/{fH, there exist a;42,...,a, < b; such
that e(ao, ..., a,) ¢ Ii+1, otherwise some [Wo,[to] U...U W, [t;]UWq,,, [tit1]]
would be enumerated in ¢} ; which would contain E, a contradiction. But
then e(@) is an index of E that belongs to I; \ I;+1 € D,,({o, ..., I,—1), hence
EcA

Friedberg’s example shows a difference between Markov-semidecidability
and Type-2-semidecidability on the Baire space, or the space of total func-
tions. Rice-Shapiro theorem shows that such a difference does not hold on the
space of partial functions and on P(N). One has to consider 2-c.e. sets rather
than semidecidable sets to see a difference between the two computation mod-
els on P(N). Indeed, Selivanov [19] constructed a Markov-2-c.e. subset of P(N)
that is not even IT9. However Grassin [5] proved that every Markov-n-c.e. sub-
set of P(N) always lies in the corresponding level of the non-effective difference
hierarchy, i.e. it is a difference D,,(Up, ..., U,—1) of n open sets, which by the
result of Selivanov are not necessarily effective open sets. Selivanov’s result
also implies that a Markov-2-c.e. set is not in general the difference of two
Markov-semidecidable sets.

In the following theorem, we need to assume an additional property on the
space X. Namely, that the domain of the standard representation on X is a
I19 set. This is the case for example for the so called quasi-Polish spaces (see

[2)).

Theorem 5 Assume that the domain of the standard representation of X is
I19. A set A C X, is Markov-X8 iff it is K-X9.

More precisely, it means that the following statements are equivalent:

— there exists a Eg set I C N such that
v~ 1(A) = I ndom(v),
— there exist uniformly effective open sets U¥, V¥ such that for all k,

ANXe(k) = JUE\VE) N X (k).

n

Proof We show that if A is Markov-II9 then A is K-1I9, which is equivalent to
the statement by replacing A with its complement. We use the numbering . =
x if W, is the set of indices of basic neighborhoods of z. Let I = (,, I, € N be
II9 (I,, are uniformly c.e.) such that if v1(A) = I Ndom(v). The assumption



On the information carried by programs about the objects they compute 15

about the space implies that dom(v) is a II9-set D =, D,, C N, where D,,
are uniformly c.e. sets.

Given i, let C; = {x;} if i € I'N D, C; = () otherwise. C; is IT9, uniformly
in i. Indeed, for each n, define the uniformly effective open sets

(Bn,0)  if n & Wi,

unavn =
Uan; Van) {(X,Bn) it ne W,

and
(X,0) ifi¢I,ND,,
(X, X) ifiel,ND,.

One has C; =(,,(Un \ Vn)® (we use the fact that X is Tp).
Given k € N, compute by, such that every element of Kolmogorov complex-
ity at most & has an index < bx. The set |J;;, Ci is I19, uniformly in k. This

set intersected with X, (k) is exactly A N X.(k).

(Usny1, Vont1) = {

Remark 3 In case X is a Polish space, the sets ¥ are not needed and therefore
the last part of the statement reads A N X.(k) =, (X \ V¥) N X.(k).

4 Structure of Markov-semidecidable sets

Here we provide several results that shed light on the computational and
topological structure of Markov-semidecidable sets. Our first result shows
that Markov-semidecidable sets share some of the nice properties of Type-
2-semidecidable sets.

Proposition 3 Assume that X contains a dense computable sequence. Given
a Markov-semidecidable set A, it is semi-decidable whether A is non-empty.
If A is non-empty, one can compute a sequence of points {x;} C A which is
dense in A.

Proof Let I be c.e. subset of N such that for every index i, z; € A <=
i € I. Using the Recursion theorem, there is a computable function e(a) such
that x.q) = x4 if e(a) ¢ I, and z,(,) is some point from the dense sequence
if e(a) € I. Indeed, the program computing x4 starts enumerating the neigh-
borhoods of z,, testing e(a) € I in parallel. If that test eventually halts then
the program looks for some point from the dense sequence in the intersection
of all the neighborhoods of z, enumerated so far, and then enumerates all the
neighborhoods of that point.

Now A is non-empty iff there is a such that e(a) € I. When A is non-
empty, one can compute an element in A: look for a such that e(a) € I, wc(,)
is such a point. To get a computable dense sequence, apply this argument to
the intersection of A with each basic open set B,;.

