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Abstract

A new off-policy, offline, model-free, actor-critic reinforcement learning algorithm dealing
with continuous environments in both states and actions is presented. It addresses discrete
time problems where the goal is to maximize the discounted sum of rewards using stationary
policies. Our algorithm allows to trade-off between data-efficiency and scalability. The
amount of a priori knowledge is kept low by: (1) using neural networks to learn both the
critic and the actor, (2) not relying on initial trajectories provided by an expert, and (3)
not depending on known goal states. Experimental results show better data-efficiency than
4 state-of-the-art algorithms on two benchmark environments.
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1. Introduction

Reinforcement learning (RL) is a framework for solving sequential decision problems, in
which an agent interacts with its environment and adapts its policy based on a scalar
reward signal (Sutton and Barto, 1998). RL agents can autonomously learn difficult tasks,
like playing video games (Mnih et al., 2015). While the basic setting of RL is currently
well established, fully continuous environments for both state and action spaces need new
algorithms to solve more real-world problems. In many realistic tasks, like robotics, it
is time-consuming and costly to produce data. RL agents should thereby exhibit good
data-efficiency, i.e. exploiting each sample as best as possible, even at the cost of a longer
computational time.

The purpose of this work is to design an RL algorithm that: (1) tackles continuous state
and action spaces, (2) is data-efficient, and (3) uses neural networks to be as generic as
possible with minimal a priori knowledge.

Recently, several RL algorithms for fully continuous environments have been developed
with neural networks control architectures (Lillicrap et al., 2015; Schulman et al., 2015).
However, they were focused in the task performance rather than data-efficiency since they
are model-free and data were not too costly to produce. Seeking for data-efficiency usu-
ally means to use model-based algorithms, like Probabilistic Inference for Learning COntrol
(PILCO) (Deisenroth and Rasmussen, 2011). However, PILCO lacks scalability (Wahlström
et al., 2015) and model-based algorithms does not always lead to straightforward improve-
ments when using neural networks (Gu et al., 2016).

In this work, we present an offline, model-free, off-policy, actor-critic RL algorithm that
allows a trade-off between scalability and data-efficiency. It is based on the fitted actor-
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critic family (Antos et al., 2008; Zimmer et al., 2016) and benefits from the improvements
proposed by Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015).

2. Background

We are interested in RL problems, modeled as Markov Decision Processes (MDP) 〈S,A, T,R〉,
where the state space S and the action space A are continuous. The goal is to seek for an
optimal policy π∗ maximizing the expected discounted reward:

π∗ = arg max
π

J(π) = arg max
π

E
[ ∞∑
t=0

γt ×R(st, πt(st))
]
, (1)

where t denotes a time step and 0 < γ < 1 is the discount factor.
When the state space S is continuous, classical value-function methods like Least-

Squares Temporal Difference (LSTD) (Bradtke et al., 1996) rely on an estimation of Q :
S ×A→ R, the sequential values of actions in each state:

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]
, (2)

where rt is the reward obtained at time t from R following π. Being data-efficient means to
search for the best policy given the collected samples. An example of a neural data-efficient,
critic-only algorithm is Fitted Q Iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005), which
updates the Q function several times using the Bellman operator as an approximated version
of Value Iteration (Howard, 1960). Instead of iterating over all states and actions, it relies
only on the collected samples (st, at, rt+1, st+1):

Qk+1 = arg min
Q∈F

N∑
t=1

[
Q(st, at)−

(
rt+1 + γ max

a′∈A
Qk(st+1, a

′)
)]2

. (3)

When the action space A is continuous, the use of an actor (i.e. a parametric policy)
becomes crucial to overcome the complexity of the argmax search. This often leads to
actor-only methods like Policy Gradient (Sutton et al., 1999), Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001) or Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015). The major drawbacks of actor-only meth-
ods are the high variability of the cost J (because there is no critic) and, for gradient-based
methods, the plateau effect and local minima that can lead to poor policies (Grondman
et al., 2012; Konda and Tsitsiklis, 1999). On the other hand, actor-critic algorithms try
to combine both the advantages of previous methods. The critic learns a value function
thus reducing the variability of the approximation of J and the actor learns the parametric
policy, allowing the use of continuous actions.

We now present three state-of-the-art actor-critic algorithms that we will use for com-
parison in our experiments (from least to most data-efficient). Continuous Actor Critic
Learning Automaton (CACLA) is a successful actor-critic algorithm (Van Hasselt and Wier-
ing, 2007) that uses neural networks for both the critic and the actor. Due to it’s online
nature and its on-policy updates, it cannot achieve good data efficiency (the collected data
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is used then forgotten). In some environments, CACLA performs better than CMA-ES
(Van Hasselt, 2012). Neural Fitted Actor Critic (NFAC) may achieve a better data effi-
ciency than CACLA since it uses FQI updates (Zimmer et al., 2016). However, the data
is forgotten after each end of episode because the actor features on-policy update. Deep
Deterministic Policy Gradient (DDPG) is also an actor-critic algorithm (Lillicrap et al.,
2015). It accomplishes online updates of the policy and Q function, and it reuse previous
samples through its off-policy update. Based on Neural Fitted Q with Continuous Actions
(Hafner and Riedmiller, 2011), DDPG is more scalable due to online updates, targets net-
works (Mnih et al., 2015) and batch normalization (Ioffe and Szegedy, 2015). The target
networks serve to slow down the weights updates to increase the stability of learning, by
soft updating a copy of the policy and the value function.