The following result provides an upper bound on the effective Borel com-
plexity of Markov-semidecidable sets.
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Proposition 4 Let A C X, be Markov-semidecidable. There exist uniformly
effective open sets U, C X such that A =, U N X..

Proof Let Uy be the effective open sets from the proof of Theorem 3. We
already know that A C Uy, for all k. If x € (", U N X, then let k > K(x):
since z € U, N X (k) = AN X.(k), we conclude that z € A.

The result above is actually tight, as we will now show. For the sake of
completeness, let us recall original Friedberg’s example. We present it in a
way that is more convenient for our purposes. For a natural number n, K(n)
is its Kolmogorov complexity (in any of its versions).

Theorem 6 (Friedberg) On the Cantor space, the set

A={0“}U U [om1].

n:K(n)<log(n)—1

is Markov-semidecidable but not open. Hence the Ershov topology is strictly
stronger than the Cantor topology.

Proof We show that A is K-semidecidable. There is a constant ¢ such that for
every n € N and every x € [0"1], K(n) < K(x)+ ¢ (n can be easily computed
from a program computing x). Given an infinite binary sequence x (a Type-
2-description) and an upper bound k on K(z), we only need to read the first
e = 2F+e+2 hits of x. If we see only zeros, we accept (this is safe as if z € [0"1]
for some n, K(n) < K(z) + ¢ < k+cand n > 2872 50 K(n) < log(n) — 1
hence z € A). Otherwise one gets 0"1... for some n < e, then test whether
K(n) <log(n) — 1.

Remark 4 Friedberg’s example is not X9 as it is not open but it is still low
in the effective Borel hierarchy. It happens to be A9 and even in coDs, i.e.
its complement is the difference of two effective open sets. It is an effective
open set appended with a limit point. We strengthen Friedberg’s example by
constructing a Markov-semidecidable set which is far from being open and
higher in the effective Borel hierarchy.

For a finite binary string u, let us define the monotone complexity Km/(u)
of u as the length of a shortest program computing a (finite or infinite) binary
sequence extending u. The program writes its output on a one-way output
tape and may never halt. Again the precise definition of K'm(u) (Levin or
Schnorr monotone or process complexity) does not make any difference for
our purposes. The only important property is that for a computable sequence
x, Km(z[,) < Km(z) for all n.

Theorem 7 There is a Markov-semidecidable subset of {0, 1} that is not X9.
It is a non-empty closed subset of {0,1}Y with empty interior, defined by

A={zc{0,1} :vn, Km(zl,) < n/2+ a}

for some sufficiently large a € N.
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Proof We choose a such that for some computable sequence z, K(z) < a,
hence A is non-empty as it contains z. We first show that A is K-semidecidable.
First, the function u — Km(u) is right-c.e. Now, given x and some k > K (x),
x € Aiff for all n < 2(k —a), Km(xl,) < n/2+ a, as for all n > 2(k — a),
Km(zl,) < K(z) <k <n/2+a.

Here we denote {0,1} by X and the set of computable sequences by
X.. A is a subset of X.. We show that there is no X9-subset of X whose
intersection with X, is A. Let A be the closure of A in X (it might not be
{zr € X :VYn, Km(xl,) <n/2+a}). Here is the argument:

1. A has empty interior in X, i.e. there is no cylinder [u] such that [u]N X, C
A. Indeed, given a finite string u and a sufficiently large k, for most words
v of length &k, Km(uv) > |uv|/2 4 a so [uv] is disjoint from A.

2. If P C X is a II)-set and PN X, C A then P is nowhere dense in A.
Indeed, if there exists a cylinder [u] such that § # A N[u] € P then
ANfu] = PnNlul N X, is both Markov-semidecidable and Markov-co-
semidecidable hence by Kreisel-Lacombe-Sheenfield/Ceitin theorem it is
clopen on X, so A has non-empty interior in X., contradicting the first
point.

3. By Proposition 3, A is a c.e. closed subset of X' (it contains a dense com-
putable sequence) hence a II9-set. Let S C X be the II9-set given by
Proposition 4, satisfying A = SN X.. Let &’ = ANS. & is a II9-set
which contains a dense computable sequence, and A is exactly the set of
computable elements of S’. From this it follows that the computable Baire
theorem holds on S’: if the sets P; are uniformly IT9-sets that have empty
interior in S’ then one can compute some z in "\ J,; P;.

4. Now, if P; are uniformly IT ?-Sets such that each P; N X, is contained in A
then by the second point P; has empty interior in A, and also in &' C A, so
by the third point one can compute some z in S"\|J, P;. As x is computable
and belongs to &', = belongs to A so |J, P; does not cover A.

4.1 The extended natural numbers

For the following results, we restrict our attention to the space X = N =
NU {oo} whose topology is generated by the singletons {n} and the semi-lines
[n, o0], for n € N. Note that every point in this space is computable, so that
X = X..

Observe that for a finite z € N, K (z) here coincides with the usual notion of
Kolmogorov complexity of natural numbers, and K (c0) is some finite number.

Friedberg’s example translated to this space reads {x € N : K(z) <
log(z) — 1}, which inspires the following definition.

Definition 3 We define the Friedberg sets of N to be the ones of the form
{r € N: K(z) < h(z)}, where h : N — N is any computable order, namely,
any non decreasing unbounded computable function.
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Note that a computable order can always be extended to a computable function
h:N — N, with h(co) = oo.

Friedberg sets are Markov-semidecidable just like the set from Theorem
6. The next two results show that the only Markov-semidecidable sets over N
which are not Type-2-semidecidable are essentially the Friedberg sets.

Proposition 5 If A C N is Markov-semidecidable and contains oo then there
is a computable order h such that A contains a Friedberg set.

Proof Since A is K-semidecidable, for each k one can compute p(k) such that
[p(k),00] N{z: K(z) < k} C A. One can assume that p(k) is increasing. Let
h(n) = min{i : p(i) > n}. If n ¢ A then p(K(n)) > n (just take k = K(n)), so
one has h(n) < K(n).

Proposition 5 provides a nice characterization of the Ershov’s open sets.

Corollary 2 The Ershov topology is generated by the singletons {n} and the
Friedberg sets.

Whether or not one can find such a characterization on other spaces such
as the Cantor space is an interesting question.

We end this section by observing that, unlike Type-2-semidecidable sets,
Markov-semidecidable sets cannot be effectively enumerated.

Proposition 6 There is no effective enumeration of the Markov-semidecidable
subsets of N.

Proof Let v be some admissible numbering of N. Let A; be a sequence of
uniformly Markov-semidecidable sets, coming with uniformly c.e. sets F; C N
such that E; Ndom(r) = v~1(A;). One can extract the sets that contain oo
(let eg be some index of oo, one can enumerate the numbers i such that E;
contains eg) and rename the subsequence, so we assume that each A; contains
oo. For each i one can compute an increasing computable function f; : N — N
whose range is contained in A;. Now we build a Markov-semidecidable set
A that contains oo and differs from each A;. Let f be a computable order
such that for each i and all sufficiently large k, f;(k) < f(k) (for instance,
f(k) = max(fo(k),..., fr(k))+1). Here we use another version of Kolmogorov
complexity: C(x) is the minimal index of x. We now define A = {z € N :
f(C(x)) < x}. A is Markov-semidecidable by the usual argument.

We show that A differs from each A;. Let i € N. As C o f; is one-to-one,
there exist infinitely many & € N such that C(f;(k)) > k. Moreover if k is
sufficiently large then f;(C(f;(k))) < f(C(fi(k))). Hence there exists k such
that f;(k) < fi(C(fi(k))) < f(C(fi(k)). Let = f;(k): € A; by construction
of fi and z < f(C(x)) so x ¢ A.



On the information carried by programs about the objects they compute 19

5 When Markov beats Kolmogorov

In this section we explore the limits of our results. We first look at the rel-
ativized case, and show that there are simple cases that separate Markov-
computability from K-computability. However, we also show that, interest-
ingly, the equivalence persists if the space has a Polish structure.

5.1 Relativization

Let S = {.L, T} be the Sierpinski space with topology given by {0, {T},{L, T}}.
Note that as S is finite, K-computability is trivially equivalent to Type-2-
computability simply because all the elements share a common upper bound
on their Kolmogorov complexities, which therefore provides no interesting in-
formation. Relativizing w.r.t. the Halting set, we can then separate Markov-
decidability from Type-2-decidability, and therefore from K-decidability.

Remark 8 The set {1} C S is Markov-decidable relative to the Halting set
but is not Type-2-decidable relative to any oracle.