Recently, two new methods have been proposed to increase the efficiency of some RL
algorithms. When the dimensions of action space A are bounded, instead of limiting the
output of the neural policy with a last layer (for instance with a hyperbolic tangent) that
squashes the gradient obtained from the critic, it is preferable to have an unbounded last
layer with an adapted gradient strategy (Hausknecht and Stone, 2016). Retrace(λ) is a
new strategy to weight a sample for off-policy learning (Munos et al., 2016), it provides
low-variance, safe and efficient updates.

3. Algorithm

Our algorithm, that we name Data Efficient Neural Fitted Actor Critic (DENFAC), can
be seen as a neural version of a fitted actor-critic (FAC) algorithm (Antos et al., 2008). It
contains both an approximated version of Value and Policy Iteration (for the critic and the
actor respectively).

The critic is updated with a FQI update where the argmax operator is replaced by the
policy choice. Moreover, the policy is able to change at each update to approximately fit
what would be the argmax.

Qk+1 = argmin
Q∈Fc

∑
(st,at,rt+1,st+1)∈D

c(st, at)
[
Q(st, at)−

(
rt+1 + γQk(st+1, πk(st+1))

)]2
, (4)

πk+1 = argmax
π∈Fa

∑
st∈D

Qk+1

(
st, πk(st)

)
, (5)

where c(st, at) = min
(
1,

πk−1(at|st)
πb(at|st)

)
is the weight associated to a sample (Munos et al.,

2016), and πb is the policy that gathered the sample. This coupled optimization can be
applied multiple times without acquiring new samples.

DENFAC is an off-line algorithm, therefore the execution part of one episode consists
only of performing the policy choices and collecting the samples (st, at, rt+1, st+1) that are
added to D (the replay buffer). The off-line part is depicted in Algorithm 1. The algorithm
is data-efficient because it performs a type of FQI. Furthermore, unlike DDPG, it performs
updates over the largest set of data given a computational constraint. This might requires
too much computational time so the data-efficiency vs scalability dilemma can be adjusted
through the length of D. If D is big enough to accurately represent the Q function, another
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meta-parameter of Algorithm 1, reset critic that reset the weight of the critic, can lead to
a even better data-efficiency by avoiding local minima.

Data: D replay buffer of N samples, Q0 value-function, πb previous policies, K
number of fitted iteration, G number of gradient descent for actor updates,
inverting gradient strategy, reset critic strategy

Result: πK the next policy to play, QK the next value function
for k ← 1 to K do

for (st, at, ut, rt+1, st+1) ∈ D do

qk,t ←

{
rt+1, if st+1 ∈ S∗

rt+1 + γQk−1(st+1, πk−1(st+1)), otherwise

end
Qk ← randomly initialize critic network if reset critic else Qk−1
Update critic by minimizing the loss :

L =
1

N

N∑
t=1

min
(
1,
πk−1(at|st)
πb(at|st)

)(
qk,t −Qk(st, at)

)2
Randomly initialize actor network πk
Update the actor policy using the batch gradient G times:

if inverting gradient then

∇a = ∇a.

{
(amax − a)/(amax − amin) if ∇a < 0

(a− amin)/(amax − amin), otherwise

end

∇θπkπk =
1

N

N∑
t=1

∇aQ(st, a)|a=πk(st)∇θπkπk(st)

end
Algorithm 1: Data Efficient Neural Fitted Actor Critic (DENFAC)

4. Experimental Setup

An experimental comparison of DENFAC, DDPG, CMA-ES, NFAC and CACLA is done
into two environments: Acrobot (Spong, 1995) and Cartpole (Riedmiller et al., 2007).

In Acrobot (double swing-up), the reward function is defined as (1) +1 if the goal is
reached (arm straight up), (2) the normalized max height of end effector if 500 steps are
reached, and (3) 0 otherwise.

In Cartpole (inverted pendulum), the reward function is defined as (1) 0 when the cart
position is between [−0.05; 0.05] and the pole angle between [− π

60 ,
π
60 ], (2) −2 × (500 −

last step) if it exits at last step (pole angle /∈ [−π
6 ,

π
6 ] or cart position /∈ [−2.4; 2.4]), and

(3) -1 otherwise.