Proof Tt is not decidable relative to any oracle simply because it is not clopen.

Note that this is only a partial relativization as the Markov-names are not
relativized. For this reason, Remark 8 is not very interesting, but will be used
to prove a deeper result (Theorem 10).

Similarly, over P(N), (/" separates K-semidecidability from Type-2-semi-
decidability (without oracle, Rice-Shapiro theorem shows that the two notions
coincide with Markov-semidecidability).

Proposition 7 The set {N} C P(N) is K-semidecidable relative to ("' but is
not Type-2-semidecidable relative to any oracle.

Proof Let E C N be a c.e. set and k an upper bound on its Kolmogorov
complexity. From k we know that A has an index in some finite set F. Using
(" we, for each e € F, decide whether W, = N and compute, when W, # N, an
element outside W,. We then wait that each one of this finite set of elements
appears in A, enumerated on the input tape, and accept A if it is the case.

The set {N} is not Type-2-semidecidable relative to any oracle because it
contains the set N but no finite subset.

However, metric spaces behave differently. Although stated on Cantor space,
the next result extends to any computable metric space [23].

Proposition 8 Let O C N. A subset of {0,1}Y is Markov-semidecidable rel-
ative to O if and only if it is K-semidecidable relative to O.

Proof There are two cases, depending on whether O computes the halting set
or not.
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If O computes the halting set then by the remark following Proposition 1,
Markov-names can be uniformly computed from K-names relative to O, which
gives the result. This part only works in the case of the Cantor space.

If O does not compute the halting set then Lemma 1 and Theorem 3 still
hold relative to O on any effective topological space. Indeed, in the proof of
Lemma 1 we used the non-computability of the halting set. As long as O does
not compute the halting set, the argument remains valid. This part holds on
every effective topological space.

Let us state this result differently. Every subset A of {0,1}! is Markov-
semidecidable relative to some oracle, in an obvious way: let O encode an
enumeration of an index set of A, i.e. a set containing all the indices of the
elements of A but no index of elements of {0, 1}X\ A, and let M be the machine
with oracle O accepting its input ¢ iff ¢ belongs to the set encoded by O. M
Markov-semidecides A with oracle O.

Proposition 8 can be reformulated this way: every subset A of {0, 1} is K-
semidecidable relative to any enumeration of an index set of A. Is it uniform?
Does the machine K-semideciding A relative to an index set of A depend on
the particular index set?

Observe that the proof of Proposition 8 is not uniform as two cases are
treated separately. We now show that we cannot get rid of this distinction, i.e.
that the result is not uniform.

Theorem 9 While every subset A of {0,1} is K-semidecidable relative to
any enumeration of any index set of A, it is not so uniformly.

Proof Assume that there is a single machine M that for each set A C {0,1}Y
and each enumeration of an index set of A, K-semidecides A using the enu-
meration as oracle.

Let us consider the element zo € {0,1}Y which is the sequence with only
0’s, and the set A9 = {zo} C {0,1}Y. For each k > K(z¢), M accepts the
K-name (z, k) of g provided any enumeration of the index set of Ag.

Hence for each k > K (x() there exists a finite string v and a number n such
that M with oracle u accepts (0™, k), and such that u encodes the enumeration
of a finite set F' C N, such that each ¢ € F is an index of a (finite or infinite)
sequence extending 0" 1. Such a pair (u,n) can be effectively found, so to each
k > K(x() one can associate some n = n(k), in a computable way.

The Kolmogorov complexity of a computable sequence z; can be bounded
computably in i: let k(4) be a total computable function such that K (x;) < k(7)
for every index 4. Using the Recursion Theorem, we now define some ¢ such
that x; = 0"(*¥(*)) 1« By definition of the function n, there is some finite string
u such that on oracle u, M accepts (0"*()) k(i)), and such that u enumerates
a finite set F' such that every ¢ € F' is an index of a sequence extending
0n(k@)+1 As a result, F contains no index of x; but M accepts the K-name
(24, k(1)) of ;.

Let A = {0, 1}\ ;. As u encodes no index of x;, u can be extended so that
it encodes an enumeration of the index set of A. On that oracle, M accepts a
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K-name of z;. However x; does not belong to A, so M does not K-semidecide
A on that oracle.

5.2 Functions to non-effective topological spaces

Corollary 1 states that Markov-computable functions are the same as K-
computable ones. This result assumes that the underlying spaces are effective
topological spaces, which are essentially countably-based spaces. Does the re-
sult still hold when the spaces are not countably-based? We investigate what
happens when the target space is not countably-based, but still has an admis-
sible representation, as defined in [18]. We show that Corollary 1 breaks in
that case.

One of the simplest examples of a non-countably-based space is the space
O(B) of open subsets of the Baire space. The topology is generated by the
following sets: given a compact set K C B, the class of open subsets of B
containing K is open. This topology is not countably-based and hence is not
an effective topology. However it does have an admissible representation: an
open set is represented by an enumeration of cylinders whose union is the open
set. Computing an element U of O(B) means enumerating the open set and
is equivalent to semideciding, given f € B as oracle, whether f belongs to
U. Hence the computation of an element of O(B) amounts to a semidecision
procedure, relative to an oracle f. This observation enables us to use the results
from the previous section.

We now present the details of the simplest case, a uniform version of Re-
mark 8. This result contrasts with Corollary 1.

Theorem 10 There exists a Markov-computable function F : S — O(B) that
is not K-computable.

Proof We use the admissible numbering vs of S defined by vs(e) = T if ¢ (e)l,
vs(e) = L otherwise. We define two effective open sets U ,Ut and define
F(L)=U, and F(T) =Ur. First, let U, =B. Let T : N — N be defined as
follows: T'(n) is the halting time of ¢, (n) if it halts, T'(n) = 0 otherwise. The
open set Ut := B\ {T'} happens to be effective. First the function F is not
Type-2-computable because it is not continuous: indeed, F' is not monotonic
as L < T but U, = B is not contained in Ut C B. As S is finite, F' is not
K-computable neither. However F' is Markov-computable. Given an index e
of s € S, enumerate Ut and enumerate the set of functions f such that ¢, (e)
does not halt in exactly f(e) steps. The latter set of functions is effectively
open, uniformly in e. If ¢.(e)1 then the whole space B is enumerated. If ¢, (e)]
then nothing more than Ut is enumerated. Intuitively, given e and f, from T
one can decide whether @, (e) halts, i.e. whether vg(e) = L.

A similar construction, based on Proposition 7, yields a function F' :
P(N) — O(B) which is K-computable but not Type-2-computable by replac-
ing the function T from Theorem 10 by a function 7" computing (/" and such
that B\ {T"} is effectively open.
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Combining all these results, and using that fact that Theorem 10 can clearly
also be realized using P(N) in place of S, we obtain our announced Theorem
C.

Theorem 11 For functions from P(N) with values on O(B) one has that:
Markov-computability > K-computability > Type-2-computability.

While Type-2-computable functions are always Scott continuous (i.e. mono-
tone and compact), one can show that K-computable functions are always
monotone but not necessarily compact. Markov-computable functions may
even not be monotone.

Let us now briefly discuss whether Theorem 11 holds for functions from the
Cantor space to O(B). Friedberg’s example of a Markov (hence K)-semidecidable
set that is not Type-2-semidecidable directly implies the second inequality.
However the idea behind the proof of the first inequality cannot be applied on
Cantor space. Indeed, using Proposition 8 one can show that the analog of the
function of Theorem 10 is actually K-computable.

Proposition 9 The function G : {0,1} — O(B) mapping 0“ to B and any
other sequence to B\ {T'} is K-computable.

Proof Given z,k and f, apply the algorithm given by Proposition 8 to semi-
decide, if f =T, whether x = 0“. In parallel, semidecide whether f # T.

We leave the following question open: is there a Markov-computable func-
tion from the Cantor space to O(B) that is not K-computable?

6 Future work

We list a few problems for future work.

— Find a characterization of the Ershov topology on other spaces than N,
like the Cantor space.

— Determine for which levels of the effective difference hierarchy the Markov-
model and the K-model are equivalent. We know from Theorem 4 that the
equivalence holds for the finite levels. What about the level w?

— All our results hold when the space X is an effective topological space.
However the three models also make sense on any represented space. It
seems like an interesting research program to study the extent to which
our results are valid in this case.

— Compare the effective Borel hierarchy induced by the Markov-semidecidable
sets, the hierarchy induced by the arithmetical hierarchy on the indices and
the effective Borel hierarchy induced by the standard topology.
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