The neural networks use (1) Adam learning algorithm (Kingma and Ba, 2015), (2) the
leaky rectified non-linearity (ReLU) (Glorot et al., 2011), and (3) batch normalization (Ioffe
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FAC DDPG NFAC DENFAC

Offline & Batch × × ×
Off-policy × × ×

Fitted Critic × × ×
Actor updated through ∇Q × × ×

Reset Networks × ×
Retrace ×

Batch Normalization × ×

Figure 1: Properties of the nearest actor-critic algorithms : FAC (Antos et al., 2008), DDPG
(Lillicrap et al., 2015) and NFAC (Zimmer et al., 2016).

Figure 2: Illustration of Acrobot (left) and Cartpole (right) environments (reproduced from
Wikipedia).

and Szegedy, 2015). Critic networks contain 2 hidden layers of 50 and 7 neurons. Actor
networks contain only 1 hidden layer of 5 units (Acrobot) or 20 units (Cartpole). The last
layer of the critic networks is linear while the actor’s one is leaky ReLU. The actor policy is
a truncated Gaussian policy between [−1, 1] and σ = 0.5 with γ = 0.9 (Acrobot) or γ = 0.99
(Cartpole).

For each experimental setup, we first optimize all the meta-parameters of DDPG and
then apply them to DENFAC. To obtain a fair comparison, we also optimized the number
of updates performed by DDPG, and we applied the inverting gradient strategy (when it
was better) to make it more data-efficient. We used Caffe as neural network library (Jia
et al., 2014) and Open Dynamic Engine (ODE) as physic engine (Smith, 2005). Figure 3
shows that DENFAC quickly develops good policies on both tasks outperforming others
algorithms. CMA-ES is not as good as DDPG since it does not store collected samples.
Both CACLA and NFAC cannot reach the goal in only 1500 episodes on Acrobot.

We did not notice that adding a L2 regularization term in the critic improves DDPG
in those environments. We found out that having an unbounded last layer for the actor
is always better, even without an adapted gradient strategy (like inverting gradient). In
some experiments, we also run our algorithm in an online setting or with target networks,
but this did not improve the data-efficiency, while requiring more computations (results not
shown here).
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Figure 3: Median and quartiles of the best registered performance in Acrobot (the lower,
the better) and Cartpole (the higher, the better) environments during RL learning with
each algorithm. Each experiment has been run 40 times for statistical results.

αa inverting mini additional batch reset
αc gradient batch size τ updates K G size D critic

Acrobot
DDPG 0.1 No 64 0.001 8

DENFAC 0.1 No 10 25 5000 Yes

Cartpole
DDPG 0.1 Yes 64 0.1 8

DENFAC 0.1 Yes 10 25 5000 No

Figure 4: Best meta-parameters found for DDPG and DENFAC.

5. Conclusions and further work

We investigated the data-efficency vs scalability dilemma in two fully continuous environ-
ments. Data-efficency often implies more computational time spent on each data impeding
the scalability. In some cases, resetting the weights of the neural networks shows even more
data-efficency. All those additional costs must be negligible compared to the cost of pro-
ducing data in the environment otherwise such methods are not appropriate. DENFAC is
more data-efficient than the current state-of-the-art actor-critic algorithms but comes at a
higher computational cost. To further improve DENFAC, it should be analyzed if a First-
In First-Out (FIFO) queue is the best choice for D. Moreover, DENFAC lacks stability
in learning, target networks did not helped, slowing down the change in the policy might
increase his stability (Schulman et al., 2015).
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critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions
on Systems, Man and Cybernetics, 42(6):1291–1307, 2012. ISSN 10946977. doi: 10.1109/
TSMCC.2012.2218595.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous Deep Q-
Learning with Model-based Acceleration. arXiv preprint arXiv:1603.00748, 2016.

Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback control. Machine
Learning, 84(1-2):137–169, 2011. ISSN 0885-6125. doi: 10.1007/s10994-011-5235-x.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation, 9(2):159–195, 2001. ISSN 1063-6560.
doi: 10.1162/106365601750190398.

Matthew Hausknecht and Peter Stone. Deep Reinforcement Learning in Parameterized
Action Space. arXiv preprint arXiv:1511.04143, 2016.

Ronard A. Howard. Dynamic Programming and Markov Processes. 1960.

7



Matthieu Zimmer, Yann Boniface, and Alain Dutech

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture for
Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.

S\oren Hauberg John W. Eaton David Bateman and Rik Wehbring. {GNU Octave} version
4.0.0 manual: a high-level interactive language for numerical computations. 2015. URL
http://www.gnu.org/software/octave/doc/interpreter.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations, pages 1–13, 2015.

Vijay R. Konda and John N. Tsitsiklis. Actor-Critic Algorithms. Neural Information Pro-
cessing Systems, 13:1008–1014, 1999. ISSN 0363-0129. doi: 10.1137/S0363012901385691.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and Others. Human-
level control through deep reinforcement learning. Nature, 518:529–533, 2015.
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